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Abstract. Let G↓ be the Gödel logic whose set of truth values is
V↓ = {0} ∪ {1/n : n ∈ N \ {0}}. Baaz-Leitsch-Zach have shown that G↓
is not recursively axiomatizable and Hájek showed that it is not arith-
metical. We find the optimal strengthening of their theorems and prove
that the set of validities of G↓ is Π1

1 complete and the set of satisfiable
formulas in G↓ is Σ1

1 complete.
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1 Introduction

A family of finite-valued logics was introduced by Gödel in [6] to show there are
propositional logics weaker than classical but stronger than intuitionistic propo-
sitional logic. A natural extension of those logics to many-valued logic followed
in the paper of Dummet [5] who also showed that they can be axiomatised by
adding the axiom (p→ q)∨ (q → p) into intuitionistic logic. Today we call those
logics Gödel logics. In particular, Gödel logics are intermediate logics where
propositions take truth values in [0, 1]. Different Gödel logics arise by choosing
a subset V ⊆ [0, 1] as truth values. In the case of propositional Gödel logic, any
infinite subset of [0, 1] will yield the same set of valid formulas, but this is not
the case for first order Gödel logic. In this case we require that V be a closed
set, as suprema and infima are used to evaluate the quantifiers.

In particular, we are interested in G↓, the Gödel logic whose set of truth
values is

V↓ = {0} ∪
{
1/n : n ∈ N \ {0}

}
.

G↓ is the same as the logic defined by linearly ordered Kripke structures on
constant domains [1] - a fundamental concept in the definition of Temporal logic
of programs [9], an origin of the study of program verification.

Baaz-Leitsch-Zach [1] have shown that G↓ is not recursively axiomatizable
and Hájek [8] showed that the sets of validities and satisfiable formulas are
not arithmetical. We will show that they are Σ1

1 -complete and Π1
1 -complete,
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respectively. As satisfiability is Σ1
1 and validity is Π1

1 , this yields the optimal
strengthening of their theorems. We remark that each of the results for Σ1

1 and
Π1

1 is not immediate from the other, because satisfiability and validity are not
dual in Gödel logic as they are in classical logic.

2 Preliminaries

First order Gödel logic uses the syntax of intuitionistic predicate logic, where
the set of formulas is defined according to the following clauses:

⊥ | P (x) | φ ∧ ψ | φ ∨ ψ | φ→ ψ | ∃xφ | ∀xφ.

Here, P is a predicate symbol of arity n in some predetermined alphabet, x is a
tuple of n variables, φ, ψ are formulas and x is a variable.

Definition 1. Fix a closed set V ⊆ [0, 1] with 0 ∈ V ; such a set is a set of truth
values. A V -valued model is a pair M = (D, ‖ · ‖), where D is a set of elements
and ‖ · ‖ assigns to each n-ary predicate symbol P a function ‖P (·)‖ : Dn → V .
We then extend ‖ · ‖ to complex formulas according to the following clauses:

– ‖⊥(a)‖ = 0
– ‖φ ∧ ψ(a)‖ = min{‖φ(a)‖, ‖ψ(a)‖}
– ‖φ ∨ ψ(a)‖ = max{‖φ(a)‖, ‖ψ(a)‖}

– ‖φ→ ψ(a)‖ =

{
1 if ‖φ(a)‖ ≤ ‖ψ(a)‖
‖ψ(a)‖ otherwise

– ‖∃xφ(x,a)‖ = supb∈D ‖φ(b,a)‖
– ‖∀xφ(x,a)‖ = infb∈D ‖φ(b,a)‖.

On occasion we may write ‖ · ‖M instead of ‖ · ‖ when we want to specify the
model we are referring to. We write M = (D,P1, . . . , Pn) instead of M = (D, ‖·‖)
to indicate that the alphabet of M is P1, . . . , Pn. Given a closed set V ⊆ [0, 1]
containing 0 and 1, we say that a sentence φ is V -satisfiable if there is a model M
such that ‖φ‖M = 1 (in which case we write M |= φ), and weakly V -satisfiable
if there is a model M such that ‖φ‖M > 0. The formula φ is V -valid if for
every model M, ‖φ‖M = 1. A model M is crisp if V = {0, 1}; clearly, crisp
models are equivalent to classical models. In the remainder of the text we fix
V = V↓ = {0} ∪

{
1/n : n ∈ N \ {0}

}
, and satisfiability, etc. refer to this set of

truth values. We will explicitly write e.g. classical satisfiability when referring to
V = {0, 1}.

