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Abstract. For a sequence of m urns we investigate how the number of urns satisfying a certain

condition (e.g. being empty) evolves in time when after each time unit a ball is thrown. We

show for a variety of urn models that this process (suitably normalized) converges weakly to a

Gaussian process.

1. Introduction

Consider a sequence of m urns into which we throw balls according to some rules. The balls
are thrown one at a time and independently. Moreover, we assume that the balls are usually
undistinguishable.

Assign to each urn U a valuation Y (U) that is a real valued random variable and is additive,
i.e. when we allocate balls in batches the final value of Y (U) is the sum of the values for each
batch considered separately. Furthermore, let E be a subset of the set of possible values of Y (U).
We are interested in the random variable X equal to the number of urns U such that Y (U) ∈ E :

X =

m
∑

i=1

1Y (Ui)∈E .

We will deal with several urn models which are covered by the following two cases:

• If we are interested in the number of urns having a specified number of balls, then Y (U) is
the number of balls in the urn U , the set E is the set of the required numbers for a single urn,
and is a subset of the natural integers. For example, empty urns (which have been studied
in [11]) correspond to E = {0}, urns with exactly r balls to E = {r}, and urns with at most
r balls to E = [0 . . . r].

• When we allocate balls of two colors (say red and blue), and consider the urns having a
specified balance, Y (U) is the balance of the urn, i.e. the difference between the number of
blue balls and the number of red balls, and the set E of required balances is a subset of
the set of relative integers. For example, balanced urns are obtained for E = {0}, urns with
balance r for E = {r}, and urns with positive balance for E = N. For previous work dealing
with this case see [3].

We shall prove in this paper that, when the balls are thrown at each unit time, the process
associated to the number of urns with a specified number of balls or a specified balance converges
weakly towards a Gaussian process, whose covariance matrix can be explicitely computed.

2. A General Model

We are interested in the stochastic process Xm(n), n = 0, 1, 2, . . . , defined by the value of X at
the time when exactly n balls have been thrown into the set of m urns. We will study the behavior
of this process as m → ∞. Consider for a moment the case where Y (U) equals the number of
balls and E is the set {r, r + 1, r + 2, . . . }. If at some time t1 an urn satisfies Y (U) ∈ E , it will
satisfy this condition for all the times t2 ≥ t1. In such cases (we expect that) the limiting process
(as m → ∞) will be a Markov process (compare with Section 2.3). In the other cases this does
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not hold: An urn may satisfy Y (U) ∈ E at some time t1, but not at a further time t2 > t1. This
is obvious for the models with two types of balls, and this also holds for the number of urns with
exactly or at most r balls. In these cases the limiting process will (probably) be non-Markov (see
again Section 2.3).

In this section we will first describe a generating function approach to the problem of empty
urns which was studied by Kolchin et al.[11] (In fact they also studied the more general case of
urns with exactly r balls). Afterwards we will present a generalization of this model and some
examples covered by the general model.

2.1. The number of empty urns. We will apply the generating function technique for combina-
torial enumeration (for an introduction to this method see e.g. [5, 9]). We have undistinguishable
balls and distinguishable urns and thus we will use generating functions which are exponential
w.r.t. the balls and ordinary w.r.t. the urns. As there is only one way to throw n balls into a single
urn, the generating function of one urn is ez where z marks the balls and the generating function
of a set of m urns is given by emz. We introduce the variable x in order to mark the empty urns.
This leads to the generating function

Φ1(x, z) = (ez + x − 1)
m

.

In this setup we have

P {Xm(n) = k} =
[xkzn]Φ1(x, z)

[zn]Φ1(1, z)
. (2.1)

We are interested in asymptotic distributional properties in the central domain, i.e. when the ratio
of the number of balls n and the number of urns m either tends to a constant or belongs to a
compact set of ]0,+∞[. From (2.1) we get

EXm(n) =
[zn] ∂

∂x Φ1(1, z)

[zn]Φ(1, z)
= m

(

1 − 1

m

)n

∼ me−θ,

for m → ∞ and n/m → θ > 0. The variance is

VarXm(n) =
[zn] ∂2

∂x2 Φ1(1, z)

[zn]Φ(1, z)

= m(m − 1)

(

1 − 2

m

)n

+ m

(

1 − 1

m

)n

− m2

(

1 − 1

m

)2n

∼ me−θ(1 − (1 + θ)e−θ).

The generating function for the bi-dimensional distribution is

Φ2(x1, x2, z1, z2) = ((ez1 − 1)ez2 + x1(e
z2 − 1) + x1x2)

m

and here we have

P {Xm(n1) = k1, Xm(n1 + n2) = k2} =
[xk1

1 xk2

2 zn1

1 zn2

2 ]Φ2(x1, x2, z1, z2)

[zn1

1 zn2

2 ]Φ2(1, 1, z1, z2)
.

The asymptotic covariance at (normalized) times θ1m and θ2m is me−θ2 (1 − (1 + θ1)e
−θ1); it

is factorized w.r.t. θ1 and θ2, which means that the limiting process is Markovian. (For a proof of
the existence of the limiting process see [11, Ch. IV]; for a relationship between the existence of a
factorized form and the Markov property see [12]).
The function marking the urns whose state has changed between the times t1 and t2 is

Φ(x, z1, z2) =
(

ez1+z2 + (x − 1)(ez2 − 1)
)m

and the g.f. describing the multivariate (d-dimensional) distributions is

Φd(z1, . . . , zd, x1, . . . , xd) =





d
∑

i=0

(ezi+1 − 1) exp





d
∑

j=i+2

zj





i
∏

j=1

xj





m

(2.2)
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2.2. General g.f.-model. We will now generalize the model described in the previous section.
Let g(z) be the generating function enumerating the allocation of balls into a single urn, and f(z)
the function enumerating those allocations such that Y ∈ E . Furthermore, let us assume that g(z)
and f(z) are entire functions. As before, we mark the balls by z and the urns satisfying Y (U) ∈ E
by x. Then the generating function describing the allocations of balls in the m urns is

ΦE,1(x, z) = (g(z) + (x − 1)f(z))m.

As can be seen from equation (2.1), the idea is to extract the coefficients [zn]ΦE,1(x, z),
[znxk]ΦE,1(x, z), and their multivariate analoga. ΦE,1(x, z) is analytic w.r.t. z and we can use
a saddle point approximation. The nature of ΦE,1(x, z) allows a straightforward application of
the results of Bender and Richmond [1], which gives directly the convergence towards a Gaussian
distribution. The asymptotic mean is obtained by a saddle point approximation: We have

EXm(n) = m
[zn]f(z)g(z)m−1

[zn]g(z)m
∼ m

f(ρ)

g(ρ)
,

where ρ is the solution of the saddle point equation zg′(z)/g(z) = n/m. The normalizing factor is

[zn]g(z)m =
g(ρ)m

ρn
√

2πms2
(1 + o(1)),

with s2 = ρ2g′′(ρ)/g(ρ) − (ρg′(ρ)/g(ρ))2 + ρg′(ρ)/g(ρ). In the frequent case where g(z) = ez we
get ρ = n/m and s2 = ρ, and thus the above equation transforms to

[zn]{emz} ∼ mn

√
2πn (n/e)n

,

and we reobtain Stirling’s approximation of n!.
To cope with the multivariate distribution define φE,d(x1, . . . , xd; z1, . . . , zd) as the generat-

ing function enumerating all the possible allocations in a single urn, where we use the variables
z1, . . . , zd to mark the balls allocated before the time θ1, then between θ1 and θ2, etc., and the
variables x1, . . . , xd to mark the urns U such that Y (U) ∈ E at the times θ1, . . . , θd. Of course
the generating function relative to the system of m urns will be ΦE,d = φm

E,d. Now we can get a
recurrence equation on the φE,d by a “renewal” argument as follows.

Consider a sequence of times θ1, . . . , θd, and partition the allocations into an urn U according
to the first time θl when Y (U) ∈ E (1 ≤ l ≤ d), i.e. l = min{i : Y (U, θi) ∈ E where Y (U, θi) is
equal to Y (U) evaluated at time θi.

