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Introduction

According to [HP93] the first use of what is called today an ultrapower construction
for constructing models of PA was in [Sko34]. To the best knowledge of the author
the first use of this technique to construct a model witnessing a consistency result for
an arithmetical theory was in [KK82]. The technique was used by Saul Kripke and
Simon Kochen to construct a model of PA in which a certain combinatorial princi-
ple true in the Natural numbers fail. Another example from this period could be
the characterisation of countable models of the theory consisting from all true Π2-
sentences given by Joram Hirschfeld in [Hir75]. More recently in [Eny07] Ali Enyat
used a technique of iterated ultrapower constructions to give a proof of the conjec-
ture of James H.Schmerls, Jan Kraj́ıček used an ultrapower construction in [Kra98]
to construct extensions of models of theories related to the Complexity theory and
Michal Garĺık used an ultrapower constructions in [Gar15] to show that three pairs
of theories relevant for Complexity theory are not logically equivalent if a certain
complexity-theoretic assumption holds.

In the first chapter of this thesis we will give a definition of (ultra)power construc-
tion and show some basic properties of those constructions that will be necessary for
the latter chapters. The Chapters 2&3, 4 and 5 are independent of each other and
a reader familiar with the first chapter should be able to understand them without
knowing the other. In the Chapters 2 we give a generalisation of the Construction B
of [Gar15] augment by a sort of density arguments similar to the density arguments
of forcing from the Set theory. In the Chapter 3 we will show that the Construction
B is a special case of the construction developed in the Chapter 2. The Chapter
4 is a variation on the result from [Hir75] expanded by some corollaries for P̃V -
the universal theory of N in the language LPV . Finally the Chapter 5 uses an ultra-
power construction over a countable Herbrand saturated model of P̃V give a stronger
version of the result from a recent paper [KO17].
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Preliminaries

In this chapter we establish some basic definitions, notational conventions and folk-
lore results that will be used throughout the thesis.

Notational conventions Suppose A, B are non-empty sets. We will follow the
usual notation and use the symbol ·̄ to denote tuples. Moreover if A is a set and
ā = (a0, a1, . . . , ar−1) a tuple of objects from A then we will abuse the notation and
write ā ∈ A in place of ā ∈ Ar where Ar denotes the set of r-tuples of objects from
A. We will write AB to denote the class of functions from A to B. For f ∈ AB
we denote by dom(f) the domain of f (i.e. in this case dom(f) = A) and by
rng(f)the range of f . Moreover for C ⊆ A we denote by f � C the restriction of
f on C i.e. the function with the domain C that maps c ∈ C to f(c). Further
if ā = (a0, a1, . . . , ar−1) ∈ A then we will abuse the notation and write f(ā) for
(f(a0), . . . , f(ar−1)). Similarly if F : Ar → B and ḡ = (g0, g1, . . . , gr−1) ∈ AB then
F ◦ ḡ denotes the function mapping a ∈ A to F (g0(a), . . . , gr−1(a)) and ḡ(a) denotes
the tuple (g0(a), . . . , gr−1(a)). Finally we say that f is a function on A if f : Ar → A
for some natural number r.

Filter, Ultrafilter, Maximal filter, Prime filter Let A be a non-empty set.
We will say that a family B of subsets of A has a finite intersection property if for
every b0, b1, . . . , br−1 ∈ B,

⋂
i<r bi 6= ∅. Then a family V of subsets of A is said to be

a filter on A (over A) if it is non-empty, has a finite intersection property and for
any a, b ⊆ A, b ∈ V whenever a ∈ V and b ⊇ a. Moreover for a filter V over A the
following are equivalent:

(i) V is an ultrafilter i.e. for every a ∈ A: a ∈ V or A− a ∈ V
(ii) V is maximal i.e. for every filter V ′ over A: if V ′ ⊇ V then V ′ = V
(iii) V is prime i.e. for every a, b ⊆ A: if a ∪ b ∈ V then a ∈ V or b ∈ V .

We will also say that a filter V over A is non-principal if
⋂
V = ∅. It is not hard to

see that every non-empty family of subsets with finite intersection property can be
extended into a filter. Finally it is a folklore fact that every non-empty filter over a
(non-empty) set can be extended into an ultrafilter.

Model theory

We will assume a basic knowledge of first-order logic covering [Bar99, Chapter A.1].
to fix our mode of speech we give basic definitions and facts about model theory
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following [ZT12, Chapter 1].

We will work exclusively in the first-order logic and so any structure and language
that appears in this thesis will be first-order. We will use Greek letters ϕ, ψ, θ, χ...
to denote the first order formulae and we will write ϕ(x̄) to indicate that all free
variables of ϕ are among x̄ and similarly t(x̄) to indicate that all free variables of the
term t are between x̄.

Suppose L is a language. Then for theories T, S in L we will write T+S to denote
T ∪ S and Thm(T ) to denote the set of all L-formulae provable from T . Finally if Γ
is a set of L-formulae then we let ∀Γ = {∀x̄ϕ(x̄) | ϕ(x̄) ∈ Γ} and we will say that Γ
is closed under boolean combinations if for any ϕ, ψ ∈ Γ: ϕ ∧ ψ, ϕ ∨ ψ,¬ϕ ∈ Γ.

If M is a model in language L (or equivalently an L-structure) then we do not
notationally distinguish between M and its domain. For A ⊆ M we will also not
notationally distinguish between M and its expansion into a language L(A) consisting
from L and a constant symbol for every element of A with the natural interpretation
in M. For a symbol s of L we denote by sM the interpretation of s in M. Moreover
if t(x0, x1, . . . , xk−1) is an L-term and (a0, a1, . . . , ak−1) ∈Mk then we will denote by
tM(a0, a1, . . . , ak−1) the value of t in M under the assignment mapping ai to xi for
i < k. In particular, tM is a function from Mk into M.

Types Let M be an L-structure and A ⊆ M. Following the usual mode of
speech we will call the set p(x0, x1, . . . , xr−1) of L(A) formulae with free variables
x0, x1, . . . , xr−1 an r-type over A if p(x̄) is maximal and consistent set of L(A)-
formulae. Further we say that such p(x̄) is finitely satisfiable in M if for any
ϕ0(x̄), . . . , ϕk−1(x̄) ∈ p(x̄), M |= ∃x̄

∧
i<k ϕ(x̄) and that p(x̄) is realised in M if

there is m̄ ∈ M such that M |= ϕ(m̄) for every ϕ(x̄) ∈ M Finally if m̄ ∈ M then we
will denote by tpMA (m̄) the set of all L(A)-formulae ϕ(x̄) with M |= ϕ(m̄).

Theories Th(M,L′), ThΓ(M) and Th∀(M): Let M be an L-structure, L′ ⊆ L,
and Γ a set of L-sentences. Then we define the following sets:

Th(M,L′) = {σ | σ is an L′-sentence and M |= σ}

ThΓ(M) = {σ | σ ∈ Γ and M |= σ}
Th∀(M,L′) = {∀x̄ϕ(x̄) | ϕ(x̄) is an open L′-formula and M |= ∀x̄ϕ(x̄)}.

Moreover if L′ = L then we will write Th(M) for Th(M,L′) and Th∀(M) for
Th∀(M,L′). Finally we call Th∀(M) the universal theory of M (in language L)
and Th(M) the theory of M (in language L).

Definable functions Let T be a theory in language L and ϕ(x̄, y) an L-formula.
We will say that ϕ(x̄, y) defines a function in T or that T proves that ϕ(x̄, y) defines
a function if T ` ∀x̄∃yϕ(x̄, y) and T ` ∀x̄∀y1, y2(ϕ(x̄, y1) ∧ ϕ(x̄, y2)→ y1 = y2).