A formula is V↓-satisfiable iff it is weakly V↓-satisfiable. In fact, a more general
claim holds. Recall that a linear order is Noetherian if it contains no infinite
strictly increasing sequences; note that V↓ is Noetherian.

Lemma 1. Let V be a Noetherian set of truth values. Given a sentence ϕ and
any set of truth values V , if there exists a model M such that ‖ϕ‖M > 0, then
there exists a model M′ such that for all formulas ψ and tuples a,

‖ψ(a)‖M′ =

{
‖ψ(a)‖M if ‖ψ(a)‖M < ‖ϕ‖M
1 otherwise.

(1)
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Proof. Let M = (D, ‖·‖) and define M′ = (D, ‖·‖′) so that ‖·‖ is defined accord-
ing to (1) for atomic formulas. Then proceed by induction on formula complexity.
The assumption that V is Noetherian is used for the case of an existential quan-
tifier, so we focus on this one. We have that ‖∃xψ(x,a)‖′ = supb∈D ‖ψ(b,a)‖′.
By the induction hypothesis, ‖ψ(b,a)‖′ satisfies (1) for all b ∈ D. Since V
is Noetherian, there is b∗ ∈ D such that ‖ψ(b∗,a)‖′ = supb∈D ‖ψ(b,a)‖′. If
‖ψ(b∗,a)‖ < ‖ϕ‖ then it is readily checked that for all b ∈ D, ‖ψ(b,a)‖′ =
‖ψ(b,a)‖ < ‖ϕ‖, so ‖∃xψ(x,a)‖ = ‖ψ(b∗,a)‖ = ‖ψ(b∗,a)‖′ = ‖∃xψ(x,a)‖′.
Otherwise, ‖ψ(b∗,a)‖ ≥ ‖ϕ‖, so that ‖∃xψ(x,a)‖ ≥ ‖ϕ‖ and we must check
that ‖∃xψ(x,a)‖′ = 1. But from ‖ψ(b∗,a)‖ ≥ ‖ϕ‖ we obtain ‖ψ(b∗,a)‖′ = 1 and
thus ‖∃xψ(x,a)‖′ = 1, as needed.

We will make use of the abbreviation

φ ≺ ψ := (ψ → φ)→ ψ.

It can be checked by the semantics that φ ≺ ψ evaluates to 1 if and only if either
φ has a smaller value than ψ, or they both have value 1.

While first order logic in principle contains predicate symbols of all arities,
in this paper it will suffice to work with a unary symbol N and binary symbols
=,∈. The convention regarding equality is that it is interpreted as any fuzzy
equivalence relation when V 6= {0, 1}, but is true equality when V = {0, 1}.
The symbol ∈ is meant to interpret Kripke-Platek set theory (KP), a weakening
of ZFC which, in the version we consider, has the advantage of being finitely
axiomatizable. In general, let LP1...Pn

be the language of first order Gödel logic
whose predicate symbols are restricted to P1, . . . , Pn. To define KP, first say
that a ∆0 formula is a L∈ formula such that all quantifiers are of the form
∃x(x ∈ y ∧ φ) or ∀x(x ∈ y → φ) (often abbreviated as e.g. ∃x ∈ yφ and
∀x(x ∈ y → φ), respectively). A Σ1 formula is one of the form ∃xφ, where φ is
∆0, and a Π1 formula is one of the form ∀xφ with the same restriction.

We will use the version of KP with infinity axiomatized by all axioms of ZFC
except for powerset, but with foundation restricted to Π1 classes, separation
restricted to ∆0 formulas and replacement restricted to ∆0-collection. We will
also assume that KP contains equality axioms asserting that = is an equivalence
relation, as well as the axioms

x = y → x ∈ z ↔ y ∈ z
x = y → z ∈ x↔ z ∈ y.