If Y (U, ·) ∈ E does not hold for θ1, . . . , θl−1, but holds for θl, then we enumerate the allocations
up to and including time θl by a function xlKl(z1, . . . , zl). Note that only the zi for i ≤ l appear,
since we stop counting at time θl. Hence we must also enumerate the allocations after the time
θl. For i > l, define Zi(U) := Y (U, θi) − Y (U, θl), which due to additivity can be interpreted as
the value of Y if the allocations between θl (excluded) and θi had been done into an empty urn.
Assume that Y (U, θl) = r for some r ∈ E and define

E − r := {y : y + r ∈ E}.

Then Y (U, θi) ∈ E if and only if Z(U) ∈ E − r. Hence the allocations after the time θl, knowing
that Y has value r at the time θl, are described by the function φE−r,d−l(xl+1, . . . , xd; zl+1, . . . , zd).

For the case where Y (U, ·) never belongs to E , i.e. for l = ∞, define Kd+1(z1, . . . , zd) as the
function enumerating those allocations. Of course, there is no occurrence of any xi in this function.

Putting all this together gives

φE,d(x1, . . . , xd; z1, . . . , zd) = Kd+1(z1, . . . , zd)

+

d
∑

l=1

xlKl(z1, . . . , zl)
∑

r∈E

φE−r,d−l(xl+1, . . . , xd; zl+1, . . . , zd). (2.3)

For the two classes of examples mentioned in the introduction we obtain:
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• For Y (U) equal to the number of balls in the urn,

Kl(z1, . . . , zl) =
∑

n1,...,nl

zn1

1

n1!
· · · znl

l

nl!
(l ≤ d)

where the sum is for n1, . . . , nl such that n1 6∈ E , . . . , n1+· · ·+nl−1 6∈ E and n1+· · ·+nl ∈ E ,
and

Kd+1(z1, . . . , zd) =
∑

n1,...,nd

zn1

1

n1!
. . .

znd

l

nd!
,

where the sum is for n1, . . . , nd such that n1 6∈ E , . . . , n1 + · · · + nd 6∈ E .
• For colored balls and Y (U) equal to the balance of the urn,

Kl(z1, . . . , zl) =
∑

n1,...,nl

In1
(2z1) . . . Inl

(2zl),

where the sum is for n1, . . . , nl such that n1 6∈ E , . . . , n1+· · ·+nl−1 6∈ E and n1+· · ·+nl ∈ E ,
and where the In(z) are Bessel functions (see [3] for details), where we recall that for q ≥ 0
we have

Iq(2z) =
∑

n≥0

z2n+q

n!(n + q)!
,

and

Kd+1(z1, . . . , zd) =
∑

n1,...,nd

In1
(2z1) . . . Ind

(2zd),

where the sum is for n1, . . . , nd such that n1 6∈ E , . . . , n1 + · · · + nd 6∈ E .

We will show the following theorem:

Theorem 2.1. Let Xm(bmtc), t ≥ 0, be the process associated to allocating balls into urns of a
general urn model such that the generating functions describing the allocation process have the
shape

ΦE,d(x1, . . . , xd, z1, . . . , zd) = φE,d(x1, . . . , xd, z1, . . . , zd)
m

where φE,d satisfies a recurrence relation of the form (2.3) with entire functions Ki. Then the
following weak limit theorem holds:

Ym(t) :=
Xm(bmtc) − EXm(bmtc)√

m

w−→ G(t)

where G(t) is a centered Gaussian process with continuous sample paths. The covariance function
Bs,t, s, t ≥ 0, is given by

Bs,t = Bt,s =
∂2(log λs,t(e

u1 , eu2))

∂u1∂u2

∣

∣

∣

∣

u1=0,u2=0

(2.4)

where s < t and

λs,t(x1, x2) =
φE,2(x1, x2, ρ1, ρ2)

ρs
1ρ

t−s
2

where ρ1 = ρ1(x1, x2, s, t) and ρ2 = ρ2(x1, x2, s, t) are the saddle points which are defined by the
equations in z1 and z2

z1 ∂φE,2/∂z1 = sφE,2, (2.5)

z2 ∂φE,2/∂z2 = (t − s)φE,2; (2.6)

and

Bs,s =
∂2(log λs(e

u))

∂2u

∣

∣

∣

∣

u=0

(2.7)

with

λs(x) =
φE,1(x, ρ)

ρs
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where ρ = ρ(x, s) is the saddle point defined by the equation in z

z ∂φE,1/∂z = sφE,1. (2.8)

Remark 1. Note that the limiting process G(t) is a Markov process if and only if the covariance
can be factorized in the form Bs,t = b1(s)b2(t) (see [12]).

Remark 2. It should be mentioned that the assumption of the above functions to be entire is not a
necessity. We actually require that any saddle point considered during the evaluation of a Cauchy
integral throughout the proof is closer to the origin than any singularity of the integrand.

Corollary. Under the assumptions of Theorem 2.1, the limiting variance is

V arXm(n) ∼ m
f

g



1 − f

g



1 +
sg

′2

sgg′′ − (s − 1)g′2

(

1 − ρf
′

sf

)2






 ,

where the functions f , g and their derivatives are evaluated at the point ρ solution of the saddle
point equation : zg

′

(z) = sg(z) with s = n/m.

As a consequence, we have a general formula for the variance, for a fixed allocation scheme
described by the function g(z). We give below the variances for some examples we shall consider
in the next subsection.

Corollary. For the classical allocation scheme (g(z) = ez),

V arXm(n) ∼ mf(s)e−s



1 − f(s)e−s



1 + s

(

1 − f
′

(s)

f(s)

)2






 .

For the allocation scheme on bounded urns (g(z) = (1 + z)δ), and taking ρ = s/(δ − s),

V arXm(n) ∼ mf(ρ)
(

1 − s

δ

)δ



1 − f(ρ)
(

1 − s

δ

)δ



1 +
δs

δ − s

(

1 − f
′

(ρ)

(δ − s)f(ρ)

)2






 .

For the classical allocation scheme with colored balls (g(z) = e2z),

V arXm(n) ∼ mf(s/2)e−s



1 − f(s/2)e−s



1 + s

(

1 − f
′

(s/2)

2f(s/2)

)2






 .

For the allocation scheme on bounded urns and colored balls (g(z) = (1 + 2z)δ), and taking ρ =
s/2(δ − s),

V arXm(n) ∼ mf(ρ)
(

1 − s

δ

)δ



1 − f(ρ)
(

1 − s

δ

)δ



1 +
δs

δ − s

(

1 − f
′

(ρ)

2(δ − s)f(ρ)

)2






 .

2.3. Further examples. We present in this part applications of our theorem to some problems
relative to the number of urns satisfying some condition of the kind specified number of balls or
specified balance. For each of them, we shall give the basic generating functions g(z) and f(z),
the multivariate functions Φd (with an emphasis on Φ1 and Φ2, which determine the moments,
hence the limiting Gaussian process), and either the exact formulae or the asymptotic expressions
for the mean value, variance and covariance. Asymptotics for the mean value and variance are for
n/m → θ; for the covariance the number of balls up to the (normalized) time θ1 is n1 such that
n1/m → θ1 and the number of balls between the times θ1 and θ2 is n2 such that (n1+n2)/m → θ2.
Some of the results presented below can be found in the literature, others, to the best of our
knowledge, are new.
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2.3.1. Variations on the number of empty urns. In the classical case, the balls are undistinguish-
able, g(z) = ez, the valuation Y (U) is equal to the number of balls in the urn, the set E is {0},
and f(z) = 1. A variation of this model occurs when studying some database parameter : the size
of a projection in a relation without functional dependency [6]. Roughly speaking, the parameter
of interest is the number of non-empty urns, when the balls are distinguishable and the urns have
a bounded size δ. Such an urn can be seen as a sequence of δ distinguishable cells, each of which
can receive at most one ball; allocating n balls into an urn is equivalent to choosing the n cells
that receive a ball : gn =

(

δ
n

)

and g(z) = (1 + z)δ.
This leads us to consider the number of empty urns in a general case, when the allocation of

balls into an urn is described by an ordinary or exponential function g(z); this covers the classical
case of empty urns (g(z) exponential and equal to ez) and the case of projections (g(z) ordinary
and equal to (1 + z)δ). The set E is the same, and f(z) = 1. The generating function describing
empty urns is

Φ1(x; z) = (g(z) + x − 1)
m

.

The generating function for the bi-dimensional distribution is

Φ2(x1, x2; z1, z2) = ((g(z1) − 1)g(z2) + x1(g(z2) − 1) + x1x2)
m

.