Suppose M is an L-structure, f(x̄) is a function on M and ϕ(x̄, y) is an L(M)
formula. Then we say that f is definable by ϕ(x̄, y) (in M) if for any ā, b ∈ M,
f(ā) = b if and only if M |= ϕ(ā, b). We say that a function f(x̄) is M-definable if
there is an L(M)-formula ϕ(x̄, y) such that f(x̄) is definable by ϕ(x̄, y).
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Finally if M |= T and f(x̄) is a function on M and Γ a set of L(M)-formulae then
we say that f(x̄) is Γ-definable in T if there is ϕ(x̄, y) ∈ Γ such that ϕ(x̄, y) defines
a function in T and f(x̄) is definable by ϕ(x̄, y).

Embedding, Isomorphism, Substructure, Absoluteness Let M, N be
L-structures and h : M → N. We say that h is an embedding (of M into N) if
it is injective and

(i) for any constant symbol c ∈ L: h(cM) = cN

(ii) for any function symbol F (x̄) ∈ L and m̄ ∈M: h(FM(m̄)) = FN(h(m̄))
(iii) for any relation symbol R(x̄) ∈ L and m̄ ∈ M: m̄ ∈ RM if and only if

h(m̄) ∈ RN.
Moreover we say that h is an isomorphism if it is surjective and we say that

M is isomorphic to N if there is an isomorphism between M and N.
Finally we say that M is a substructure of N, in symbols M ≤ N, if M ⊆ N and

the identity function on M is an embedding of M into N. We will also say that M is
the substructure of N defined by A ⊆ N if the domain of M is A and M ≤ N.

Finally for L-structures M1,M2 with M1 ≤ M2 and an L-formula ϕ(x̄) we say
that ϕ(x̄) is absolute between M1 and M2 if for any p̄ ∈M1:

M1 |= ϕ(p̄) if and only if M2 |= ϕ(p̄).

Observation 1. Suppose M1,M2 with |M1| = |M2| are L-structures and for i ∈
{1, 2}, Gi ⊆Mi is such that Mi = {tMi(ā) | t(x̄) is an L-term and ā ∈ Gi}. Assume
further h : G1 → G2 is a bijection such that for any open L-formula ϕ(x̄) and ā ∈ G1,
M1 |= ϕ(ā) if and only if M2 |= ϕ(h(ā)). Then M1 is isomorphic to M2.

Proof. Observe that if t(x̄), s(ȳ) are L-terms and ā, b̄ ∈ G1 such that
M1 |= t(ā) = s(b̄) then M2 |= t(h(ā)) = s(h(b̄)). Hence we can extend h into
h∗ : M1 → M2 by mapping m ∈ M1 to tM2(h(ā)) for some L-term t(x̄) and ā ∈ G1

with tM1(ā) = m. To show that h∗ is an isomorphism of M1 and M2 follows easily
from the assumption on h.

Arithmetical theories

In this section we give some basic definitions and references regarding theories TA,
PA, IΣi, Si2 and P̃V. We will often use an informal expression arithmetical theory
meaning that the theory has language extending the language of PA (see bellow), is
consistent with True arithmetic (see bellow) and is strong enough to capture some
“meaningful” part of mathematics.

True arithmetic and Lall Let N be the structure of Natural Numbers. We denote
by Lall the language containing a function (relation) symbol for every function from
NN (relation on N). We will call True Arithmetic or TA for short the countable theory
Th(N,Lall). The reason of this very generous definition is that we will have access
to all function/relation symbols we will need. The fact that Lall is uncountable will
play no role in this thesis.
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If M is an L-structure for L with LPA ⊆ L ⊆ Lall and k ∈ N then we will use
natural expressions like xk to denote the term x ·x · . . . ·x (k-times) or k for the term
1 + 1 + . . .+ 1 (k-times) and similarly for other usual terms if the meaning is clear.

Peano Arithmetic We denote by PA the theory of Peano Arithmetic in language
LPA = {0, 1,+, ·,≤}. The axioms of PA consists from a finite set of open axioms
PA− that captures basic properties of LPA (see [Kay91, Chapter 2] for the axioms)
and the induction scheme

ϕ(x, ȳ)− IND : ϕ(0, ȳ) ∧ ∀x(ϕ(x, ȳ)→ ϕ(x+ 1, ȳ))→ ∀xϕ(x, ȳ)

for every LPA-formula ϕ(x, ȳ). Moreover for L ⊇ LPA we denote by PA(L) the the-
ory in language L consisting from PA− and the induction scheme for every L-formula.

Bounded and strictly bounded quantifiers Suppose L contains a binary re-
lation symbol ≤, t(ȳ) is an L-term and ϕ(x, ȳ) is an L-formula where x is not
among ȳ. As usual we use the expression ∃x ≤ t(ȳ)ϕ(x, ȳ) as an abbreviation for
∃x(x ≤ t(ȳ) ∧ ϕ(x, ȳ)) and ∀x ≤ t(ȳ)ϕ(x, ȳ) as an abbreviation for
∀x(x ≤ t(ȳ) → ϕ(x, ȳ)). We will call the quantifiers that appears in the form de-
scribed above bounded quantifiers and we say that a quantifier Q is bounded by t(ȳ)
if it is of the form Qx ≤ t(ȳ). Further as usual ∃x < t(ȳ)ϕ(x, ȳ) abbreviates
∃x ≤ (x 6= y → ϕ(x, y, z̄)) and analogously for the universal quantifier. We call
the quantifiers that appears in this form strictly bounded quantifiers and say that a
quantifier Q is strictly bounded by t(ȳ) if it is of the form Qx < t(ȳ). Finally we say
that an L-formula is (strictly) bounded if all quantifiers occurring in it are (strictly)
bounded.

Arithmetical Hierarchy Suppose a language L contains a binary relation symbol
≤. Let i be a natural number then we let Σ0(L) = Π0(L) = ∆0(L) be the set of
bounded L-formulae and

Σi+1(L) = {∃x̄ϕ(x̄, z̄) | ϕ(x̄, z̄) ∈ Πi(L)}

Πi+1(L) = {∀x̄ϕ(x̄, z̄) | ϕ(x̄, z̄) ∈ Σi(L)}.
We denote by ∆i+1(L) the set of L-formulae ϕ(x̄) such that there is ψ(x̄) ∈ Σi+1(L)
and θ(x̄) ∈ Πi+1(L) with PA(L) ` ∀x̄(ϕ(x̄)↔ ψ(x̄)) and PA(L) ` ∀x̄(ϕ(x̄)↔ θ(x̄)).

Moreover if L = LPA then we will write Σi, Πi and ∆i instead of Σi(L), Πi(L)
and ∆i(L) respectively.

Theories IΣi : Suppose L ⊇ LPA, ϕ(x, ȳ) is an L-formula and Γ is a set of
L-formulae. Then we let

ϕ(x, ȳ)− LNP : ∃xϕ(x, ȳ)→ ∃x(ϕ(x, ȳ) ∧ ∀x′ ≤ x(x′ 6= x→ ¬ϕ(x′, ȳ))

and call it the least number principle for ϕ(x, ȳ). Moreover we let

Γ− IND = {ϕ(x, ȳ)− IND | ϕ(x, ȳ) ∈ Γ}
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Γ− LNP = {ϕ(x, ȳ)− LNP | ϕ(x, ȳ) ∈ Γ}

and denote by IΓ the theory PA− + Γ − IND (in the language L) and by LΓ the
theory PA−+Γ−LNP (in the language L). It is a folklore fact that for every natural
number i, Thm(IΣi) = Thm(LΣi) (see f.e. [HP93, Theorem 2.4]).

