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Abstract. We derive results concerning the least possible number of distinct

axioms in proofs in classical and intuitionistic sequent calculi and other related

systems. In particular, we show that there is no recursive bound on the least
possible number of distinct axioms in a proof of a provable sequent in terms

of the sequent’s length, and that there is no elementary bound on the least

possible number of axioms in a cut-free proof of a provable sequent in terms of
the least possible length of an arbitrary proof thereof, strengthening a classical

result due to Orevkov and Statman.

1. Introduction

In this article, we explore lower bounds on the number of axioms needed to
prove theorems. We deal with first-order logic, formalized as a version of the
sequent calculus LK introduced by Gentzen [3] (see also Takeuti [8] for additional
background). A sequent is an expression of the form

(1) Γ ` ∆

where Γ and ∆ are finite multisets of formulae. The interpretation of (1) is “if all
formulae in Γ hold, then some formula among ∆ holds”. In LK, one starts with
axioms and infers other sequents through various rules of inference. We measure
the length of a proof by the number of sequents that appear in it; we measure the
length of a sequent by the number of symbols in it. It is well known that one cannot
give a recursive bound on the least possible length of a proof of a provable sequent
S in terms of the length of S itself. Below, we prove the following strengthening:

Theorem 1.1. There is no recursive bound on the least possible number of distinct
axioms in an LK-proof of a sequent in terms of its length.

In the statement of the theorem, “axiom” means “logical axiom”. We do not
consider two occurrences of the same axiom A(a) ` A(a) as “distinct,” but we do
consider as distinct different instances of the same axiom, such as A(a) ` A(a) and
A(b) ` A(b). Theorem 1.1 says that as one considers longer sequents, their minimal
proofs not only become “longer,” but also “wider,” and moreover so in a way that
cannot be accounted for by the repetition of axioms.

Intuitionistic logic can be formalized as one of many variants of Gentzen’s LJ,
which is obtained from LK by adding the restriction that all sequents Γ ` ∆
contain at most one formula on the right-hand side. All our arguments below apply
to intuitionistic logic and to many other related systems. In particular, we have:

Theorem 1.2. There is no recursive bound on the least possible number of distinct
axioms in an LJ-proof of a sequent in terms of its length.
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Among the usual inferences in sequent calculi figures the cut rule:

Γ ` ∆, A A,Γ ` ∆

Γ ` ∆

Gentzen’s Cut-Elimination Theorem says that the cut rule is redundant, however.
Cut-free proofs are useful because they have the subformula property : in a proof
of a sequent S with no instances of the cut rule, one only finds formulae which are
substitution instances of subformulae of formulae in S. This is a desirable property
for automated proof search, and other applications. The main tool in the proof
of Theorem 1.1 is the following lower bound on the number of axioms in cut-free
proofs:

Theorem 1.3. Let S be a provable LK-sequent. Denote by m the minimal length
of a cut-free LK-proof of S and by α the minimal number of distinct axioms in a
cut-free LK-proof of S. Then

|S|3

√
1

2|S|
4+1

log2(m) ≤ α.

Theorem 1.3 is proved in Section 3. Section 4 contains applications of Theorem
1.3 and, in particular, the proofs of Theorems 1.1 and 1.2. Before moving on, we
mention another application of Theorem 1.3.

Recall that cut elimination has a high computational cost. A function f : N→ N
is elementarily bounded if it is bounded by a function of the form

x 7→ 22
···2

x

.