The multivariate generating function associated to the finite-dimensional distribution is an exten-
sion of the function for the classical case :

φd(x1, . . . , xd, z1, . . . , zd) =
∑

0≤j≤d

x1 . . . xj ζj(z1, . . . , zd); (2.9)

ζj(z1, . . . , zd) = (g(zj+1) − 1) g(zj+2) · · · g(zd). (2.10)

Let us define γ(i, n) = [zn]{g(z)m−i}. When the parameter n is proportional to m, we can get an
asymptotic development of the coefficients γ(i, n) for fixed i ∈ {0, 1, 2} [4]. The mean value is

EXm(n) = m
γ(1, n)

γ(0, n)
∼ m

g(ρ)
,

with ρ defined by the saddle point equation zg
′

(z)/g(z) = θ. The variance is

V arXm(N) = m(m − 1)
γ(2, n)

γ(0, n)
+ m

γ(1, n)

γ(0, n)
−
(

m
γ(1, n)

γ(0, n)

)2

and the covariance at (normalized) times θ1 and θ2 is

Cov[X(n1), X(n1 + n2)] = m2

(

γ(2, n1)

γ(0, n1)

γ(1, n2)

γ(0, n2)
− γ(1, n1)

γ(0, n1)

γ(1, n1 + n2)

γ(0, n1 + n2)

)

+m

(

γ(1, n1)

γ(0, n1)
− γ(2, n1)

γ(0, n1)

)

γ(1, n2)

γ(0, n2)
.

Applying this to g(z) = (1+z)δ, we find again (cf. [6, 8]) that the projection size converges weakly
to a non-Markovian process with mean value and variance

EXm(n) = m

(

1 −
(

(m−1)δ
n

)

(

mδ
n

)

)

∼ m

[

1 −
(

1 − θ

δ

δ
)]

;

V arXm(n) = m2

[

(

(m−2)δ
n

)

(

mδ
n

) −
(

(m−1)δ
n

)2

(

mδ
n

)2

]

+ m

[

(

(m−2)δ
n

)

(

mδ
n

) +

(

(m−1)δ
n

)

(

mδ
n

)

]

∼ m

(

1 − θ

δ

)δ
[

1 −
(

1 − θ

δ

)δ (

1 +
δθ

δ − θ

)

]

.
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Its covariance is

Cov [Xm(n1), Xm(n1 + n2)] = m2

(

(m−1)δ
n1+n2

)

(

mδ
n1+n2

)

(

1 −
(

(m−1)δ
n1

)

(

mδ
n1

)

)

−m(m − 1)

(

(m−1)δ
n1

)

(

mδ
n1

)

(
(

(m−1)δ
n1

)

(

mδ
n1

) −
(

(m−2)δ
n1

)

(

mδ
n1

)

)

∼ m

(

1 − θ1

δ

)δ (

1 − θ2 − θ1

δ

)δ
[

1 −
(

1 − θ1

δ

)δ (

1 +
δθ1

δ − θ1

)

]

.

2.3.2. Number of urns when the number of balls satisfies some condition. We begin by studying the
number of urns with exactly r balls (see [11] for a different presentation of some of these results);
of course this includes the number of empty urns. Here again, the balls are undistinguishable, with
g(z) = ez, and Y (U) is the number of balls in the urn. The set E is {r}, and f(z) = zr/r!.

Φ1(x; z) =

(

ez + (x − 1)
zr

r!

)m

.

The mean value is

EXm(n) =

(

n

r

)

(m − 1)n−r

mn
∼ m

θr

r!
e−θ

(

1 +
(2r − θ) θ − r(r − 1)

2mθ

)

.

The variance is

V arXm(n) = m(m − 1)

(

n

r, r

)

(m − 2)n−2r

mn
+

(

n

r

)

(m − 1)n−r

mn

−
((

n

r

)

(m − 1)n−r

mn

)2

∼ m
θr

r!
e−θ

(

1 − θr

r!
e−θ

(

1 +
(r − θ)2

θ

))

.

Define h(z1, z2) :=
∑

0≤k<r(z
k
1/k!) (zr−k

2 /(r − k)!): This function enumerates the allocations that
put strictly less than r balls into an urn at the time t1, and exactly r balls at the time t2. Then

Φ2(x1, x2; z1, z2) =
((

ez1 − zr
1

r!

)

ez2 − h(z1, z2) + x1
zr
1

r!
(ez2 − 1) + x2h(z1, z2) + x1x2

zr
1

r!

)m

.

For any urn, the condition Y (U) = r is not satisfied at the beginning, and may never hold; if
at some point it is satisfied, after some time it will cease to hold. The functions describing the
finite-dimensional distributions are

φd = ez1+···zd +
d
∑

i=1

ζi(z1, . . . zi)
(

xiνd−i(zi+1, . . . , zd;xi+1, . . . , xd) − ezi+1+···+zd
)

,

where ζi is defined by

ζi =
∑

l1+···+li<r

zl1
1

l1!
. . .

zli
i

li!

z
r−(l1+···+li)
i+1

(r − l1 − · · · li)!
,
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and where νd describes the allocation of d batches into a single urn, and is the function we met
while studying empty urns : νd is the function φd of Equation (2.2). The covariance is [11, p. 181]

Cov[X(n1), X(n1 + n2)] =

m

(

n1

r

)(

1 − 1

m

)n2
(

1

m

)r

.

(

(

1 − 1

m

)n1−r

−
(

1 − 2

m

)n1−r

+ m

(

(

1 − 2

m

)n1−r

−
(

n1 + n2

r

)(

1 − 1

m

)2n1−r
))

∼ m
θr
1

r!
e−θ2

(

1 − θr
2

r!
e−θ1

(

1 +
(r − θ1)(r − θ2)

θ2

))

.

When r = 0, we get back the expression for empty urns. For r 6= 0, the covariance cannot be
factored w.r.t. θ1 and θ2, and the limiting process is not Markovian.

We can extend these results when the allocation of balls into a single urn is described by a
function g(z) =

∑

i giz
i. The function f(z) is now grz

r, and

Φ1(x; z) = (g(z) + (x − 1)grz
r)

m
.

The mean value is

EXm(n) = mgr
[zn−r]g(z)m−1

[zn]g(z)m
∼ m

gr ρ(θ)r

g(ρ(θ))
,

with ρ(θ) defined, as usual, by the saddle-point equation : zg
′

(z)/g(z) = θ. The variance is

V arXm(n) = m(m − 1)g2
r

[zn−2r]g(z)m−2

[zn]g(z)m
+ mgr

[zn−r]g(z)m−i

[zn]g(z)m

−m2g2
r

(

[zn−r]g(z)m−i

[zn]g(z)m

)2

.

The function enumerating the allocations that put strictly less than r balls into an urn at the time
t1, and a total of exactly r balls at the time t2, is h(z1, z2) :=

∑

0≤k<r gk gr−k zk
1 zr−k

2 . Then

Φ2(x1, x2; z1, z2) =

((g(z1) − grz
r
1) g(z2) − h(z1, z2) + x1grz

r
1(g(z2) − 1) + x2h(z1, z2) + x1x2grz

r
1)

m
.

The functions describing the finite-dimensional distributions are Φd = φm
d , with

φd = g(z1) · · · g(zd)

+

d
∑

i=1

ζi(z1, . . . zi) (xiνd−i(zi+1, . . . , zd;xi+1, . . . , xd) − g(zi+1) · · · g(zd)) ,

where νd is again the function φd associated with empty urns, and is defined here by the equa-
tion (2.9), and where the ζi are such that

ζi+1 =
∑

l1+···+li<r

gl1z
l1
1 . . . gliz

li
i g(r−l1−···li)z

r−(l1+···+li)
i+1 .

The covariance can be expressed as a function of the coefficients γ(i, n) := [zn]g(z)m−i :

Cov(Xm(n1), Xm(n1 + n2)) = mgr
γ(1, n2)

γ(0, n2)
.

(

γ(1, n1 − r)

γ(0, n1)
+ (m − 1)

γ(2, n1 − r)

γ(0, n1)

)

−m2g2
r

γ(1, n1 + n2 − r)

γ(0, n1 + n2)

γ(1, n1 − r)

γ(0, n1)
.