Suppose M is a model of PA− in language L ⊇ LPA and A ⊆ M. Then we say
that A is an initial segment of M if A = {m ∈M |M |= m ≤ a for some a ∈ A}.

Observation 2. Suppose M1,M2 are models of PA− with M1 ≤M2 and the domain
of M1 is an initial segment of the domain of M2. Then ∆0-formulae are absolute
between M1 and M2. Moreover if in addition M2 |= I∆0 then M1 |= I∆0.

Proof. For the absoluteness see [Kay91, Theorem 2.7] rest follows easily.

Basic complexity-theory

We give some basic definitions and notational convention from complexity-theory to
fix the mode of speech but we assume a reader have some knowledge of this field
covering Sections 1-6 of [AB09, Part I].

For w ∈ N we let |w| = dlog2(w+ 1)e (=“the length of the binary representation
of w”) and call it the length of w and for for a tuple w̄ = (w0, w1, . . . , wr−1) ∈ Nr we
write |w̄| to denote the tuple (|w0|, |w1|, . . . , |wr−1|). Moreover for f, g : N → N we
write f = O(g) and say f is O(g) if there is a c ∈ N such that f(n) ≤ cg(n) + c for
all n ∈ N.

Turing machines We start with some notation regarding Turing machines (or al-
gorithms).1 The notion of Turing machine is mostly defined as a machine operating
on binary strings (or strings of symbols from a finite alphabet). However, this can be
equivalently seen as operating on natural numbers if one identifies natural numbers
with their binary representation. Thus in this context we will not explicitly distin-
guish between natural numbers and its binary representation if there is no danger of
confusion.

Suppose t : N→ N. Then a Turing machine A is t(n)-time bounded or computes
in time t(n) if dom(A) = N and for every w ∈ N, the computation of A with input w
terminates in ≤ t(|w|) many steps. Moreover if A computes in time c+ nc for some
c ∈ N then we will say that A is p-time bounded.

Next we fix some coding of finite tuples from N such that there is some c ∈ N
and a c(c + n)-time bounded Turing machine which on input x, i checks whether
x = code(w̄) for some w̄ and if so then outputs the i-th element of w̄, otherwise it
outputs 0.

For our next purpose it will be convenient to work with the definition of Tur-
ing machines that uses an output tape - a tape which is write-only and serves as a
storage for the output of a computation. Suppose A is a Turing machine. Then we
let dom(A) = {w ∈ N | the computation of A with input w terminates} and for any
w ∈ dom(A) we denote by A(w) the content of the output-tape of A after the compu-
tation of A with the input w. Moreover if w̄ ∈ N is such that code(w̄) ∈ dom(A) then

1by Turing machine we will always mean deterministic Turing machine
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we will denote by A(w̄) the content of the output-tape of A after the computation
of A on code(w̄). We say that A accepts w ∈ N if w ∈ dom(A) and A(w) = 1 and we
say that A rejects w ∈ N if w ∈ dom(A) and A(w) 6= 1. Finally we say that A decides
w ∈ N if A accepts w or A rejects w. We say that A accepts/rejects/decides w̄ ∈ N if
A accepts/rejects/decides code(w̄). Following the usual mode of speech we say that A
decides B ⊆ Nk if A accepts any w̄ ∈ B and rejects any w̄ 6∈ B. Moreover if B ⊆ Nk

is such that it can be decided by a Turing machine then we will call B a (k-ary)
predicate on N and write B(x0, x1, . . . , xk−1) rather than (x0, x1, . . . , xk−1) ∈ B.

The classes DTIME(t(n)), P, FP We denote by DTIME(t(n)) the class of predi-
catesB such that there is c ∈ N andB can be decided by a Turing machine computing
in time ct(n) + c. We further denote by P the set

⋃
c∈N DTIME(nc).

Finally we define the class FP of functions on N by: f(x̄) ∈ FP if and only if
there is a p-time bounded Turing machine A such that for any w̄ ∈ N, f(w̄) = A(w̄).
We will call the elements of FP polynomialy-time computable (or p-time) functions
(on N) and the elements of P polynomial predicates (on N).

Bounded arithmetic

Bounded arithmetic are sort of theories developed by Samuel Buss which first ap-
peared in his PhD thesis [Bus86]. They were developed to study Complexity and
Proof-complexity from the logical point of view. We define some of those theories
which are relevant for this thesis and give some basic facts. For more details one can
consult [Kra95],[CN10] or [Bus97].

The theory P̃V Let N be the standard model of True arithmetic and denote by
LPV ⊆ Lall the language containing a function and a predicate symbol for every
polynomial-time computable function or polynomial relation on N. We denote by
P̃V the theory Th∀(N,LPV ).

Observation 3. Any open LPV formula defines a polynomial predicate on N
i.e. for any open LPV -formula ϕ(x̄) there is a p-time bounded Turing machine A
such that for any w̄ ∈ N, A decides the set {w̄ ∈ N | N |= ϕ(w̄)}.

Proof. Induction on the complexity of an open LPV formula.

Observation 4. Assume ϕ(x̄, y) is an LPA-formula and t0(x̄), t1(x̄), . . . , tk−1(x̄) are

LPV -terms with P̃V ` ∀x̄
∨
i<r ϕ(x̄, ti(x̄)). Then there is a function symbol f ∈ LPV

such that P̃V ` ∀x̄ϕ(x̄, f(x̄)).

Proof. Since FP is closed under composition we can by the definition of LPV wlog
assume that t0, t1, . . . , tr−1 are function symbols f0, f1, . . . , fr−1 of LPV . For every
i < r let Ai be some p-time bounded Turing Machines witnessing that fi ∈ LPV and
B(x̄, y) be the polynomial predicate on N defined by ϕ(x̄, y). Then we can let f(x̄)
be the function symbol such that fN(x̄) is computed by the following algorithm:

Given input x̄ find the smallest i < r such that B(x̄,Ai(x̄)) and output Ai(x̄).
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By the assumption on such i < r exists for every w̄ ∈ N and thus the computation
is defined on every input. It is easy to see that the algorithm is p-time bounded and
so f(x̄) ∈ LPV .

Theorem 5 (Herbrand Theorem). Assume T is a universal theory in language
L and ϕ(x̄, y) an L-formula such that T ` ∀x̄∃yϕ(x̄, y). Then there are L terms
t0(x̄), . . . , tr−1(x̄) such that T ` ∀x̄

∨
i<r ϕ(x̄, ti(x̄))

Proof. See [Bus95, Theorem 1].

Lemma 6. Assume ϕ(x̄, y) is an open LPV -formula. Then P̃V ` ∀x̄∃yϕ(x̄, y) if and
only if N |= ∀x̄ϕ(x̄, f(x̄)) for a function symbol f(x̄) ∈ LPV i.e a polynomial-time
computable function fN(x̄).

Proof. For the left-right implication we have by the Herbrand Theorem that there are
finitely many LPV -terms t0(x̄), . . . , tr−1(x̄) such that P̃V ` ∀x̄

∨
i<r ϕ(x̄, ti(x̄)). Then

by the observation above there is a function symbol f(x̄) ∈ LPV i.e. fN(x̄) ∈ FP

with P̃V ` ∀x̄ϕ(x̄, f(x̄)) and so N |= ∀x̄ϕ(x̄, f(x̄)).