An algorithm is elementary if it runs in an amount of time which is elementarily
bounded. A classical theorem due independently to Orevkov [5] and Statman [7]
states that there can be no elementary cut-elimination algorithm for first-order
logic. By inspecting Schütte’s proof of Gentzen’s cut-elimination theorem (see
e.g., Schwichtenberg [6]), one sees that this result is optimal, in the sense that
the cut-elimination theorem requires computations as simple as possible among
non-elementary classes. More precisely, it is easily shown that the cut-elimination
theorem is equivalent to the totality of the superexponential function (which maps
a natural number n to the result of applying the exponentiation function x 7→ 2x

n times) over Elementary Arithmetic (EA) (see e.g. Beklemishev [2] for more on
relevant subsystems of arithmetic); however, this leaves open the possibility of
strengthening the result in other directions; namely, Orevkov and Statman’s proofs
show that there is a sequence of first-order sequents the nth of which has a proof
of length O(n), but whose shortest cut-free proofs have lengths which cannot be
elementarily bounded. We strengthen this result by showing that those cut-free
proofs must necessarily have non-elementarily many distinct axioms.

Theorem 1.4. There is no elementary bound on the least possible number of dis-
tinct axioms of a cut-free LK-proof of a sequent in terms of the least possible length
of an LK-proof of the same sequent.

With little extra work, one can adapt these theorems to proof systems with
equality axioms.



THE NUMBER OF AXIOMS 3

2. Preliminaries

We work in first-order logic formalized as a calculus of sequents as in Takeuti [8].
For convenience and definiteness, we recall the definitions which we will require.
We work in the version of Gentzen’s calculus LK with atomic axioms of the form
A ` A and the following inference rules:

Propositional rules:

Γ, A ` ∆

Γ, A ∧B ` ∆
∧1−left

Γ ` ∆, A

Γ ` ∆, A ∨B ∨1−right

Γ, B ` ∆

Γ, A ∧B ` ∆
∧2−left

Γ ` ∆, B

Γ ` ∆, A ∨B ∨2−right

Γ1, A ` ∆1 Γ2, B ` ∆2

Γ1,Γ2, A ∨B ` ∆1,∆2
∨−left

Γ1 ` ∆1, A Γ2 ` ∆2, B

Γ1,Γ2 ` ∆1,∆2, A ∧B
∧−right

Γ ` ∆, A

Γ,¬A ` ∆
¬−left

Γ, A ` ∆

Γ ` ∆,¬A ¬−right

Γ, A ` ∆, B

Γ ` ∆, A→ B
→1 −right

Γ1 ` ∆1, A Γ2, B ` ∆2

Γ1,Γ2, A→ B ` ∆1,∆2
→ −left

Structural rules:

Γ ` ∆
Γ, A ` ∆

weakening−left Γ ` ∆
Γ ` ∆, A

weakening−right

Γ, A,A ` ∆

Γ, A ` ∆
contraction−left

Γ ` ∆, A,A

Γ ` ∆, A
contraction−right

Γ1 ` ∆1, A A,Γ2 ` ∆2

Γ1,Γ2 ` ∆1,∆2
Cut

Quantifier rules:

Γ, A(t) ` ∆

Γ,∀xA(x) ` ∆
∀−left

Γ ` ∆, A(t)

Γ ` ∆,∃xA(x)
∃−right

Γ, A(a) ` ∆

Γ,∃xA(x) ` ∆
∃−left

Γ ` ∆, A(a)

Γ ` ∆,∀xA(x)
∀−right

where (i) the bound variable x does not appear in A(a) (resp. A(t)) and1 (ii) in
the case of inferences ∀−right and ∃−left, the variable a does not appear in the
lower sequent of the inference. In this case, a is called the characteristic variable
of the inference and the inference is called a strong quantifier inference. The other
two quantifier inferences are called weak ; in these, t is assumed to be a term, i.e.,
an expression built up of function symbols applied to constant symbols and free
variables.2

An occurrence of a formula A (or term, variable, etc.) in a sequent (or proof,
etc.) is the formula A together with the position it occupies in the proof (sequent,

1This condition precludes expressions such as ∃x∀xA(x, x) from occurring in sequent calculi.
2In particular, recall that if x is a bound variable, then expressions such as f(x) are not terms,

but rather only semiterms.
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etc.). Given an occurrence of a term t in a sequent S, we call the corresponding
occurrences of t in formulae below S the successors of this occurrence of t; the
predecessors of this occurrence of t are defined similarly.