For example, if we consider bounded urns, we get

EXm(n) ∼ m

(

δ

r

)(

θ

δ − θ

)r (

1 − θ

δ

)δ

;

V arXm(n) ∼ m

(

δ

r

)(

θ

δ − θ

)r (

1 − θ

δ

)δ
[

1 −
(

δ

r

)(

θ

δ − θ

)r (

1 − θ

δ

)δ (

1 +
δ(θ − r)2

θ(δ − θ)

)

]

.
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As regards the asymptotic covariance, we can compute its asymptotic value for a given r.
If we consider now the number of urns with at most r balls, in the classical case g(z) = ez, the

set E is [0...r] and f(z) = er(z), with er(z) =
∑

0≤i≤r zi/i!.

Φ1(x; z) = (ez − er(z) + xer(z))
m

.

The average number of urns with at most r balls is

EXm(n) = m
n!

mn
[zn]{er(z) e(m−1)z} = m

r
∑

i=0

(

n

i

)

(1 − 1/m)n−i m−i ∼ mer(θ)e
−θ.

The variance can be obtained explicitely; its asymptotic value is

V arXm(n) ∼ me−θ
(

er(θ) − e−θ
[

e2
r(θ) + θ2r+1/r!2

])

.

The generating function marking the urns that have at most r balls, after throwing the balls in
two batches, is Φ2 = φm

2 , with

φ2(x1, x2; z1, z2) =

[ez1 − er(z1)] e
z2 + x1



er(z1) ez2 −
∑

0≤i≤r

zi
1

i!
er−i(z2)



+ x1x2

∑

0≤i≤r

zi
1

i!
er−i(z2).

The finite-dimensional distribution is described by the function

φd = ez1+···+zl +

l−1
∑

j=1

x1 . . . xj (ezj+1ζj − ζj+1) ezj+2+···+zd + x1 . . . xl ζl,

where the functions ζj are defined, for j ≥ 1, as

ζj(z1, . . . , zj) =
∑

i1+···+ij≤r

zi1
1

i1!
. . .

z
ij

j

ij !

The covariance is

Cov [Xm(n1), Xm(n1 + n2)] = m
∑

0≤k≤r

(

n1 + n2

k

)(

1 − 1

m

)n1+n2−k (
1

m

)k

+m(m − 1)
∑

0≤i≤i+j≤r;i≤p≤i+r

(

n1

p

)(

n2

j

)(

p

i

)(

1 − 2

m

)n1−p(

1 − 1

m

)n2−j (
1

m

)p+j

−m2





∑

0≤i≤r

(

n1

i

)(

1 − 1

m

)n1−i(
1

m

)i








∑

0≤k≤r

(

n1 + n2

k

)(

1 − 1

m

)n1+n2−k (
1

m

)k




∼ me−θ2

(

er(θ2) − e−θ1

(

er(θ1) er(θ2) +
θr+1
1 θr

2

r!

))

.

In the general case, where the function describing the allocation of balls into an urn is no longer ez,
but any function g(z) =

∑

i giz
i with suitable coefficients, we can get a similar expression for the

functions φd. We shall use the functions hr(z) :=
∑

i≤r giz
i and k(z1, z2) :=

∑

i,r:i<r giz
i
1hr−i(z2);

then

Φ1(x; z) = (g(z) + (x − 1)hr(z))
m

;

Φ2(x1, x2; z1, z2) = (g(z1)g(z2) + (x1 − 1)hr(z1)g(z2) + x1(x2 − 1)k(z1, z2))
m

.

The mean value is asymptotically

EXm(n) ∼ m
hr(ρ)

g(ρ)
,
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with ρ defined, as usual, by the equation zg
′

(z)/g(z) = θ. Now the multivariate functions are given
by

φd = g(z1) · · · g(zd) +
d−1
∑

j=1

x1 . . . xj (g(zj+1)ζj − ζj+1) g(zj+2) · · · g(zd) + x1 . . . xd ζd;

with ζj =
∑

i1+···+ij≤r

gi1 . . . gij
zi1
1 . . . z

ij

j .

2.3.3. Urns with colored balls. Here the balls can have two colors, let’s say red and blue, and the
state of an urn is defined by its balance, i.e. by the difference number of blue balls minus number
of red balls, which is a relative integer : the valuation Y (U) is the balance of the urn. We begin
with the number of balanced urns. We have undistinguishable balls : g(z) = e2z; the condition
to be satisfied is : Either the urn is empty, or the numbers of blue and red balls are equal, which
corresponds to a set E = {0}, and the function describing the allocations leading to a balanced
urn is a Bessel coefficient : f(z) = I0(2z) =

∑

n≥0 z2n/(n!)2. We have

Φ1(x; z) =
(

e2z + (x − 1)I0(2z)
)m

.

The average number of balanced urns is

EXm(n) = m
∑

p

(

n

p, p

)(

1 − 1

m

)n−2p(
1

2m

)2p

∼ mI0(θ) e−θ.

The exact variance has a complicated expression, and is given in [3]; its asymptotic value is

V arXm(n) ∼ me−θ
(

I0(θ) − e−θI2
0 (θ) − θe−θ[I0(θ) − I1(θ)]

2
)

.

The generating function marking the urns that are balanced at two different times is Φ2 = φm
2 ,

with

φ2(x1, x2; z1, z2) = e2z1+2z2 − I0(2z1)e
2z2 − I0(2(z1 + z2)) + I0(2z1)I0(2z2)

+x1I0(2z1)[e
2z2 − I0(2z2)]

+x2[I0(2(z1 + z2)) − I0(2z1) I0(2z2))]

+x1x2I0(2z1) I0(2z2).

The asymptotic covariance is

me−θ2 [I0(θ1)I0(θ2 − θ1) − e−θ1 [θ1(I0(θ1) − I1(θ1))(I0(θ2) − I1(θ2)) + I0(θ1)I0(θ2)]].

When we throw the balls in d batches, we obtain for each l ≤ d

Kl(z1, ..., zl) :=
∑

q1,...,ql

Iq1
(2z1)...Iql

(2zl), (2.11)

where the summation is on q1, ..., ql such that q1 6= 0, q1 + q2 6= 0, ..., q1 + ...+ ql−1 6= 0 (the urn is
not balanced at θ1, ..., θl−1), but q1 + ...+ ql = 0 (the urn is balanced at the time θl). This formula
extends to l = d+1, but here the summation is on q1, ..., qd+1 such that q1 6= 0, q1 +q2 6= 0, ..., and
q1 + ...+qd+1 6= 0. For a given l, it is possible to simplify further the functions Kl, using a property
of the Bessel coefficients (the summation is for relative integers qi such that q1 + ... + ql = n) :

In(z1 + ... + zl) =
∑

q1,...,ql

Iq1
(z1)...Iql

(zl).

Such a transformation was already applied to obtain the expression of Φ2 given above; for d = 3
for example we obtain

K3(z1, z2, z3) = I0(2z1 + 2z2 + 2z3) − I0(2z1 + 2z2)I0(z3)

−I0(2z1)I0(2z2 + 2z3)) + I0(2z1)I0(2z2)I0(2z3).
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We can extend the preceding results to a general allocation scheme described by a function g(z).
We shall use the functions ζq enumerating the allocations into an urn that lead to a balance q in
this urn :

ζq(y) = [zq]g

(

y

(

z +
1

z

))

=
∑

p

(

q + 2p

p

)

gq+2py
q+2p.

For q = 0 we obtain ζ0(y) =
∑

p

(

2p
p

)

g2py
2p, and

Φ1(x; z) = (g(2z) + (x − 1)ζ0(z))
m

.

The average number of balanced urns is

EXm(n) = m
[zn]{ζ0(z)g(2z)m−1}

[zn]g(2z)m
∼ mζ0(ρ)/g(2ρ),

with ρ defined by the equation 2zg
′

(2z)/g(2z) = θ. When we throw the balls in d batches, the only
difference with the classical case is in the definition of the functions Kl, which will not simplify as
much as when dealing with Bessel coefficients. The equations defining these functions are

Kl(z1, ..., zl) =
∑

q1,...,ql

ζq1
(z1)...ζql

(zl) (1 ≤ l ≤ d + 1)

where the summations are the same as the ones for the equation (2.11).
Consider now the number of urns with balance q. We begin with the classical case :

g(z) = ez. The set E is {q}, and the function describing this is f(z) = Iq(2z), with Iq(z) =
∑

n:n+q≥0(z/2)2n+q/n!(n + q)! a Bessel coefficient :

Φ1(x; z) =
(

e2z + (x − 1)Iq(2z)
)m

.