For the right-left implication if N |= ∀x̄ϕ(x̄, f(x̄)) then ∀x̄ϕ(x̄, f(x̄)) ∈ P̃V and

so P̃V ` ∀x̄∃yϕ(x̄, y).

Language LBUSS and the theory BASIC Let LBUSS = LPA ∪ {bx2c, |x|, x#y}
be an extension of LPAby two unary function symbols bx

2
c and |x| and one binary

function symbol x#y. Then BASIC is a set of finitely many open axioms fixing the
interpretation of function symbols from LBUSS (for the list of axioms see for example
[Kra95, Definition 5.2.1]) where the intended meaning of |x| is “the length of the bi-
nary representation of x” and the intended meaning of x#y is 2|x||y|. As usual for any
k ∈ N we will often use the expression |x|k to denote the term |x|·|x|·. . .·|x| (k-times).

Suppose L contains a unary function symbol | · | and a binary relation symbol ≤.
Recall the definition of bounded quantifiers. For Q = ∃ or Q = ∀ and any L-term t
we will say that the quantifier Qx ≤ t(ȳ) is sharply bounded if t(ȳ) = |g(ȳ)| for some
L-term g(ȳ) and analogously for Qx < t(ȳ). Moreover we will call an L-formula
is (strictly) sharply bounded if all quantifiers occurring in it are (strictly) sharply
bounded.

Bounded arithmetical hierarchy Suppose L contains a unary function symbol
| · | and a binary relation symbol ≤.

Then Σb
0(L) = Πb

0(L) = ∆b
0(L) denotes the set of sharply bounded L-formulae.

For i ≥ 0 the classes Σb
i+1(L) and Πb

i+1(L) are the smallest classes of L-formulae
such that:

(i) Σb
i(L) ∪ Πb

i(L) ⊆ Σb
i+1(L) ∪ Πb

i+1(L)
(i) Σb

i(L) and Πb
i(L) are closed under sharply bounded quantification, disjunction

and conjunction,
(iii) Σb

i+1(L) is closed under bounded existential quantification,
(iv) Πb

i+1(L) is closed under bounded universal quantification,
(v) the negation of Σb

i+1(L)-formula is Πb
i+1(L) and the negation of Πb

i(L)-formula
is Σb

i+1(L)-formula.
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Observation 7. For every ∆b
0(LPV )-formula ϕ(x̄) there is an open LPV -formula

ψ(x̄) such that P̃V ` ∀x̄(ϕ(x̄)↔ ψ(x̄)).

Proof. By induction on complexity of a ∆b
0(LPV )-formula.

Suppose L contains constant symbol 0, 1, a unary function symbol | · |, a binary
function symbol + and a binary relation symbol ≤. Let Γ be a set of L formulae,
then we let

Γ− LIND = {ϕ(0, ȳ) ∧ ∀x(ϕ(x, ȳ)→ ϕ(x+ 1, ȳ))→ ∀xϕ(|x|, ȳ) | ϕ(x, ȳ) ∈ Γ}
Γ− PIND = {ϕ(0, ȳ) ∧ ∀x(ϕ(bx

2
c, ȳ)→ ϕ(x, ȳ))→ ∀xϕ(x, ȳ) | ϕ(x, ȳ) ∈ Γ}.

Theories Si2(L) Suppose L ⊇ LBUSS. The theory Si2(L) is the theory in language
L consisting from the axioms BASIC and Σb

i(L) − LIND. Moreover if L = LBUSS
then we write Si2, in place of Si2(L) and if L = LPV then we will follow the usual
notation and write Si2(PV ) in place of Si2(LPV ).

Proof of the following lemma can be found in [Kra95, Lemma 5.2.5].

Lemma 8. Let i ≥ 1 be a natural number, then

Si2 ≡ BASIC + Πb
i − LIND ≡ BASIC + Σb

i − PIND ≡ BASIC + Πb
i − PIND.

Proofs of the following two theorems can be find in [Bus86, Chapter 3].

Theorem 9. Let f(x̄) ∈ FP, t(x̄) an LBUSS-term so that N |= ∀x̄(f(x̄)) ≤ t(x̄).
Then there is a Σb

1-formula ϕ(x̄, y) such that
(i) S1

2 ` ∀x̄∃y ≤ t(x̄)ϕ(x̄, y)
(ii) S1

2 ` ∀x̄, y, z(ϕ(x̄, y) ∧ ϕ(x̄, z)→ y = z)
(iii) N |= ∀x̄ϕ(x̄, f(x̄)).

Theorem 10 (Buss witnessing theorem for S1
2). Let ϕ(x̄, y) be a Σb

1-formula with
S1

2 ` ∀x̄∃yϕ(x̄, y). Then there is a Σb
1-formula ψ(x̄, y) and a function f(x̄) ∈ FP

such that:
(i) S1

2 ` ∀x̄, y(ψ(x̄, y)→ ϕ(x̄, y))
(ii) S1

2 ` ∀x̄∃!yψ(x̄, y)
(iii) N |= ∀x̄ψ(x̄, f(x̄)).

Corollary 11. A function f on N is Σb
1-definable in S1

2 if and only if it is in FP.

Finally in the Chapter 2 we will need the following class of formulae and an
induction scheme:

The class strictΣb
1(L) Let L be a language containing a unary function symbol

| · | and a binary relation symbol ≤. Then by strictΣb
1(L) we denote the set of

L-formulae of the form

∃z0 ≤ t0(x̄, ȳ)∃z1 ≤ t1(z0, x̄, ȳ) . . . ∃zk−1 ≤ tk−1(z0, . . . zk−1, x̄, ȳ)θ(z̄, x̄, ȳ)

where t0, t1, . . . , tk−1 are L-terms and θ(z̄, x̄, ȳ) ∈ ∆b
0(L). Moreover if L = LBUSS

then we will write strictΣb
1 in place of strictΣb

1(L).
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The induction scheme LLIND If L′ ⊇ LBUSS and ϕ(x, ȳ) is an L′-formula then
by ϕ(x, ȳ)− LLIND we denote the formula

ϕ(0, ȳ) ∧ ∀x(ϕ(x, ȳ)→ ϕ(x+ 1, ȳ))→ ∀xϕ(||x||, ȳ)

and if Γ is a set of L′-formulae then Γ− LLIND = {ϕ(x, ȳ)− LLIND | ϕ(x, ȳ) ∈ Γ}.
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Chapter 1

General Ultrapower Theory

Let M be an infinite L-structure and Ω, D be infinite sets with Ω ⊆ D. Let further
F ⊆ DM and let V be a filter on Ω.

We define the relation =V⊆ F × F by

f =V g if and only if {ω ∈ Ω | f(ω) = g(ω)} ∈ V

It is easy to see that =V is an equivalence relation. We will denote the equivalence
class of f wrt to =V by fV . Moreover to make our text more readable we will often
shorten a tuple (fV0 , f

V
1 , . . . , f

V
n−1) by f̄V and we will sometimes use dom(F) to denote

the set D
Throughout the following paragraphs, let M, Ω, D and F be fixed of the form

above.

Definition 1.0.1. Suppose F : Mr →M for some r ∈ N. We say that F is F -closed
if for any r-tuple of functions f̄ = (f0, f1, . . . , fr−1) from F we have F ◦ f̄ ∈ F . We
say that F is L-closed (wrt to M) if it is FM-closed for any function symbol F from
L.

The structure F/U Assume F is L-closed and U is a filter on Ω. We define a
structure denoted by F/U in language L as follows. Its universe is

{fU | f ∈ F}.