For the logical rules and quantifier rules, the indicated formulae are called respec-
tively the auxiliary and principal formulae of the inferences. If a is the characteristic
variable of a strong quantifier inference with principal formula A, we also say that
a is the characteristic variable of A and that A is a principal formula of a. By
extension, if x is the bound variable used to quantify an occurrence of a, we say
that x is the principal variable of this occurrence of a, and of the inference. We also
say that the corresponding occurrence of a is quantified by (or in) that inference.
Similarly, given a weak quantifier inference with principal variable x and auxiliary
term t, we say that the corresponding occurrence of t is quantified in that inference,
but we do not say this of any occurrence of a proper subterm of t.

An LK-proof of a sequent S is a sequence of sequents S0, . . . , Sm = S such that
for each k ≤ m, Sk is either an axiom or is derived from some Si, Sj with i, j < k
by an application of an inference rule above. We remark that, since sequents have
been defined as multisets, there is no need for exchange rules; this is merely for
convenience.

Every LK-proof π corresponds to a directed acyclic graph where the vertices are
labelled by sequents from π and the arrows lead from the hypotheses of an inference
to its conclusion. If the corresponding graph is a tree we call the proof tree-like.

For a formula, sequent, or term X, we write |X| for the number of symbols
appearing in X counting each occurrence of the symbol individually. For a proof
π, we write |π| for its length.

3. Bounds on the number of axioms

Here, we restate and prove Theorem 1.3. Although it is stated for LK, the
argument is very general and applies to many other proof systems (see Section 4
below).

Theorem 3.1. Let S be a provable LK-sequent. Denote by m the minimal length
of a cut-free LK-proof of S and by α the minimal number of distinct axioms in a
cut-free LK-proof of S. Then

|S|3

√
1

2|S|
4+1

log2(m) ≤ α.

To prove the theorem, we will need some more definitions. Below, we speak of
subterms of a term – these are defined as expected. We remark that subterms of a
term are themselves terms and hence contain no bound variables.

Definition 3.2. Let π be an LK-proof and t be a term.

(1) We say that an occurrence of t in π is inessential if one of its successors
is quantified in π and t is not a subterm of any term which appears in an
axiom of π.

(2) We say that a term t in π is inessential if all its occurrences are inessential.

Note that inessential occurrences of terms can only be introduced by weakenings.

Definition 3.3. Let c be a constant symbol or variable. A proof π is c-efficient if
the following hold:
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(1) c does not appear in an axiom in π nor in the end-sequent of π;
(2) suppose that t is a term in π one of whose occurrences is inessential in π,

then either t is equal to c, or t is a free variable and none of its occurrences
are weakly quantified in π.

Lemma 3.4. Let π be an LK-proof and let c be a constant symbol or a variable
not occurring in π. Then, there is an LK-proof σ such that

(1) σ has the same length, end-sequent, and axioms as π;
(2) σ is c-efficient.

Proof. Let π and c be as in the statement of the lemma. We obtain σ as follows:
suppose there is an inessential occurrence of a term t in π and a successor of this
occurrence is weakly quantified in π; then, replace this occurrence by c.

Thus, σ differs from π only on occurrences of inessential terms and thus has the
same axioms and end-sequent, as well as the same length. We observe that

(1) σ and π differ only on occurrences of terms which are weakly quantified
and their predecessors; and

(2) if an occurrence of a term t is replaced by c in passing from π to σ, then
all predecessors of this occurrence are also replaced.

It follows that the characteristic-variable condition holds of σ; hence, σ is a proof
and is as desired. �

Remark 3.5. In the preceding argument, σ is not a substitution instance of π,
since different occurrences of terms in π might correspond to different terms in σ.

Lemma 3.6. Suppose that π is a cut-free c-efficient LK-proof and let t be a subterm
of some term in π. Then t is one of the following:

(1) a subterm of an axiom;
(2) a subterm of a term in the end-sequent;
(3) c;
(4) an inessential free variable.