The precise definitions are not needed to follow the text, but we will use some
properties of this version of KP, including that it is finitely axiomatizable.

The axiom of infinity asserts that the set of natural numbers exist as a set,
and there is a formula of L∈ (which we denote by x ∈ N) defining the set
of natural numbers as von Neumann ordinals, which have the property that
n < m iff n ∈ m. We will usually write < instead of ∈ when working with
natural numbers within KP. This definition allows us to quantify over the set of
natural numbers and define quantifiers ∀x ∈ N, ∃X ⊆ N, etc. as abbreviations.
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We will also use the fact that addition (along with other standard arithmetical
operations) is readily interpretable in KP. An arithmetical formula is one where
all quantifiers are of the form ∀x ∈ N or ∃x ∈ N, a Π1

1 -formula is one of the
form ∀X ⊆ Nφ where φ is arithmetical, and a Σ1

1 -formula is one of the form
∃X ⊆ Nφ, also with φ arithmetical. A model M is an ω-model if the natural
numbers in M are isomorphic to the standard natural numbers.

As for the symbol N , its intended meaning is that ‖N(x)‖ > 0 iff x ∈ N,
with larger natural numbers receiving smaller truth values. This will be made
precise later in the text.

Some familiarity with the class of ordinals, as well as the constructible hi-
erarchy {Lα | α is an ordinal} is assumed. An ordinal α is admissible if Lα is a
(classical) model of KP; because every recursive ordinal is provably well-ordered
in KP, the smallest admissible ordinal is the Church-Kleene ordinal ωck

1 . Note
that ωck

1 is countable.
We will use the following two results involving admissible sets.

Theorem 1 (Ville [3]). Let M be any ω-model of KP. Then, the well-founded
part of M (with respect to ∈) is admissible, and hence extends Lωck

1
.

Theorem 2 (Barwise-Gandy-Moschovakis [4]). Given a Σ1
1 formula φ, one

can effectively and uniformly find a Π1 L∈-formula ψ(x) such that for every
natural number n

N |= φ(n)↔ Lωck
1
|= ψ(n).

3 Standard models via vagueness

Our proof of hardness follows by a variation of Hájek’s proof. The high-level idea
of Hájek’s proof is to use the set of truth values to define an interpretation of
the standard natural numbers. In our argument, we use the set of truth values
to define an interpretation of the standard natural numbers in models of KP and
then apply the theorem of Ville and of Barwise-Gandy-Moschovakis to them.

Recall that we are using a finitely axiomatizable presentation of KP, that N
is definable in KP and that we write < instead of ∈ for natural numbers. Recall
also that we are working with a monadic predicate N whose intended meaning
is that ‖N(x)‖ > 0 iff x ∈ N, and that we defined φ ≺ ψ := (ψ → φ)→ ψ. With
this in mind, let Ψ be the sentence asserting the conjunction of the following
statements:

(i) = and ∈ are crisp, i.e., they satisfy excluded middle;
(ii) KP holds of the predicate ∈;

(iii) ∀x, y (x = y → (N(x)↔ N(y)));
(iv) ∀x, y ∈ N (x < y → (N(y) ≺ N(x)));
(v) ∀x¬¬N(x)→ x ∈ N;
(vi) ¬∃x ∈ N¬N(x);

(vii) ¬∀x ∈ NN(x).
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Let M = (D,=,∈, N) be any model of Ψ . By (i), ∈ is crisp, so for each x ∈ D, the
formula x ∈ N has value 0 or 1. Formula (vi) asserts that whenever x is a natural
number, N(x) has a positive truth value. Conversely, formula (v) asserts that
whenever N(x) has positive truth value, then x is a natural number. Formula
(vii) asserts that the infimum of the truth values of N(x) is 0 as x ranges over
the natural numbers. The intuition may be grasped easily through the following
concrete construction.

Lemma 2. Any model of Ψ satisfies the equality schema

x = y → ϕ(x)↔ ϕ(y)

for all formulas ϕ in the vocabulary {=,∈, N}.

Proof. For atomic formulas involving the relations ∈ and = the result follows
directly from the axioms of KP. For N , it follows from (iii). The general case
follows by a straightforward induction.