The interpretation of symbols from language L is defined as follows:
For an r-ary function symbol F ∈ L and f0, f1, . . . , fr−1 ∈ F :

FF/U(fU0 , f
U
1 , . . . , f

U
r−1) = [FM ◦ (f0, f1, . . . , fr−1)]U

For an r-ary relation symbol P ∈ L and f0, f1, . . . , fr−1 ∈ F :

(fU0 , f
U
1 , . . . , f

U
r−1) ∈ PF/U if and only if {ω ∈ Ω | (f1(ω), . . . , fn(ω)) ∈ PM} ∈ U

It is easy to check using the properties of the filter that the definition is correct. We
call the structure F/U a power over M with domain Ω in language L. Moreover we
say that (F ,Ω) defines a power construction over M in language L if M,L, Ω and F

17
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are as above and F is L-closed.

Note that by the definition the domain D of functions from F may in general
differ from the domain of a construction Ω. This is because in a typical situation
we let D = M and use some prominent L-closed family of functions F ⊆ DM
for a power-construction over different domains Ω1,Ω2 ( M. It would of course
make no difference to restrict functions from F to the particular domains of power-
construction and proceed with a definition where D = Ω. However, our definition is
more convenient for the purpose of this thesis.

Lemma 1.0.2. Assume t(x0, x1, . . . , x)−1 is a term in L, F/U a power over M
with domain Ω and fU0 , f

U
1 , . . . , f

U
n−1 ∈ F/U . Then tF/U(fU0 , f

U
1 , . . . , f

U
n−1) = [tM ◦

(f0, f1, . . . , fn−1)]U .

Proof. By induction on complexity of term t.

We will need to introduce two natural notational conventions which will be fre-
quently used throughout this thesis. Let F ∈ L be a binary function symbol, R ∈ L
a binary relation symbol and ϕ(x, y) the L-formula ∃z(F (x, y) = z ∨R(x, z)). Then
for any f, g ∈ F and ω ∈ Ω we would first like to give a meaning to the expres-
sions like M |= ∃z(F (f(ω), g(ω)) = z ∨ R(z, g(ω))) which we would like to write as
M |= ϕ(f(ω), g(ω)). Second, we would like to work with sets of the form
{ω ∈ Ω |M |= ϕ(f(ω), g(ω))} which we would like to denote as 〈〈ϕ(f, g)〉〉Ω.

To make those intuitive concepts precise, let L(F) denote the language which
consists from L augment by a constant symbol f for any function f ∈ F . We have
the following direct observation:

Observation 1.0.3. Assume ϕ(x̄) is an L(F)-formula and f0, f1, . . . , fr−1 symbols
from L(F) − L such that all symbols from L(F̄ ) − L which appears in ϕ(x̄) are in
between f0, f1, . . . , fr−1. Then there are variables y0, y1, . . . , yr−1 and an L-formula
ϕ∗(x̄, y0, y1, . . . , yr−1) such that y0, y1, . . . , yr−1 do not appear in ϕ(x̄) and ϕ(x̄) =
ϕ∗(x̄, ȳ)[ȳ/f̄ ] where ϕ∗(x̄, ȳ)[ȳ/f̄ ] denotes the formula which arises from ϕ∗(x̄, ȳ) by
simultaneous substitution of fi for yi for every i < r. Moreover if there are two such
formulae ϕ∗1(x̄, ȳ) and ϕ∗2(x̄, ȳ) with ϕ(x̄) = ϕ∗1(x̄, ȳ)[ȳ/f̄ ] = ϕ∗1(x̄, ȳ)[ȳ/f̄ ] then for
every ω ∈ Ω, b̄ ∈M and ā = f̄(ω): M |= ϕ∗1(b̄, ā) if and only if M |= ϕ∗1(b̄, ā).

Proof. First we can wlog assume that f0, f1, . . . , fr−1 are pairwise distinct otherwise
we can pick a subset of f0, f1, . . . , fr−1 which is pairwise distinct. Let ȳ be variable
which do not appear in ϕ(x̄). Take for ϕ∗(x̄, ȳ) the formula that arises from ϕ(x̄)
by simultaneous replacing fi by xi. It is easy to see induction on complexity of an
L(F)-formula that ϕ∗(x̄, ȳ) is an L-formula.

For the “moreover part” suppose ϕ∗1(x̄, ȳ), ϕ∗2(x̄, ȳ) are as stated and ω, b̄, ā as
above arbitrary given. Let s1,s2 be the first symbols (reading from left to right) where
ϕ∗1(x̄, ȳ) differ from ϕ∗2(x̄, ȳ) respectively. Then the symbols s1, s2 can not be between
x̄ and can not be logical symbols or symbols of L as they would remain unchanged by
the substitution (x̄ is not among ȳ by assumption on ȳ) and so ϕ∗1(x̄, ȳ)[ȳ/f̄ ] would
not be the same formula as ϕ∗2(x̄, ȳ)[ȳ/f̄ ]. Thus it must be the case that s1 = yi and
s2 = yj for yi 6= yj and some i, j < r. But then the assumption on substitution gives
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that fi = fj and thus ai = aj. Repeating this argument for next symbols which
differs until we consider all differences gives that ϕ∗1(b̄, ā) and ϕ∗2(b̄, ā) equals as
L-formulae with parameters from M and so the claim holds.

Now assume ϕ is an L(F) sentence such that all symbols from L(F)−L which ap-
pears in ϕ are among f̄ = (f0, f1, . . . , fr−1) ∈ F . Let ϕ∗(x̄) be an L-formula such that
ϕ = ϕ∗(x̄)[x̄/f̄ ]. Then for any ω ∈ Ω we will write M |= ϕ(f0(ω), f1(ω), . . . , fr−1(ω))
as a shorthand for M |= ϕ∗(a0, a1, . . . , ar−1) where ai = fi(ω) for every i < r. More-
over if ϕ and f̄ are as above then we define

〈〈ϕ〉〉Ω = {ω ∈ Ω |M |= ϕ(f0(ω), f1(ω), . . . , fr−1(ω))}.

Finally assume ϕ(x0, x1, . . . , xr−1, ȳ) is an L(F)-formula and f0, f1, . . . , fr−1 ∈ F .
Then we denote by ϕ(f0, f1, . . . , fr−1, ȳ) (or ϕ(f̄ , ȳ) for short) the formula ϕ(x̄, ȳ)[x̄/f̄ ].

Note that if U is an filter on Ω then F/U has a natural expansion into the language
L(F) given by interpreting each symbol f ∈ L(F)−L by the corresponding element
fU .

Observation 1.0.4. Assume (F ,Ω) defines a power construction over M in language
L and V is a filter on Ω. Suppose further that f0, f1, . . . , fk−1, g0, g1, . . . , gk−1 ∈ F
with fVi = gVi for every i < k. Then for any L-formula ϕ(x0, x1, . . . , xk−1):

〈〈ϕ(f0, f1, . . . , fk−1)〉〉Ω ∈ V if and only if 〈〈ϕ(g0, g1, . . . , gk−1)〉〉Ω ∈ V .