Proof. If t is not in the first two categories, then t must be a subterm of some term
s with an inessential occurrence in π. By c-efficiency, s must either be equal to c
or to a free variable. Thus, t must either be equal to c or to an inessential free
variable. �

Definition 3.7. Let a cut-free LK-proof π and an occurrence of a formula B in
a sequent S in a proof π be given. Consider the the unique sequence of pairs
(B0, S0), . . . , (Bn, Sn) in π such that

(1) B0 = B, S0 = S;
(2) Sn is the end-sequent of π;
(3) if i < n, then Si+1 is the sequent immediately below Si in π;
(4) if i < n and Bi is an auxiliary formula of the inference that produces Si+1

from Si, then Bi+1 is the principal formula;
(5) if i < n and Bi is not an auxiliary formula of the inference that produces

Si+1 from Si, then Bi+1 is the occurrence of Bi in Si+1.

The trace of B is the set {B0, . . . , Bn} (without repetitions) together with the
position Bn occupies in the end-sequent of π. We refer to Bn, together with the
position it occupies in π, as the conclusion of the trace.
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Remark 3.8. We defined the trace of a formula as a set {B0, . . . , Bn}. However,
we could also have defined it as an ordered set, and the order is uniquely determined
by the elements of {B0, . . . , Bn}.

Remark 3.9. Because the trace includes the information of where the conclusion
appears in π, it is possible that two different occurrences of the same formula in π
have different traces which nonetheless consist of the same formulae. Similarly, due
to contractions, it is possible that two different occurrences of the same formula,
neither an ancestor of the other, have the same trace.

The trace of a formula essentially records its history through the proof up to the
end-sequent, as well as its position therein.

Definition 3.10. Suppose ? is a new symbol not appearing elsewhere.
Given a proof π and a formula D occurring in it. We define the ?-abstraction

of D, D?, as the expression obtained from D by simultaneously substituting the
symbol ? for all inessential free variables in π.

We define the ?-trace of an occurrence B of a formula in π as the result of
replacing each formula in the trace of B by its ?-abstraction.

The next lemma is the main ingredient for the proof of Theorem 3.1.

Lemma 3.11. Let π be a cut-free LK-proof of a sequent S and let α denote the
number of distinct axioms in π. Then there is a cut-free tree-like LK-proof of S

with at most α|S|
3 · 2|S|4 different terms.

Consequently, S is provable by a cut-free LK-proof of length less than 2α
|S|3 ·2|S|

4+1

.

Proof. We can assume that π is tree-like since otherwise we can transform it into
a tree-like form without adding any new (different) instances of axioms. Without
loss of generality, we assume that π is 0-efficient.

Now let us consider an arbitrary inessential variable a and one of its occurrences
in π.

Let ∀xB(x) be the principal formula of the inference in which a successor of the
selected occurrence of a is quantified, and say that this inference has the form

Γa ` ∆a, B(a)

Γa ` ∆a,∀xB(x) .

If so, we replace the occurrence of the variable a in this inference, as well as all its
predecessors, by a new variable vT , where T is the ?-trace of B(a).

We repeat these transformations for all occurrences of inessential variables and
denote the resulting sequence of sequents by π′. The main observation to make
at this point is that π′ might not be a proof because the characteristic-variable
condition need not be satisfied by all strong quantifier inferences. However, this is
the only potential obstacle, as all other inferences in π′ are valid. In particular, it
should be remarked that all instances of contraction in π remain valid in π′, for
when a variable a is replaced by one of the form vT , all its predecessors are too.
Before we can modify π′ to obtain a correct proof some observations are in order.

Claim 3.12. The end-sequent of π′ is S.

Proof. This is immediate from the construction, because π and π′ only differ in
terms that appear neither in axioms nor in the end-sequent. �
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Claim 3.13. Assume A(a) and B(b) are occurrences of characteristic formulae with
the same principal variable and with characteristic variables a and b, respectively.
Let TA(a) and TB(b) be the traces of A(a) and of B(b) and suppose that TA(a) ⊆ TB(b)

and that the traces have the same conclusion. Then A(x) and B(x) are the same
formula.