Lemma 3. Any ω-model of KP can be extended to a model of Ψ .

Proof. Let M = (D,=,∈) be an ω-model of KP. For n ∈ N, define ‖N(n)‖ =
1/n+1. For x 6∈ N, define ‖N(x)‖ = 0. The model M = (D,=,∈, N) thus defined
satisfies (i) and (ii) since the interpretation of =,∈ did not change, and (iii)-(vii)
are readily checked to hold using the definition of N .

The key property of Ψ is that only ω-models of KP can be extended to models
of Ψ .

Lemma 4. If M = (D,=,∈, N) is such that M |= Ψ and = is identity in D,
then (D,=,∈) is an ω-model of KP.

Proof. Fix a model M = (D, ‖·‖) over the signature {=,∈, N}. Noting that =,∈
(and hence <) are crisp by (i), we may reason classically about these relations.
First note that by (vi), for every a ∈ N we have that N(a) > 0.

Claim. If a < b are such that ‖N(a)‖ < 1, then ‖N(b)‖ < ‖N(a)‖.

Proof of the Claim: By (iv) we have that ‖N(b) ≺ N(a)‖ = 1. By the truth
conditions of ≺ we have that either ‖N(b)‖ = ‖N(a)‖ = 1 or else ‖N(b)‖ <
‖N(a)‖. As we do not have that ‖N(a)‖ = 1 by assumption, we conclude that
‖N(b)‖ < ‖N(a)‖ as needed. This establishes the Claim.

By (vii), there is an a0 ∈ D with ‖N(a0)‖ < 1. We claim that if a ∈ D is
such that a0 < a ∧ a ∈ N, then a is standard, in the sense that {b ∈ D : b < a}
is finite. This will conclude the proof, since M |= ∀x ∈ N(x ≤ a0 ∨ a0 < x), so
then every natural number is standard.

So fix a > a0. By the Claim, ‖N(a)‖ < ‖N(a0)‖. Now, let c < d ∈ N. By
the Claim once again, ‖N(a + d)‖ < ‖N(a + c)‖. It follows that the sequence
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(‖N(a + n)‖)n∈N is strictly decreasing, hence its infimum is zero (as this is the
case for any strictly decreasing sequence in V↓). Now, if a were non-standard, we
would have that ‖N(a+ a)‖ < ‖N(a+ n)‖ for all n ∈ N, hence ‖N(a+ a)‖ = 0,
which contradicts (vi). We conclude that a is indeed standard, and hence M is
an ω-model of KP.

4 Satisfiability in G↓

Lemma 4 suffices to establish our hardness results. We begin with satisfiability;
recall that by this we mean V↓-satisfiability. In view of Lemma 1, satisfiability
can be replaced by weak satisfiability in the theorem below.

Theorem 3. The set of all (weakly) V↓-satisfiable formulas is Σ1
1 -complete.

Proof. First, a formula φ is V↓-satisfiable if and only if it has a model. By down-
wards Löwenheim-Skolem (see e.g., Baaz et al. [2]), this is equivalent to it having
a countable model. Hence, φ is satisfiable if and only if there is a subset of N
coding a model of φ. This is clearly Σ1

1 .
Now, fix a Σ1

1 formula φ(x). We find a many-one reduction of {n : N |= φ(n)}
to the set of satisfiable formulas of G↓. By Lemma 2, one can effectively and
uniformly find a Π1 L∈-formula ψ(x) such that for every natural number n

N |= φ(n)↔ Lωck
1
|= ψ(n).

We will show that for every standard natural number n, N |= φ(n) if and only
if Ψ ∧ ψ(n) is G↓-satisfiable. First, suppose that N |= φ(n). Then, Lωck

1
|= ψ(n).

By Lemma 3, Lωck
1

can be extended to a model M of Ψ , and since ψ(n) does not
contain the symbol N , we have that M |= ψ(n) as well.

Conversely, let M = (D,∈, N) be a model of Ψ∧ψ(n). By Lemma 3, (D,=,∈)
is an ω-model. By Theorem 1, the well-founded part of M extends Lωck

1
. Since

M is a model of Ψ ∧ ψ(n), we have that M |= ψ(n). Since ψ is Π1, we have
Lωck

1
|= ψ(n), as desired. This completes the proof.