Proof. For every i < k we have that fVi = gVi i.e. fi =V gi i.e. {ω ∈ Ω | fi(ω) =
gi(ω)} ∈ V i.e 〈〈fi = gi〉〉Ω ∈ V and so A = 〈〈f0 = g0〉〉Ω ∩ . . . ∩ 〈〈fk−1 =
gk−1〉〉Ω ∈ V .then for any L-formula ϕ(x̄), A ∩ 〈〈ϕ(f0, f1, . . . , fk−1)〉〉Ω =
A∩〈〈ϕ(g0, g1, . . . , gk−1)〉〉Ω and so for any L-formula ϕ(x̄), 〈〈ϕ(f0, f1, . . . , fk−1)〉〉Ω ∈ V
if and only if A∩〈〈ϕ(f0, f1, . . . , fk−1)〉〉Ω if and only if A∩〈〈ϕ(g0, g1, . . . , gk−1)〉〉Ω ∈ V
if and only if 〈〈ϕ(g0, g1, . . . , gk−1)〉〉Ω ∈ V .

1.1  Los property and Skolem functions

So far we only know that the construction defined above produces first order struc-
tures. Our aim is to use those constructions to produce models that will witness
some consistency statements about arithmetical theories. In that case all of the
constructions share the same idea which can be described as follows:

Assume T is a theory of our interest and σ is a sentence which we want to show
is consistent with T . We choose a model M of the theory T + ¬σ and make a
(ultra)power construction over M to get a (ultra)power F/U |= T + σ. To do so, we
have to ensure F/U |= ϕ for every ϕ ∈ T and F/U |= σ. To ensure the former we
will mostly use that our construction preserves validity of certain class of formulae
containing T and thus as M |= T we get F/U |= T . On the other hand, to show
that F/U |= σ is of the opposite manner since M |= ¬σ and thus in particular we
will have to ensure that the construction does not preserves validity of ¬σ. The
preservation of sentences from the groundmodel will be mostly ensured by a choice
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of a suitable family of functions F and the validity of ¬σ in F/U by a suitable choice
of a (ultra)filter U and the domain Ω (however, the choice of Ω will be of course also
depended on F).

We will show in the Corollary 1.1.6 that F/U models Th∀(M) whenever we choose
U to be an ultrafilter independently on the set of functions F and Ω. Since arithmeti-
cal theories mostly consist from a set of universal sentences and an induction scheme
for some class of formulae when working with ultrapowers one only have take care of
an induction scheme for a given class of formulae. This seems to be a big advantage
since the induction scheme is a set of formulae of a very specific and natural form.
However, the techniques to ensure some induction scheme known are either trivial in
the sense that the constructions preserves too big class of formulae and in particular
are useless for proving consistency statements. Or they are very specific in the sense
that they work only for some small class of induction schemes. In this chapter we
will show some of the trivial techniques where the induction scheme is ensured by a
right choice of the set of functions F . Latter in the Chapter 2 we will show a more
involved power construction producing models of a weak form of induction where F
and U are constructed simultaneously.

Now we are ready to give the central definition of this thesis.

Definition 1.1.1. Assume (F ,Ω) defines a power construction over M in language
L and V is a filter over Ω. We say that an L-formula ϕ(x̄) is  Los for F/V if for
any f̄ ∈ F :

F/V |= ϕ(f̄V) if and only if 〈〈ϕ(f̄)〉〉Ω ∈ U

Moreover we say that ϕ(x̄) is Los for F if ϕ(x̄) is  Los for F/U for any ultrafilter U
on Ω.

The following series of statements shows basic properties of  Los formulae.

Lemma 1.1.2. Assume (F ,Ω) defines a power construction over M in language L
and V is a filter over Ω. Suppose further that L-formulae ϕ(x̄), ψ(ȳ) are  Los for
F/V. Then ϕ(x̄) ∧ ψ(ȳ) is  Los for F/V. If moreover for χ ∈ {ϕ(x̄), ψ(ȳ)} and any
f̄ ∈ F , 〈〈χ(f̄)〉〉Ω ∈ V or 〈〈¬χ(f̄)〉〉Ω ∈ V. Then ¬ϕ(x̄), ϕ(x̄) ∨ ψ(ȳ) are  Los for
F/V.

Proof. Assume ϕ(x̄), ψ(ȳ) are  Los . To show that ϕ(x̄)∧ψ(ȳ) is  Los for F/V is easy
and we leave it to the reader. To show the second part of this lemma assume in addi-
tion that (∗): for χ ∈ {ϕ(x̄), ψ(ȳ)} and any f̄ ∈ F , 〈〈χ(f̄)〉〉Ω ∈ V or 〈〈¬χ(f̄)〉〉Ω ∈ V .

To show that ¬ϕ(x̄) is  Los let f̄ ∈ F be given. Then we have: F/V |= ¬ϕ(f̄V) if
and only if F/V 6|= ϕ(f̄V). As ϕ(x̄) is  Los for F/V this is if and only if 〈〈ϕ(f̄)〉〉Ω 6∈ V
which is by (∗) if and only if 〈〈¬ϕ(f̄)〉〉Ω ∈ V .

For ϕ(x̄) ∨ ψ(ȳ) the argument is similar. Let f̄ , ḡ ∈ F be given then:
F/V |= ϕ(f̄V) ∨ ψ(ḡV) if and only if F/V |= ϕ(f̄V) or F/V |= ψ(ḡV). Since
ϕ(x̄), ψ(ȳ) are  Los for F/V this is if and only if 〈〈ϕ(f̄)〉〉Ω ∈ V or 〈〈ψ(ḡ)〉〉Ω ∈ V .
But by (∗) this is if and only if 〈〈ϕ(f̄) ∨ ψ(ḡ)〉〉Ω ∈ V . Indeed, the only problem-
atic implication is the right-left implication. To show this implication assume for
a contradiction 〈〈ϕ(f̄) ∨ ψ(ḡ)〉〉Ω ∈ V and 〈〈ϕ(f̄)〉〉Ω, 〈〈ψ(ḡ)〉〉Ω 6∈ V . Then by (*)
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we get 〈〈¬ϕ(f̄)〉〉Ω ∈ V and 〈〈¬ψ(ḡ)〉〉Ω ∈ V thus V 3 〈〈¬ϕ(f̄)〉〉Ω ∩ 〈〈¬ψ(f̄)〉〉Ω =
〈〈¬ϕ(f̄)∧¬ψ(f̄)〉〉Ω = Ω−〈〈ϕ(f̄)∨ψ(f̄)〉〉Ω contradicting 〈〈ϕ(f̄)∨ψ(f̄)〉〉Ω ∈ V and
we are done.

Corollary 1.1.3. Assume (F ,Ω) defines a power construction over M in language
L and U is an ultrafilter on Ω. Then the family of L-formulae which are  Los for
F/U is closed under boolean combinations.

Lemma 1.1.4. Assume (F ,Ω) defines a power construction over M in language L
and V is a filter over Ω. Assume further that for any open L-formula ϕ and f̄ ∈ F :

〈〈ϕ(f̄)〉〉Ω ∈ V or 〈〈¬ϕ(f̄)〉〉Ω ∈ V .

Then open formulae are  Los for F/V.

Proof. We proceed by the induction on complexity of an open L-formula. Assume
ϕ(x̄) is an atomic formula of the form P (t0(x̄), . . . , tk−1(x̄)) for some predicate symbol
P and L-terms t0(x̄), . . . , tk−1(x̄). Then for any tuple f̄V ∈ F/V :

F/V |= P (t0(f̄V), . . . , tk−1(f̄V))

⇔ (t
F/V
0 (f̄V), . . . , t

F/V
k−1 (f̄V)) ∈ PF/V Definition of a structure

⇔ ([tM0 ◦ f̄ ]V , . . . , [tMk−1 ◦ f̄ ]V) ∈ PF/V Lemma 1.0.2

⇔ {ω ∈ Ω | (tM0 (f̄(ω)), . . . , tMk−1(f̄(ω))) ∈ PM} ∈ V Definition of power

⇔ 〈〈P (t0(f̄), . . . , tk−1(f̄)〉〉Ω ∈ V 〈〈·〉〉Ω notation

The case when ϕ(f̄) is of the form t1(f̄) = t2(f̄) is similar and we leave it to the
reader. Finally if ϕ(x̄) ∈ {¬ψ(x̄), ψ(x̄) ∨ θ(x̄), ψ(x̄) ∧ θ(x̄)} for an open L-formulae
ψ(x̄), θ(x̄) which are  Los for F/V . Then ϕ(x̄) is  Los for F/V by the assumption on
V and the corollary above. This finishes the argument.