Proof. This is immediate from the definition and the fact that a formula cannot
contain two separate nested quantifiers applied to the same bound variable (this
follows from condition (i) in the definition of the quantifier rules in LK on page
3). �

Claim 3.14. Suppose a is a free variable of the form vT and that π′ contains the
inferences

Π1 ` Λ1, B1(a, s1, . . . , sn)

Π1 ` Λ1,∀xiB1(xi, s1, . . . , sn)

and

Π2 ` Λ2, B2(a, t1, . . . , tm)

Π2 ` Λ2,∀xj B2(xj , t1, . . . , tm)

Then B1(a, s1, . . . , sn) = B2(a, t1, . . . , tm).

Proof. By hypothesis, a is of the form vT for some ?-trace

T = {D0, D1, . . . , Dk.}
Because of the way the substitution of inessential variables by vT was carried out,
D0 can be obtained by substituting ? for inessential variables in B1, or in B2.
Thus B1 and B2 are substitution instances of each other and can only differ in
inessential variables. To show B1 = B2 assume b1 and b2 are inessential free vari-
ables on the same position in B1 and B2, respectively.

Observe that b1 and b2 will become the same bounded variable in Dk. By choice
of π′, they are strongly quantified in π′. Thus, b1 and b2 are characteristic variables
of π′ of the forms vT1 and vT2 for some traces T1 and T2.
T1 and T2 are both end-segments of T , so one of them must extend the other.

By Claim 3.13, b1 and b2 have the same principal formula. The ?-trace T ′ of this
principal formula has to be of the form

T ′ = D`, D`+1, . . . , Dk

for some 0 < ` ≤ k; therefore,

b1 = b2 = vT ′ ,

as desired. This proves the claim. �

The analogue of Claim 3.14 for free variables of the form vT which are strongly
quantified on the left side is proved by a similar argument.

We now modify π′ so as to obtain a proof. Consider a failure of the characteristic
variable condition, say

Π ` Λ, D(a)
(∗)

Π ` Λ,∀xD(x)
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where a appears in Π ` Γ,∀xD(x). Since π was originally a proof, the only pos-
sibility is that a be of the form vT and all its occurrences be strongly quantified
in π′. By Claim 3.14, all occurrences of a in π′ have the same principal formula.
Thus, a branch in π′ in which a appears has the following form:

...
Π ` Λ, D(a)

(∗)
Π ` Λ,∀xD(x)

...
Π′ ` Λ′, D(a)

(∗∗)
Π′ ` Λ′,∀xD(x)

...
Γ ` ∆

where a does not appear in Π′ ` Λ′,∀xD(x) or below. We modify π′ by

(1) omitting all the inferences with principal formula ∀xD(x) and auxiliary
formula D(a) (such as (∗)) except for the last one, as well as any inference
between (*) and (**) whose auxiliary formula is a successor of a formula
that has been omitted;

(2) contracting the occurrences of D(a) before (∗∗);
(3) weakening after (∗∗) to add any and all formulae missing from Π′ ` Λ′.

The resulting derivation has the following form:

...
Π ` Λ, D(a)

...
Π′′ ` Λ′′, D(a), D(a), . . . , D(a)

Π′′ ` Λ′′, D(a)
(∗∗)

Π′′ ` Λ′′,∀xD(x)
weakening

Π′ ` Λ′,∀xD(x)

...
Γ ` ∆

where Π′′ ` ∆′′ is a subsequent of Π′ ` ∆′. Repeating this procedure for each
failure of the characteristic-variable condition on each branch in the derivation tree
produces a cut-free LK-proof σ of Γ ` ∆ with |σ| ≤ |π|.

We now estimate the number of terms in σ. Recall that α denotes the number
of distinct axioms in π.

Claim 3.15. The number of different terms in σ is at most α|S|
3 · 2|S|4 .