The average number of urns with balance q is

EXm(n) = m
∑

p

(

n

p, p + q

)(

1 − 1

m

)n−2p−q (
1

2m

)2p+q

∼ mIq(θ) e−θ,

and its asymptotic variance is

V arXm(n) ∼ me−θ

(

Iq(θ) − e−θI2
q (θ) − 1

4
θe−θ(Iq−1(θ) − 2Iq(θ) + Iq+1(θ))

2

)

.

What about the multivariate function φd associated to d batches? For d = 2, we have

φ2(x1, x2; z1, z2) = e2z1+2z2 − [Iq(2z1 + 2z2) − Iq(2z1)(e
2z2 − I0(2z2))]

+x1Iq(2z1)(e
2z2 − I0(2z2))

+x2[Iq(2z1 + 2z2) − Iq(2z1)I0(2z2)]

+x1x2Iq(2z1)I0(2z2).

The asymptotic covariance is

me−θ2(Iq(θ1)I0(θ2 − θ1) − e−θ1Fq(θ1, θ2)),

with

Fq(θ1, θ2) := θ1(Iq(θ1) − Iq+1(θ1))(Iq(θ2)(1 − q/θ2) − Iq+1(θ2))

−qIq(θ1)(Iq(θ2) − Iq+1(θ2)) + Iq(θ1)Iq(θ2)(1 + q2/θ2).

For general d, the multivariate functions are defined from

Kl(z1, ..., zl) =
∑

q1,...,ql

Iq1
(2z1)...Iql

(2zl),

where the summation for 1 ≤ l ≤ d is on q1, ..., ql such that q1 6= p, q1+q2 6= p, ..., q1+...+ql−1 6= p
but q1 + ... + ql = p; for l = d + 1 the summation is on q1, ..., qd+1 such that q1 6= p, q1 + q2 6= p,
..., and q1 + ...+ qd+1 6= p. Of course, for q = 0 all the results of this part are simply those relative
to the number of balanced urns.
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When considering urns with balance q in the general case, we obtain results similar to the
previous ones, deduced from them by substituting g(z) for ez, and general ζq for the Iq. We have
to take care not to use any expression of the kind Ip(z1 + z2 + ...), which is usually obtained
from a summation on products of some functions Iq, by taking advantage of properties of Bessel
coefficients, but otherwise the results translate nicely.

We finally turn to the number of urns with (strictly) positive balance. In the classical case, we
have g(z) = ez, and the set E becomes E = N . The function enumerating the states satisfying E is

f(z) =
∑

q>0

Iq(2z).

We have that

Φ1(x; z) =
(

e2z + (x − 1)f(z)
)m

.

The average number of urns with positive balance is

EXm(n) = m
[zn]{f(z)g(2z)m−1}

[zn]{g(2z)m} ∼ me−θf(θ/2) ∼ me−θ
∑

q>0

Iq(θ).

To simplify the asymptotic variance, we use the relation I
′

q(t) = (1/2)(Iq−1(t) + Iq+1(t)), which

gives f
′

(z) = 2f(z) + I0(2z) − I1(2z); we get

V arXm(n) ∼ me−θ
(

f(θ/2) − e−θf2(θ/2) − θe−θ[f(θ/2) + I0(θ) − I1(θ)]
2
)

.

The function marking the urns that have a positive balance at two different times is

Φ2 (x1, x2; z1, z2) =

(e2z1+2z2 + (x1 − 1)f(z1)e
2z2 + (x2 − 1)f(z1 + z2) + (x1 − 1)(x2 − 1)S(z1, z2))

m,

with the function S(z1, z2) defined in [3] :

S(z1, z2) :=
∑

p1>0,p1+p2>0

Ip1
(2z1) Ip2

(2z2).

We can generalize this to the number of urns with balance greater than some bound. We have again
g(z) = ez, and the set E becomes [p... + ∞[. The function enumerating such states is

f(z) =
∑

q≥p

Iq(2z).

We have that

Φ1(x; z) =
(

e2z + (x − 1)f(z)
)m

.

The average number of urns with balance greater than p is

EXm(n) = m
[zn]{f(z)g(2z)m−1}

[zn]{g(2z)m} ∼ me−θf(θ/2) = me−θ
∑

q≥p

Iq(θ).

We have that f
′

(z) = 2f(z) + Ip−1(2z) − Ip(2z); we get

V arXm(n) ∼ me−θ
(

f(θ/2) − e−θf2(θ/2) − θe−θ[f(θ/2) + Ip−1(θ) − Ip(θ)]
2
)

.

We turn now to the functions describing what happens in a single urn when we allocate the balls
in d batches. We have

Kl(z1, ...zl) =
∑

q1,...,ql

Iq1
(z1)...Iql

(zl),

with the summation being on the qi such that q1 < p, ..., q1 + ... + ql−1 < p but q1 + ... + ql ≥ p
(or q1 + ... + ql < p for Kd+1). Of course there is the usual possibility of extension to urns of a
different type and a basic enumerating function g(z).
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3. Proof of Theorem 2.1

In order to prove Theorem 2.1 we first have to show that there exists a process with a.s.
continuous sample paths the f.d.d.’s of which are characterized by the limiting f.d.d.’s of Ym(t).
Afterwards we have to prove that this process is in fact the limit. As we are working in the space
C[0,∞) this can be done via [2, Theorem 12.3]: We only have to show the weak convergence of
the f.d.d.’s and that the sequence Ym(t) is tight. It follows immediately by [1] that the limiting
distributions of the f.d.d.’s are centered Gaussian distributions with covariance matrices given by
(2.4) and these are exactly the f.d.d.’s of G(t) by construction.

By [13, Chap. I, Proposition 3.7] the existence of a centered Gaussian process having the
same covariance matrices (and thus f.d.d.’s) as G(t) is guaranteed by the convergence of the
covariance matrices of Ym(t) to a limit determined by (2.4) which defines a positive semi-definite
function. Thus we only have to show continuity of the sample paths. This can be done by means
of Kolmogorov’s criterion (see [13, Chap. I, Theorem 1.8], or more generally by the Kolmogorov-
Čentsov theorem, see [10, Theorem 2.8]):

Theorem 3.1. A real-valued process X for which there exist three constants α, β, C > 0 such
that

E[|X(t + h) − X(t)|α] ≤ Ch1+β ,

for every t and h, has a modification with a.s. continuous sample paths. The same holds on the
space C[0, T ] with t, t + h ≤ T .

The fact that G(t) satisfies this criterion follows immediately by

Lemma 3.1. We have

E(G(t) − G(t + s))4 = O
(

s2
)

,

uniformly, if t is bounded in a fixed interval.

Proof. For Gaussian processes we have

E(G(t) − G(t + s))4 =
1

8
(Bt,t − 2Bt,t+s + Bt+s,t+s)

2

Hence, it is sufficient to show

Bt,t±s − Bt,t = O (s) (3.1)

uniformly for t = O (1). In what follows we will only discuss the difference Bt,t+s−Bt,t with s > 0.
The remaining case can be managed in the same way.

First, let us consider Bt,t. We use the representation Φ = ΦE,1(x, r) = g(r) + (x − 1)f(r).
Furthermore, for simplicity use g′ = g′(r) for the derivative with respect to r and the index-
notation fx for the derivative with respect to x. By definition

Bt,t =
g′rx + f

g
+

g′′r2
x + 2f ′rx + g′rxx

g
− (g′rx + f)2

g2

−t

(

rx

r
+

rxx

r
− r2

x

r2

)

=
f

g
+

g′′r2
x + 2f ′rx

g
− 2fg′rx + f2

g2
.

rx and rxx (evaluate at x = 1) can be derived by implicit differentiation:

rx =
tf − rf ′

g′ + rg′′ − tg′
,

rxx =
r2
x(rg′′′ + tg′′) + rx(rf ′′ − f + tf ′ − trf ′′)

g′ + rg′′ − tg′

The definition of Bt,t+s (s > 0) is much more involved. For convenience we will use the following
representation of ΦE,2(x1, x2, r1, r2) in the sequel: Note that we can split the function into a sum
of four generating functions, the first of them counting the urns which neither at time t nor at time



14 MICHAEL DRMOTA, DANIÈLE GARDY, AND BERNHARD GITTENBERGER

t+ s satisfy the condition Y (U) ∈ E , the other ones counting the urns satisfying the condition at t
but not at t + s, and vice versa, and the urns satisfying the condition at both times, respectively.
Thus ΦE,2(x1, x2, r1, r2) can be written in the form

ΦE,2(x1, x2, r1, r2) = f1(r1, r2) + x1f2(r1, r2) + x2f3(r1, r2) + x1x2f4(r1, r2).