Corollary 1.1.5. Suppose (F ,Ω) defines a power construction over M in language
L and U is a ultrafilter on Ω. Then open L-formulae are  Los for F/U .

Theorem 1.1.6. (∀-Preservation) Assume (F ,Ω) defines a power construction over
M in language L and V is a filter on Ω. Then for any L-formula ϕ(x̄)

F/V |= ∀x̄ϕ(x̄) whenever M |= ∀x̄ϕ(x̄) and ϕ(x̄) is  Los for F/V .

Proof. Assume an L-formula ϕ(x̄) is  Los for F/V and M |= ∀x̄ϕ(x̄). We have
to show that for any f̄ ∈ F , F/V |= ϕ(f̄V). Since ϕ(x̄) is  Los for F/V this is
equivalent to showing 〈〈ϕ(f̄)〉〉Ω ∈ V for any f̄ ∈ F . But since M |= ∀x̄ϕ(x̄) we have
〈〈ϕ(f̄))〉〉Ω = Ω for any f̄ ∈ F and thus 〈〈ϕ(f̄)〉〉Ω ∈ V for any f̄ ∈ F .

Corollary 1.1.7. Assume (F ,Ω) defines a power construction over M in language
L and U is an ultrafilter on Ω. Then F/U |= Th∀(M).



22 CHAPTER 1. GENERAL ULTRAPOWER THEORY

Proof. By the Corollary 1.1.5 open L-formulae are  Los for F so the rest follows from
the above lemma.

Corollary 1.1.8. (∀-Preservation, parametrical version) Assume (F ,Ω) defines a
power construction over M in language L and V is an filter on Ω. Let further
ā = (a0, a1, . . . , ak−1) ∈ M and suppose there are functions c̄ā = (ca0 , . . . , cak−1

) ∈ F
such that cai is constant ai on Ω. Then for any L-formula ϕ(x̄, ȳ)

F/V |= ∀x̄ϕ(x̄, c̄Vā ) whenever M |= ∀x̄ϕ(x̄, ā) and ϕ(x̄, ȳ) is  Los for F/V .

Proof. Assume M′ is an expansion of M into the language L′ = L ∪ {d0, . . . , dk−1}
with dM

′
i = ai. Since ca0 , . . . , cak−1

∈ F and F is L-closed we get that F is
L′-closed. Thus (F ,Ω) defines a power construction over M′ (in language L′). Now
let a filter V on Ω and an L-formula ϕ(x̄, ȳ) which is  Los for F/V be given and
assume M |= ∀x̄ϕ(x̄, ā). Then M′ |= ∀x̄ϕ(x̄, d0, d1, . . . , dk−1) thus by the previous
theorem F/V |= ∀x̄ϕ(x̄, d0, d1, . . . , dk−1). But since 〈〈cai = di〉〉Ω = Ω for any i < k,
we have F/V |= ∀x̄ϕ(x̄, c̄Vā ) and thus the same holds for F/U restricted to L.

As described in the beginning of this section one very often needs to ensure  Los
property for some family of formulae. One way to ensure this is to choose rich enough
set of functions as described in the next paragraphs.

Definition 1.1.9. Let M be an L-structure and ϕ(y, x0, x1, . . . , xn−1) an L-formula.
We say that a function W∃yϕ : Mn → M is a Skolem function (or a witnessing
function) for ∃yϕ(y, x̄) (on M) if M |= ∀x̄(∃yϕ(y, x̄)→ ϕ(W∃xϕ(x̄), x̄)).

Lemma 1.1.10. Suppose (F ,Ω) defines a power construction over M in language
L , V is a filter on Ω and ϕ(y, x̄) is an L-formula. Assume that F is closed under
some Skolem function for ∃yϕ(y, x̄) and ϕ(y, x̄) is  Los for F/V. Then ∃yϕ(y, x̄) is
 Los for F/U .

Proof. We have to show that for any f̄ ∈ F , F/V |= ∃yϕ(y, f̄V) if and only if
〈〈∃yϕ(y, f̄)〉〉Ω ∈ V .

Let f̄ ∈ F be given. To show the right-left implication assume 〈〈∃yϕ(y, f̄)〉〉Ω ∈ V .
Let W∃yϕ be a Skolem function for ∃yϕ(y, x̄) on M such that F is closed under
W∃yϕ. Then for any ω ∈ Ω, M |= ∃yϕ(y, f̄(ω)) → ϕ(W∃yϕ(f̄(ω)), f̄(ω))) and so
〈〈∃yϕ(y, f̄)〉〉Ω ⊆ 〈〈ϕ(W∃yϕ ◦ f̄ , f̄)〉〉Ω ∈ V . But then as W∃yϕ ◦ f̄ ∈ F and ϕ(y, x̄) is
 Los for F/V we get that F/V |= ϕ([W∃yϕ ◦ f̄ ]V , f̄V) i.e. F/V |= ∃yϕ(x, f̄V).

To show the left-right implication suppose F/V |= ∃yϕ(y, fV). Then
F/V |= ϕ(gV , f̄V) for some g ∈ F but since ϕ(y, x̄) is  Los for F/V this gives
〈〈ϕ(g, f̄)〉〉Ω ∈ V and we are done as 〈〈ϕ(g, f̄)〉〉Ω ⊆ 〈〈∃yϕ(y, f̄)〉〉Ω.

Corollary 1.1.11. Assume M is an infinite L-structure, Ω an infinite set and
U an ultrafilter on Ω. Then all L-formulae are  Los for ΩM/U and in particular
ΩM/U |= Th(M).

Proof. We will proceed by induction on the complexity of an open L-formula ϕ(y, x̄).
Note that by the Corollary 1.1.5 open L-formulae are  Los for ΩM/U and so base of
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the induction holds. Moreover by the Corollary 1.1.3 any boolean combination of
L-formulae which are  Los for ΩM/U is  Los for ΩM/U . Thus the only step of the
induction we have to consider is that when ϕ(x̄) = ∃yψ(y, x̄) for an L-formula
ψ(y, x̄) which is  Los for ΩM/U .

To do so, fix some well-ordering < of M1 and a ∈ M. Then the function W∃yψ
with domain Mr where r is the length of the tuple x̄ defined by

W∃yψ(m̄) =

{
min<{w ∈M |M |= ψ(w, m̄)} if M |= ∃yψ(y, m̄)
a otherwise

is clearly a Skolem function for ∃yψ(y, x̄) in M. Moreover ΩM is closed under W∃yϕ
since rng(W∃yψ) ⊆M. But then ϕ(x̄) = ∃yψ(y, x̄) is  Los for ΩM/U by the previous
lemma and we are done.

The in particular part follows easily from the Theorem 1.1.6 since by the previous
paragraph all L-formulae are  Los for ΩM/U .