Proof. First observe that the terms introduced by weakening after (∗∗) are free
variables of the form vT or appear in an axiom of π or in the end-sequent, or
equal to the constant 0. Now assume t is an occurrence of a maximal term in
π′. Following the successors of t on the way down to the end sequent we arrive at
some term t′(x0, x1, . . . , xk) where x0, x1, . . . , xk might be bounded variables and
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so t = t′(a0, a1, . . . , ak) for some terms a0, a1, . . . , ak. Moreover the number of such
terms t′ is bounded by |S| and the terms a0, a1, . . . , ak can be 0, vT for some ?-trace
T , or a subterm of a term s which occurs in an axiom and an occurrence of s is
quantified in π′. Because the axioms in π′ are atomic, the number of terms of the
third kind mentioned is:

α · (maximal arity of an atomic formula in S) · (maximal arity of a term in S)

which is at most α · |S|2. Thus the number of terms in π′ is at most

|S| · (1 + (number of ?-traces) + α · |S|2)(maximal arity of a term in S)

where the exponent is bounded by |S| − 1.
To finish we need to bound the number of ?-traces T = {D0, D1, . . . , Dn} in π′.

First note that similarly as in the previous paragraph, the number of terms that
can appear in a ?-trace is at most (1 + 1 +α · |S|2)(maximal arity of a term in S) and the
length n of the trace is at most the number of logical connectives and quantifiers
in Dn thus bounded by |S| − 1. Moreover Dn and D0 determines the rest of the
formulas in T up to terms. Finally each term in T is a predecessor of a term in
Dn and each term in Dn has at most |S| predecessor. In particular, for a fixed Dn

with its position in S and D0 there is at most

(number of terms in Dn) · (2 + α · |S|2)|S|(|S|−1)

possible combinations of terms that could appear in T . This gives at most

|S|4 · (2 + α · |S|2)|S|(|S|−1)

?-traces originating from π′. Altogether, the number of different terms in π′ is at
most

|S| · (1 + |S|4 · (2 + α|S|2)|S|(|S|−1) + α|S|2)|S|−1 ≤ |S| · (|S|4(2 + α|S|2)|S|
2

)|S|−1

and this is
≤ α|S|

3

· 2|S|
4

since we can assume that |S| ≥ 3. �

To prove the “consequently” part of the lemma, we note that since σ is cut-free,

3 ≤ |S|, and the number of different terms in σ is at most α|S|
3 · 2|S|4 , it follows

that there are at most

|S|α
|S|3 ·2|S|

4
+|S| ≤ 2α

|S|3 ·2|S|
4+1

different sequents in σ. Since we can remove duplicate occurrences of a sequent
from σ by reducing it to a proof which is not necessarily tree-like, we obtain a

cut-free proof of S with at most 2α
|S|3 ·2|S|

4+1

many sequents. This completes the
proof of the lemma. �

Using the lemma we can finally prove Theorem 3.1.

Proof of Theorem 3.1. Assume towards a contradiction that σ is a cut-free LK-
proof of S of length m such that, letting α be the number of axioms of σ, we
have

α < |S|3

√
1

2|S|
4+1

log2(m),

so

2α
|S|3 ·2|S|

4+1

< m.
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By Lemma 3.11 applied to σ, there is an LK-proof σ′ of S with

|σ′| ≤ 2α
|S|3 ·2|S|

4+1

< m.

contradicting the assumption on the minimality of m. �

Since an arbitrary LK-proof π of length less than m can be transformed without
adding cut inferences and new sequents into a tree-like LK-proof π′ with the same
end-sequent and |π′| ≤ 22|π|, we obtain the following corollary:

Corollary 3.16. Let S be a provable LK-sequent. Denote by m the minimal length
of a a tree-like cut-free LK-proof of S and by α the minimal number of distinct
axioms in a tree-like cut-free LK-proof of S. Then,

|S|3|

√
(log2(log2(m))− 1)

2|S|
4+1

≤ α.