Since ΦE,2(x1, 1, r1, r2) = ΦE,1(x1, r1)g(r2) we have

f2(r1, r2) + f4(r1, r2) = f(r1)g(r2).

Furthermore, by construction f2(r1, 0) = f3(r1, 0) = 0, i.e. the functions f2 and f3 contain a factor
r2. This can be easily seen in the following way: Since xi marks urns such that Y (U) ∈ E at time t
resp. t+s, the function f2 (resp. f3) enumerates the allocations into an urn such that the condition
Y (U) ∈ E is satisfied at time t (resp. t + s) and not satisfied at time t + s (resp. t). Since this can
only happen if the urn receives at least one ball between t and t + s (and those balls are counted
by r2), f2 and f3 must contain a factor r2.

For simplicity we use the notation φ = ΦE,2(x1, x2, r1(x1, x2), r2(x1, x2)) and the index notation
for partial derivatives. By definition

Bt,t+s =
∂2

∂x1∂x2
φ

φ
−

∂
∂x1

φ

φ

∂
∂x2

φ

φ

−t

(

(r1)x1x2

r1
− (r1)x1

r1

(r1)x2

r1

)

−s

(

(r2)x1x2

r2
− (r2)x1

r2

(r2)x2

r2

)

.

Now r1, r2 are determined by r1φr1
= tφ, r2φr2

= sφ. Since Φ(1, 1, r1, r2) = g(r1)g(r2) we have

r1g
′(r1) = tg(r1) and r2g

′(r2) = sg(r2)

which gives r1 = r (from above) and r2 = O (s).
Differentiation of the first (implicit) equation with respect to x1 yields

(r1)x1
g′(r1)g(r2) + r1g

′′(r1)g(r2)(r1)x1
+ r1g

′(r1)g
′(r2)(r2)x1

+ r1(f2 + f4)r1

= t (g′(r1)g(r2)(r1)x1
+ g(r1)g

′(r2)(r2)x1
+ (f2 + f4))

or (by applying r1g
′(r1) = tg(r1) and f2 + f4 = f(r1)g(r2))

(r1)x1
(g′(r1) + r1g

′′(r1) − tg′(r1)) = tf(r1) − r1f
′(r1).

Hence (r1)x1
= rx (from above). Similarly we obtain (r2)x1

= 0.
In the same way we obtain by differentiation of the first equation with respect to x2

(r1)x2
=

t f3+f4

g(r2)
− r1

(f3+f4)r1

g(r2)

g′(r1) + r1g′′(r1) − tg′(r1)

= (r1)x1
+

t f3−f2

g(r2)
− r1

(f3−f2)r1

g(r2)

g′(r1) + r1g′′(r1) − tg′(r1)

= (r1)x1
+ O (r2)

= (r1)x1
+ O (s) .

In the same way we get (r2)x2
= O (s), (r1)x1x2

= rxx + O (s), and (r2)x1x2
= O (s).
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Applying this to the derivatives of φ we have

∂

∂x1
φ = g′(r1)g(r2)(r1)x1

+ g(r1)g
′(r2)(r2)x1

+ (f2 + f4)

= g′(r)g(r2)rx + f(r)g(r2) + O (s) ,

∂

∂x2
φ = g′(r1)g(r2)(r1)x2

+ g(r1)g
′(r2)(r2)x2

+ (f3 + f4)

= f(r)g(r2) + O (s) ,

∂2

∂x1∂x2
φ = g′′(r1)g(r2)(r1)x1

(r1)x2
+ g′(r1)g

′(r2) ((r1)x1
(r2)x2

+ (r1)x2
(r2)x1

)

+g(r1)g
′′(r2)(r2)x1

(r2)x2

+(f3 + f4)r1
(r1)x1

+ (f3 + f4)r2
(r2)x1

+ (f2 + f4)r1
(r1)x2

+ (f2 + f4)r2
(r2)x2

+f4

= g′′(r1)g(r2)r
2
x + 2f ′(r1)g(r2)rx + f(r1)g(r2) + O (s)

Hence, it follows that Bt,t+s = Bt,t + O (s).

In order to prove tightness let us first show the following

Lemma 3.2. There exist constants C1, C2 > 0 such that

E(Xm(n) − EXm(n))2 ≤ C1n

E(Xm(n) − EXm(n))4 ≤ C2n
2 (3.2)

for m → ∞ and n = O (m).

Proof. 1. Proof of the second inequality. Set

cn,α := [zn]
∂α

∂xα
ΦE,1(1, z) and Ai := E

i−1
∏

j=0

(Xm(n) − j) =
cn,i

cn,0
.

The fourth moment occurring in (3.2) can now be expressed by

E(Xm(n) − EXm(n))4 = A4 − 4A1A3 + 6A2
1A2 − 3A4

1 + 6A3 − 12A1A2 + 6A3
1 + 7A2 − 4A2

1 + A1

(3.3)

Hence we have to compute cn,α.
(a) Computation of cn,0. Let us start with cn,0 = [zn]g(z)m. Note that due to the fact

that we allow an urn to be empty or to contain one ball we have g(0) = g0 6= 0 and
g′(0) = g1 6= 0. Define κj(z) by

κ1(z) :=
zg′(z)

g(z)
=

g1

g0
z +

(

2g2

g0
− g2

1

g2
0

)

z2 + O
(

z3
)

and

κj+1(z) := zκ′
j(z), j ≥ 1.

Observe that κj(z) = O (z) for z → 0 and by Taylor’s theorem we have for real z and
for any fixed k ≥ 1 and z0 > 0

g
(

zeiθ
)

= g(z) exp





k
∑

j=1

(iθ)j

j!
κj(z) + O

(

|θk+1|z
)



 (3.4)

uniformly for 0 < z ≤ z0 and θ ∈ [−θ0, θ0] where θ0 > 0 sufficiently small. Furthermore,
in presence of the fact that there exist no r, d such that gn 6= 0 if and only if gn ≡ r
mod d we have

|g(zeiθ)| ≤ g(z)e−cθ2

(3.5)
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for some positive constant c. In order to extract the desired coefficient we will use
Cauchy’s integral formula and the saddle point method. Let µ denote the inverse function
of κ1. Then we have

µ(t) =
g0

g1
t +

(

g0

g1
− 2g2

0g2

g3
1

)

t2 + O
(

t3
)

.

The saddle point of g(z)mz−n is given by

ρ = µ
( n

m

)

=
g0

g1

n

m

(

1 + O
( n

m

))

.

By applying the saddle point method and using (3.4) and (3.5) we obtain

[zn]g(z)m =
1

2πi

∮

|z|=ρ

g(z)m dz

zn+1

=
1

2πρn







∫

|θ|≤(mρ)−1/2+ε

+

∫

(mρ)−1/2+ε≤|θ|≤θ0

+

∫

θ0≤|θ|≤π






g(ρeiθ)e−inθ dθ

=
g(ρ)m

2πρn

∫

|θ|≤(mρ)−1/2+ε

exp

(

−θ2

2
mκ2(ρ) − i

θ3

3!
mκ3(ρ) + O

(

θ4mρ
)

)

dθ

+ O
(

g(ρ)m e−(mρ)2εc1

m

)

+ O
(

g(ρ)m e−mρθ2
0c

m

)

(3.6)

where c1 > 0 is a suitable constant. Note that

mκj(ρ) = mµ
( n

m

)

κ′
j−1

(

µ
( n

m

))

= nκ̄j

( n

m

)

where κ̄j(t) are analytic functions with κ̄j(0) = 1. Hence

[zn]g(z)m =
g(ρ)m

2πρn

∫

|θ|≤n−1/2+ε

exp

(

−θ2

2
nκ̄2

( n

m

)

)(

1 − i
θ3

3!
nκ̄3

( n

m

)

+ O
(

θ4n
)

)

dθ

=
g(ρ)m

ρn

(

1
√

2πnκ̄2(n/m)
+ O

(

n−3/2
)

)

.

Using more terms we directly obtain an asymptotic series expansion of the form

[zn]g(z)m ∼ g(µ(n/m))m

√
2πnµ(n/m)n





∑

j≥0

aj

( n

m

) 1

nj





where aj(t) are analytic functions that can be determined explicitly, especially a0(t) =

κ̄2(t)
−1/2.