5 Validity in G↓

Finally, we show that validity is Π1
1 -complete.

Theorem 4. The set of all V↓-valid formulas is Π1
1 -complete.

Proof. Note that a formula is valid in G↓ if and only if it holds in every model
and this is equivalent to holding in every countable model, which is clearly
Π1

1 . Thus the only problem will be to show the hardness. For this we use the
complementary statement of Theorem 2, that is for any Π1

1 -formula φ(x) there
is a Σ1-formula ψ(x) in the language of set theory such that for every natural
number n

N |= φ(n)↔ Lωck
1
|= ψ(n).
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We claim that N |= φ(n) iff Ψ → ψ(n) is V↓-valid. For the easy direction
assume Ψ → ψ(n) is V↓-valid. In that case extend Lωck

1
to a model of Ψ using

Lemma 3 and call the resulting V↓-model M. By the assumption ‖ψ(n)‖M = 1,
but since ψ(n) does not contain the symbol N , it follows that Lωck

1
|= ψ(n),

which gives N |= φ(n).
For the other direction, assume that N |= φ(n); we claim that Ψ → ψ(n) is

V↓-valid. If it were not, by Lemma 1 there would be a model M = (D, ‖ · ‖) with
‖Ψ‖ = 1 and ‖ψ(n)‖ < ‖Ψ‖. We construct the model M/E = (D/E, ‖ · ‖E) by
factorising D modulo the relation E = {(a, b) : ‖a = b‖ = 1}. In more details, let
the universe of the new model be the set of all equivalence classes of E. We denote
by [a] the E-equivalence class of a and for any a, b we set ‖[a] ∈ [b]‖E := ‖a ∈ b‖.
To interpret N we fix for every [a] a unique value from {‖N(b)‖ : b ∈ [a]} and
let ‖N([a])‖E be that value. Note that these values do not depend on the choice
of representatives in view of (iii) and Lemma 2.

Claim. M/E |= Ψ

Proof of the Claim: By (i) E is a congruence for the interpretation of ∈, so the
definition of the model is correct and the model is a model of KP. For the other
clauses, we use the fact that the value of N([a]) does not depend on the choice of
representatives, as well as the fact that M is a model of Ψ . This proves the Claim.

Since M/E |= Ψ , the natural numbers in M/E are standard by Lemma 4.
Then by Theorem 1, the well-founded part of M/E is admissible and hence
contains Lωck

1
. Moreover if N |= φ(n) then Lωck

1
|= ψ(n) and so M/E |= ψ(n) as

ψ(n) is Σ1. Since ψ(n) does not contain the symbol N we get M |= ψ(n), which
was to be shown. This completes the proof of the Theorem.

6 Concluding remarks

We have provided precise complexity bounds for G↓, previously only known
to be non-arithmetical. It is possible that similar results hold for other fuzzy
logics. Hájek [7] showed that Π∀SAT is non-arithmetical and Montagna [10]
that Π∀TAUT, BL∀TAUT, and BL∀SAT are non-arithmetical. We leave the
question of whether these logics are Π1

1/Σ1
1 complete open.
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some temporal logics of programs. In: Proceedings of CSL’95, vol. 68 (1996)

2. Baaz, M., Preining, N., Zach, R.: Completeness of a hypersequent calculus for some
first-order godel logics with delta. In: ISMVL, p. 9. IEEE Computer Society (2006)

3. Barwise, J.: Admissible Sets and Structures. Perspectives in Mathematical Logic.
Springer-Verlag (1975)

4. Barwise, K.J., Gandy, R., Moschovakis, Y.N.: The Next Admissible Set. J. Sym-
bolic Logic 36, 108–120 (1971)



8 J.P. Aguilera et al.

5. Dummett, M.: A Propositional Calculus with Denumerable Matrix. J. Symbolic
Logic 24 (1959)
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7. Hájek, P.: Fuzzy Logic and the arithmetical hierarchy, III. Studia Logica 68 (2001)
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