4. Applications, Generalizations, and Further Remarks

4.1. Applications. We first derive Theorem 1.4, which we restate for convenience:

Theorem 4.1. There is no elementary bound on the least possible number of dis-
tinct axioms of a cut-free LK-proof of a sequent in terms of the least possible length
of an arbitrary LK-proof of the same sequent.

Proof. Let {πn : n ∈ N} be the sequences of proofs constructed by Orevkov [5] or
Statman [7]. These proofs have length polynomial in n, but there is no elementary
sequence of cut-free LK-proofs with the same end-sequents. The theorem follows
from applying Corollary 3.16 to this sequence. �

As another application, we prove the following theorem, motivated by a question
of D. J. D. Hughes (private communication). The calculus LK++ is as in [1].

Theorem 4.2. There is no elementary function bounding the least number of dif-
ferent axioms in a cut-free LK-proof of a sequent in terms of the least number of
axioms in a cut-free LK++-proof of the same sequent.

Proof. By the proof of [1, Theorem 3.3], there is a family {Sn : n ∈ N} of sequents
with polynomial cut-free LK++-proofs, but with no elementarily bounded LK-
proofs (see specifically, equation (8) in [1]). By Corollary 3.16, the number of axioms
in any sequence of LK-proofs of these sequents is not elementarily bounded. �

A similar result is obtained for the calculus LK+ from [1]. We now proceed to
the proof of Theorem 1.1, which we also restate:

Theorem 4.3. There is no recursive bound on the least possible number of distinct
axioms in an LK-proof of a sequent in terms of its length.

Proof. From an arbitrary proof of a sequent, Schütte’s cut-elimination algorithm
(see e.g., Schwichtenberg [6]) provides a cut-free proof of the same sequent whose
length is primitive-recursively bounded. Thus, it suffices to show that there is
no recursive bound on the least possible number of distinct axioms in a cut-free
LK-proof of a sequent in terms of its length.

Suppose towards a contradiction there is a recursive function

f : N→ N
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such that every sequent of length n has a cut-free proof with at most f(n) distinct
axioms. By Theorem 3.1, we could replace “distinct axioms” by “length of a proof”.
By a theorem of Kraj́ıček and Pudlák [4, Theorem 2.5], the minimal number of
symbols in a cut-free proof of a sequent S is bounded elementarily by the minimal
number of inference steps in a cut-free proof of S. Moreover the number of inference
steps and sequents in a proof are polynomially related. Therefore, if such an f
existed, one would have a recursive bound on the number of symbols in a cut-free
proof of a sequent in terms of its length, which would contradict the undecidability
of first-order logic. �

4.2. Equality Axioms. One might wonder whether the results proved thus far
apply to systems with equality axioms. We mention the main result in this context.
Other, similar, generalizations we leave to the reader’s imagination.

Definition 4.4. LK= is the extension of LK by all equality axioms of one of the
following forms:

` a = a

b = a ` a = b;

a = b, b = c ` a = c;

a1 = b1, . . . , an = bn ` f(a1, . . . , an) = f(b1, . . . , bn);

a1 = b1, . . . , an = bn ` A(a1, . . . , an)→ A(b1, . . . , bn);

where f is a function symbol and A is an atomic formula.

Theorem 4.5. Let LK= be LK augmented with equality axioms. Then, there is no
recursive bound on the least possible number of distinct axioms in an LK=-proof of
a sequent in terms of its length.

Proof. Recall that every sequent which is provable LK= has a proof which is cut-
free, except possibly for “inessential” cuts – those applied to formulas of the form
t = s. Such a proof is obtained by applying any of the usual cut-elimination
algorithms. The only case which the algorithm does not cover is that in which
the cut formula is introduced directly by an equality axiom, and in fact only those
formulas of the form t = s which come from an equality axiom (see e.g., Takeuti
[8, Theorem 7.6]).