(b) Computation of cn,α for α > 0. Now let us investigate how the situation changes for
cn,α with α > 0. For technical convenience let us assume that f(z) contains a factor z.
So the g.f. under consideration has the form

ΦE,1(x, z) = (g(z) + (x − 1)zf̃(z))m.

Note that this is no restriction for the present purpose: If we have an urn model where
f(z) does not meet this constraint, then let us use the process X̃m = m − Xm instead.
Since this does not change the fourth moment (3.3), the assumption is justified. We have

cn,α = [zn]m(m − 1) · · · (m − α + 1)zαK(z)αg(z)m
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where K(z) = f̃(z)/g(z). As above we get

K
(

zeiθ
)

= K(z) exp





k
∑

j=1

(iθ)j

j!
λj(z) + O

(

zθk+1
)





uniformly for 0 < z < z0 and |θ| ≤ θ0, where

λ0 = z
K ′(z)

K(z)
, λj+1(z) = zλ′

j(z).

Furthermore, note that |f̃(zeiθ)| ≤ f̃(z) because of the positivity of the coefficients

of f̃(z). This in conjunction with (3.4) guarantees that the estimates for the remainder
integral in (3.6) still hold in this case. Therefore, applying again the saddle point method
gives

[zn]m(m − 1) · · · (m − α + 1)zαK(z)αg(z)m =
m(m − 1) · · · (m − α + 1)ραg(ρ)mK(ρ)α

2πρn

×
∫

|θ|≤(mρ)−1/2+ε

exp



−θ2

2
mκ2(ρ) +

k
∑

j=3

(iθ)j

j!
mκj(ρ) + α

k
∑

j=1

(iθ)j

j!
λj(ρ)

+ O
(

mρθk+1
)

)

dθ

=
m(m − 1) · · · (m − α + 1)ραg(ρ)mK(ρ)α

2πρn

∫

|θ|≤(mρ)−1/2+ε

exp

(

−θ2

2
nκ̄2

( n

m

)

+

k
∑

j=3

(iθ)j

j!
nκ̄j

( n

m

)

+ α

k
∑

j=1

(iθ)j

j!

n

m
λ̄j

( n

m

)

+ O
(

nθk+1
)



 dθ

Using the substitution θ = u/
√

nκ̄2(n/m) yields

[zn]m(m − 1) · · · (m − α + 1)ραK(z)αg(z)m

=
m(m − 1) · · · (m − α + 1)ραg(ρ)m−αf̃(ρ)α

2πρn
√

nκ̄2(n/m)

×
∫

|u|≤(mρ)ε
√

(n/m)·κ̄2(n/m)/ρ

exp



−u2

2
+

k
∑

j=3

(iu)j

j!
n1−j/2κ̄j(n/m)κ̄2(n/m)−j/2

+α
k
∑

j=1

(iu)j

j!

n1−j/2

m
λ̄j(n/m)κ̄2(n/m)−j/2 + O

(

n

(

u√
n

)k+1
)



 dθ.

Set

κ̃j(x) = κ̄j(x)κ̄2(x)−j/2,

λ̃j(x) = λ̄j(x)κ̄2(x)−j/2.
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We have

exp





k
∑

j=3

(iu)j

j!
n1−j/2κ̃j(n/m) + α

k
∑

j=1

(iu)j

j!

n1−j/2

m
λ̃j(n/m)





= 1 + iα
n

m

λ̃1(n/m)√
n

u − α
λ̃2(n/m) · (n/m) + αλ̃1(n/m)2 · (n/m)2

2n
u2 − i

6

(

κ̃3(n/m)√
n

+
α(n/m)λ̃3(n/m) + 3α2(n/m)2λ̃1(n/m)λ̃2(n/m) + α3(n/m)3λ̃1(n/m)3√

n3

)

u3 + · · ·

The odd powers of u do not contribute to the integral. Hence, using
∫ ∞

−∞

v2ke−v2/2 dv =
(2k)!

2kk!

√
2π

and setting

V (α) =
g(ρ)mK(ρ)α

√
2πρn

√

nκ̄2(n/m)

gives

cn,0 =V (0)

(

1 +
1

n

(

κ̃4(n/m)

8
− 5κ̃3(n/m)2

24

)

+ O
(

1

n2

))

and

cn,α =V (α)m · · · (m − α + 1)ρα
√

2π

(

1 − 1

n

(

κ̃4(n/m)

8
− 5κ̃3(n/m)2

24
+

α

2

n

m
(κ̃3(n/m)λ̃1(n/m)

− λ2(n/m)) − α2

2

( n

m

)2

λ1(n/m)2
)

+ O
(

1

n2

))

and thus

Aα =K(ρ)αm · · · (m − α + 1)ρα

(

1 +
1

n

( n

m

)

(

α

2
(κ̃3λ̃1 − λ̃2)) +

α2

2

n

m
λ̃2

1

)

+ O
(

1

n2

))

Now inserting this into (3.3) and keeping in mind that ρ = µ(n/m) = O (n/m) and
n = O (m) shows that E(Xm(n) − EXm(n))4 = O

(

n2
)

as desired.
2. Proof of the first inequality. Using the above ideas this is now an easy exercise.

Proposition 3.1. The sequence Ym(t) is tight.

Proof. Due to [2, Theorem 12.3] it suffices to show

E
(Xm(n1 + n2) − Xm(n1) − E(Xm(n1 + n2) − Xm(n1)))

4

m2
≤ C

(n2

m

)2

(3.7)

where C is a positive constant. In order to treat the difference Zm(n1, n2) = Xm(n1+n2)−Xm(n1)
we use the generating function that enumerates the urns whose state has changed. In the general
model this function has the shape

Φ(x, z1, z2) =

(

g(z1)g(z2) + (x − 1)f2(z1, z2) +

(

1

x
− 1

)

f3(z1, z2)

)m

.

Note that f2 and f3 contain a factor z2 (which proves to be important in the sequel), since a
state change occurs if and only if the urn receives at least one ball during the time period under
consideration. For simplicity, let us assume that f3 ≡ 0. Then the generating function can be
expressed in the form

Φ(x, z1, z2) = (g(z1)g(z2) + (x − 1)z2f̄(z1, z2))
m

with an analytic function f̄(z1, z2).
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Set

cn1n2,α := [zn1

1 zn2

2 ]
∂α

∂xα
Φ(1, z1, z2) and Ai := E

i−1
∏

j=0

(Zm(n1, n2) − j) =
cn1n2,i

cn1n2,0
.

In analogy to (3.3) the fourth moment occurring in (3.7) can be expressed by

EZm(n1, n2)
4 = A4 − 4A1A3 + 6A2

1A2 − 3A4
1 + 6A3 − 12A1A2 + 6A3

1 + 7A2 − 4A2
1 + A1

(3.8)

Hence we have to compute cn1n2,α. Let us start with cn1n2,0. This is rather easy since it factorizes
nicely:

cn1n2,0 =[zn1

1 zn2

2 ]g(z1)
mg(z2)

m = [zn1

1 ]g(z1)
m[zn2

2 ]g(z2)
m

=
√

2π

(

1 +
1

n1

(

5κ̃2
3(n1/m)

24
− κ̃4(n1/m)

8

)

+
1

n2

(

5κ̃2
3(n2/m)

24
− κ̃4(n2/m)

8

)

+O
(

1

n2
1

)

+ O
(

1

n2
2

))

(3.9)

Now we investigate what happens if α > 0 where we do not have such a factorization as for
cn1n2,0. We have

cn1n2,α = [zn1

1 zn2

2 ]m(m − 1) · · · (m − α + 1)zα
2 K(z1, z2)

αg(z1)
mg(z2)

m

where K(z1, z2) = f̄(z1,z2)
g(z1)g(z2)

. With (3.4) and

K
(

z1e
iθ1 , z2e

iθ2
)

= K(z1, z2) exp





k
∑

j1+j2>0

(iθ1)
j1(iθ2)

j2

j1!j2!
λj1j2(z1, z2) + O

(

z1|θk+1
1 |

)

+ O
(

z2|θk+1
2 |

)





where

λ10 = z1

∂
∂z

1

K(z1, z2)

K(z1, z2)
λ01 = z2

∂
∂z

2

K(z1, z2)

K(z1, z2)

λj1+1,j2 = z1
∂

∂z1

λj1j2 λj1,j2+1 = z2
∂

∂z1

λj1j2

we have

[zn1

1 zn2

2 ]m(m − 1) · · · (m − α + 1) (z2K(z1, z2))
α

g(z1)
mg(z2)

m =
g(ρ1)

mg(ρ2)
mK(ρ1, ρ2)

α

2πρn1

1 ρn2

2

× m(m − 1) · · · (m − α + 1)ρα
2

∫∫

B

exp



−θ2
1

2
mκ2(ρ1) −

θ2
2

2
mκ2(ρ2) +

k
∑

j=3

(iθ1)
j

j!
mκj(ρ1)

+

k
∑

j=3

(iθ2)
j

j!
mκj(ρ2) + αiθ2 + α

k
∑

j1+j2≥1

(iθ1)
j1(iθ2)

j2

j1!j2!
λj1j2(ρ1, ρ2)

+ O
(

mρ1|θk+1
1 |

)

+ O
(

mρ2|θk+1
2 |

)

)

dθ1 dθ2

=
g(ρ1)

mg(ρ2)
mK(ρ1, ρ2)

α

2πρn1

1 ρn2

2

m(m − 1) · · · (m − α + 1)ρα
2

×
∫∫

B

exp



−θ2
1

2
n1κ̄2

(n1

m

)

− θ2
2

2
n2κ̄2

(n2

m

)

+

k
∑

j=3

(iθ1)
j

j!
n1κ̄j

(n1

m

)

+

k
∑

j=3

(iθ2)
j

j!
n2κ̄j

(n2

m

)

+αiθ2 + α

k
∑

j1+j2≥1

(iθ1)
j1(iθ2)

j2

j1!j2!

n1n2

m2
λ̄j1j2

(n1

m
,
n2

m

)

+ O
(

mρ1|θk+1
1 |

)

+ O
(

mρ2|θk+1
2 |

)



 dθ1 dθ2
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where as above κ̄j(z) = κj(µ(z))/z, ρ1 = µ(n1/m), ρ2 = µ(n2/m),

λ̄j1j2(z1, z2) =
λj1j2(µ(z1), µ(z2))

z1z2
,

and the integration domain B is given by

B = {(θ1, θ2)| |θ1| ≤ (mρ1)
−1/2+ε and |θ2| ≤ (mρ2)

−1/2+ε}
Substituting θ1 = u1/

√

n1κ̄2(n1/m), θ2 = u2/
√

n2κ̄2(n2/m) yields

[zn1

1 zn2

2 ]m(m − 1) · · · (m − α + 1) (z2K(z1, z2))
α

g(z1)
mg(z2)

m

=
g(ρ1)

mg(ρ2)
mK(ρ1, ρ2)

α

2πρn1

1 ρn2

2

m(m − 1) · · · (m − α + 1)ρα
2

√

n1n2κ̄2(n1/m)κ̄2(n2/m)

×
∫∫

B̃

exp



−u2
1

2
− u2

2

2
+

k
∑

j=3

(iu1)
j

j!
n

1−j/2
1 κ̃j

(n1

m

)

+
k
∑

j=3

(iu2)
j

j!
n

1−j/2
2 κ̃j

(n2

m

)

+ α
iu2√
n2

(

1

κ̄2(n2/m)
+

n1n2

m2
τ01

(n1

m
,
n2

m

)

)

+ α
iu1√
n1

τ10

(n1

m
,
n2

m

)

+ α

k
∑

j1,j2=1

(iu1)
j1(iu2)

j2

j1!j2!
n

1−j1/2
1 n

1−j2/2
2 τj1j2

(n1

m
,
n2

m

)

+O
(

mρ1

∣

∣

∣

∣

u1√
n1

∣

∣

∣

∣

k+1
)

+ O
(

mρ2

∣

∣

∣

∣

u2√
n2

∣

∣

∣

∣

k+1
))

dθ1 dθ2

where

κ̃j(x) = κ̄j(x)κ̄2(x)−j/2,

τj1j2(x, y) = λ̄j1j2(x, y)κ̄2(x)−j1/2κ̄2(y)−j2/2.

Expanding the exp-term into a series, evaluating the integral, and setting

V (α) =
g(ρ1)

mg(ρ2)
mK(ρ1, ρ2)

αm(m − 1) · · · (m − α + 1)ρα
2√

2πρn1

1 ρn2

2

√

mn2κ2(ρ1)κ̄2(n2/m)

gives

cn1n2,α =V (α)

(

1 − 1

n1

(

κ̃4(n1/m)

8
− 5κ̃3(n1/m)

24
+

ακ̃3(n1/m)τ1,0(n1/m, n2/m)

2

−α2τ1,0(n1/m, n2/m)2

2

)

+
1

n2

(

κ̃4(n2/m)

8
− 5κ̃3(n2/m)

24
+

ακ̃3(n1/m)

2
√

κ̃2(n2/m)
− α2

2κ̃2(n2/m)

)

+O
(

1

n2
1

)

+ O
(

1

n2
2

))

.

Note that ρ2 = µ(n2/m) = n2/m(1 + O (n2/m)). Hence let L := K(ρ1, ρ2)mµ(n2/m)/n2 and we
get

Aα =(Ln2)
α

(

1 +
α

2n1
(κ3(n1/m)τ1,0(n1/m, n2/m) − ατ1,0(n1/m, n2/m)2)

α

2n2

(

κ̃3(n2/m)
√

κ̃2(n2/m)
− α

κ̃2(n2/m)

)

+ O
(

1

n2
1

)

+ O
(

1

n2
2

)

)

.

Inserting this into (3.8) shows that the terms containing n3
2 or n4

2/n1 cancel and thus by assuming
n2 = O (n1) we get (3.7). In the case where n2 = O (n1) does not hold let us assume n2 ≥ n1.
Then set Xc

m(n) := Xm(n) − EXm(n) and use the crude estimate

EZm(n1, n2)
4 ≤ EXc

m(n1 + n2)
4 + 6EXc

m(n1 + n2)
2EXc

m(n1)
2 + EXc

m(n1)
4

in conjunction with Lemma 3.2.
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In the general case (i.e. where f3 6≡ 0) the formulae are much more involved. In fact we have

cn1n2,1 =mg(z1)
m−1g(z2)

m−1(f2(z1, z2) − f3(z1, z2))

cn1n2,2 =m(m − 1)g(z1)
m−2g(z2)

m−2(f2(z1, z2) − f3(z1, z2))
2 + 2mg(z1)

m−1g(z2)
m−1f3(z1, z2)

cn1n2,3 =m(m − 1)(m − 2)g(z1)
m−3g(z2)

m−3(f2(z1, z2) − f3(z1, z2))
3

+ 6m(m − 1)g(z1)
m−2g(z2)

m−2f3(z1, z2)(f2(z1, z2) − f3(z1, z2))

− 6mg(z1)
m−1g(z2)

m−1f3(z1, z2)

cn1n2,4 =m(m − 1)(m − 2)(m − 3)g(z1)
m−4g(z2)

m−4(f2(z1, z2) − f3(z1, z2))
4

+ 12m(m − 1)(m − 2)g(z1)
m−3g(z2)

m−3f3(z1, z2)(f2(z1, z2) − f3(z1, z2))
2

+ 12m(m − 1)g(z1)
m−2g(z2)

m−2(f3(z1, z2)
2 − 2f3(z1, z2)(f2(z1, z2) − f3(z1, z2)))

+ 24mg(z1)
m−1g(z2)

m−1f3(z1, z2)

These formulae can be treated in the same way as above and yield the desired result.

4. Future perspectives

We have shown in this paper that a class of additive valuations on occupancy urn models
leads to limiting Gaussian processes. One of the authors has worked on some database parameters
(join sizes) that can be modelized by urn models [6, 7]. It requires us to use two types of balls,
and to compute a valuation on each urn according to the number of balls of each type that fall
into the urn. The global parameter is obtained by summing the valuations on each urn; it may
be additive, or not (the semijoin size is additive, but the equijoin size is not); even when it is
additive, the results of the present paper do not apply : We have assumed in the present work that
the total number of balls is known, and have studied the number of urns satisfying some condition
(Y (U) ∈ E), whereas the natural assumption for the modelization of join sizes is that the number
of balls of each type is known, and we are interested in the valuation

∑

U urn Y (U). However, it
should be possible to extend our approach to deal with such situations, and possibly to take into
account some types of deletions as well; we hope to present both in a future paper.
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