Let us say that an LK=-proof is almost cut-free if all its cut formulas are atomic
of the form s = t and for each instance of a cut rule, at least one of the auxiliary
(cut) formulas has an equality axiom as a predecessor. Almost cut-free proofs enjoy
a weak subformula property whereby every formula is either a subformula of the
end-sequent, or it is an instance of equality between two terms which appear in an
equality axiom. To prove the theorem, it suffices to show that there is no recursive
bound on the least possible number of distinct axioms in an almost cut-free LK=-
proof of a sequent in terms of its length.

The idea for the proof is to prove an analogue of Lemma 3.11 for LK=:

Lemma 4.6. There is a recursive function f with the following property: Suppose
π be an almost cut-free LK=-proof of a sequent S and α is the number of distinct
axioms in π. Then, there is an almost cut-free LK=proof of S with at most f(α)
different terms.
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Proof. This is done by essentially the same argument of Lemma 3.11. Like in
Lemma 3.11, we may assume that we are dealing with a c-efficient proof for some
new constant symbol c; the key point here is that all terms in cut formulas appear
in axioms. Hence, following the argument of Lemma 3.11, we can replace all the
inessential bound variables by variables vT indexed by ?-traces and from this obtain
a proof with a number of terms bounded recursively in terms of α. �

From the claim, we can prove the theorem: Suppose it is false, so there is a
recursive bound on the number of axioms in an almost cut-free LK=-proof in terms
of the length of the end-sequent. Then by the claim there is a recursive bound on
the least possible number of terms in an LK=-proof of that sequent. Arguing as
in Theorem 3.1, one can recursively bound the smallest possible number of steps
in an almost cut-free LK=-proof of the sequent, and thus the number of symbols,
which is impossible. �

4.3. Intuitionistic logic. The proof of Theorem 4.1 could be made simpler by
first Skolemizing the end-sequent and thus reducing the need to rename strongly
quantified variables. However, the present argument can be used for calculi which
do not admit Skolemization.

Theorem 4.7. There is no elementary bound on the least possible number of dis-
tinct axioms of a cut-free LJ-proof of a sequent in terms of the least possible length
of an arbitrary LJ-proof of the same sequent.

Proof. The proof is essentially the same as that of Theorem 4.1. The only thing to
mention is that the sequence {πn : n ∈ N} can also be constructed for LJ, by making
use of the sequence for LK, together with the double-negation translation. �

Theorem 4.8. There is no recursive bound on the least possible number of distinct
axioms in an LJ-proof of a sequent in terms of its length.

Proof. Again, this proof is essentially the same as that of Theorem 4.3. The only
points to mention are that Schütte’s cut-elimination algorithm produces LJ-proofs
when applied to LJ-proofs and that the main tool in the proof of Kraj́ıček and
Pudlák [4, Theorem 2.5] is a unification argument, which also applies to LJ. �

4.4. Further remarks. Other calculi to which the argument of Theorem 4.1 ap-
plies we leave to the reader’s imagination, but we do mention that two properties
of LK are essential for the proof:

(1) LK has full access to weakenings and contractions;
(2) the weak quantifier rules of LK impose no restrictions on the term structure

of the quantified terms.

Consequently, the proof does not apply to proof systems that do not share these
properties, such as those for linear logic. This raises two questions:

Question 4.9. Is there an elementary bound on the least possible number of distinct
axioms of a cut-free proof of a sequent in linear logic in terms of the least possible
length of an arbitrary proof of the same sequent in linear logic?

Question 4.10. Is there a recursive bound on the least possible number of distinct
axioms of a proof of a sequent in linear logic in terms of its length?
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Finally, we mention that while the sequents considered in this article are given
by pairs of multisets, this was merely for convenience. A similar result holds for
proof systems with exchanges, though the bounds need to be adjusted accordingly.

It is common in classical logic to gauge the complexity of a proof in terms of its
Herbrand sequent. The procedure from Theorem 3.1 can be viewed as a form of
“term normalization” applied to a proof, and the set of terms thus produced can
be thought of as an abstract Herbrand set of terms assigned to a proof. Hence,
Theorem 3.1 in a way extends this notion of complexity to non-classical systems to
which it applies, such as intuitionistic logic.
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