Example 1.1.12. Recall that by ∆n we mean ∆n wrt to PA (see Section ). Assume
M is a model of PA and ∃zψ(z, x̄, w̄) an LPA-formula and m̄ ∈ M. Let the function
W∃zψ : Mr →M where r denotes the length of the tuple x̄ be defined in M by

W∃zψ(x̄) =

{
min{y | ψ(y, x̄)} if ∃zψ(z, x̄, m̄)
0 otherwise.

Since PA proves least number principle for all LPA-formulae, we have that
M |= ∀x̄∃!yW∃zψ(x̄) = y and so W∃zψ(x̄) is well-defined function. But we also
clearly have M |= ∀x̄(∃zψ(z, x̄)→ ψ(W∃zψ(x̄), x̄)) and so W∃zψ(x̄) is a Skolem func-
tion for ∃zψ(z, x̄, m̄). Moreover if ∃zψ(z, x̄, w̄) ∈ Σn then it is not hard to see that
the formula defining W∃zϕ is a ∆n+1-formula with parameter from M.

Now fix some n ∈ N, let Ω = M and let F be the set of all unary functions
definable in M by a ∆n+1 formula with parameters from M. Again it is not hard
to see that F is closed under any function which is definable by a ∆n+1-formula
with a parameter from M. Thus in particular F is LPA-closed and by the previous
paragraph closed under some Skolem function for every Σn-formula with parameters
from M.2

We claim that Σn-formulae are  Los for F . Let U be arbitrary given ultrafilter on
Ω. To show that Σn-formulae are  Los for F/U we proceed by induction on complexity
of Σn formula ϕ(x̄). Similarly as in the proof of the corollary above the only step
we need to consider in the induction is that when ϕ(x̄) = ∃yψ(y, x̄) for ψ(y, x̄) ∈ Σn

which is  Los for F/U . But by the previous paragraph and the Lemma 1.1.10, ϕ(x̄)
of this form is  Los for F/U . Thus all Σn formulae are  Los for F . Finally by the
Theorem 1.1.6 we get that F/U |= ThΠn+1(M). In particular, if D is the set of all
M-definable functions then LPA-formulae are  Los for D/U for any ultrafilter U on

1A set A is well-ordered by < if for every B ⊆ A there exists an <-minimal element of B.
2Assume ψf (y0, y1, . . . , yr−1, z), ψg0(x0, y0), . . . ψgr−1

(xr−1, yr−1) are ∆n+1 formulae with pa-
rameters from M defining functions f, g0, . . . , gr−1 on M respectively. Then ∃ȳ(ψf (ȳ, z) ∧∧

i<r ψgi(xi, yi)) is (equivalent to) a ∆n+1-formula with parameters from M and defines the function
f ◦ (g0, g1, . . . , gr−1).
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M. Indeed, D is closed under any M-definable function and so for any n ∈ N, D is
closed under some Skolem function for any Σn-formula. The rest follows by the same
induction argument as above.

The previous paragraphs gave us a tool how to ensure  Los property by defining
the set of functions F . Latter in the Lemma 1.2.6 we show that  Los property can
equivalently be viewed as a statement about absoluteness between powers.

Note that by the Corollary 1.1.7 any ultrapower construction will always produce
models of the universal theory of the groundmodel. We will show in the Section 1.3
that if M and K are countable L-structures and K |= Th∀(M) then K is isomorphic
to an ultrapower F/U over M with (L-closed) F ⊆ MM and any ultrafilter U over
M. In particular, this will show that countable ultrapowers over a model M with
Ω = M and F ⊆ MM are (up to an isomorphism) exactly all countable models of
Th∀(M). Finally latter in the Section 4.1 we will show that if a certain assumption
on Th∀(M) and the language L holds then the “In particular” above holds with
F ⊆ {tM | t(x) is a term of L}.

Example 1.1.13 (weak Herbrand theorem). 3 Let T be a universal theory in lan-
guage L and ϕ an open L-formula with T ` ∀x∃yϕ(x, y). Then there are L-terms
t0, t1, . . . , tk−1 such that T ` ∀x

∨
i<k ϕ(x, ti(x)).

Proof. Suppose ϕ is an open L-formula with T ` ∀x∃yϕ(x, y) and assume for a
contradiction that for any L-terms t0, t1, . . . , tk−1, T 6` ∀x

∨
i<k ϕ(x, ti(x)). Then by

the Compactness there is a model M of T such that for any L-terms t0(x), . . . , tk−1(x),
M 6|= ∀x

∨
i<k ϕ(x, ti(x)). Thus the set

{〈〈¬ϕ(id, tM)〉〉Ω | t(x) is an L-term}

where id denote the identity function on Ω has finite intersection property and we
can extend it into an ultrafilter U on Ω = M. Now we let

F = {tM | t(x) is an L-term}

which is clearly L-closed and id ∈ F . But also F/U |= ∀y¬ϕ(idU , y) as otherwise
there is an L-term t such that F/U |= ϕ(idU , [tM]U). But since open formulae are
 Los for F/U by the Corollary 1.1.5 this implies 〈〈ϕ(id, tM)〉〉Ω ∈ U contradicting the
definition of U . Finally by the Corollary 1.1.7 we have that F/U |= T since T is a
universal theory. But this contradicts T ` ∀x∃yϕ(x, y) and we are done.

Example 1.1.14 (∀∃-completeness for ultrapowers). Let M be an L-structure, T =
Th∀(M),

F = {tM | t(x) is an L-term}
and Ω = M. It is easy to see that F is an L-closed family of functions. We have the
following variant of ∀∃-completeness:

For any open L-formula ϕ(x, y) the following is equivalent:

3We use the word “weak” because we state the theorem for ϕ(x, y) in place of ϕ(x̄, y). It could
be possible to proceed with a similar proof if f.e. one assume that T admits coding of standard
length tuples (see Definition 4.0.3) but to keep the example simple we will not expand on this here.
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(i) T ` ∀x∃yϕ(x, y)
(ii) for any ultrafilter U on M: F/U |= ∀x∃yϕ(x, y).

By the Corollary 1.1.7 we have that for any ultrafilter U , F/U |= T and thus the
direction from (i) to (ii) is clear. The direction from (ii) to (i) is of similar man-
ner as the previous example. Assume T 6` ∀x∃yϕ(x, y) i.e. for any n and an n-
tuple of terms t0, t1, . . . , tn−1 from L we have that T 6` ∀x

∨
i≤n ϕ(x, ti(x)) and so

M |= ∃x
∧
i≤n ¬ϕ(x, ti(x)). Let id ∈ F denote the identity function on Ω. Then the

set B = {〈〈¬ϕ(id, f)〉〉Ω | f ∈ F} has a finite intersection property and so there is
an ultrafilter U (on Ω) extending B. Since open L-formulae are  Los for F/U by the
Corollary 1.1.5 it is easy to see that F/U |= ∀x¬ϕ(idU , x) and so we are done.

Note that if we let P = {f | f is a unary p-time computable function on N}4

then we directly get: For any open LPV -formula ϕ(x, y): P̃V 6` ∀x∃yϕ(x, y) if and
only if there is an ultrafilter U on N such that P/U |= ∃x∀y¬ϕ(x, y)

1.2 Model-theoretic properties

In this section we discuss some basic model-theoretic properties of powers which we
will extensively use in latter sections. We start with a brief observation and leave
comments after the proof.

Observation 1.2.1. Let M be an infinite L-structure. Suppose (F ,Ω) defines a
power construction over M in language L and U ,V are filters over Ω such that for
any open L(F)-sentence ϕ: 〈〈ϕ〉〉Ω ∈ U if and only if 〈〈ϕ〉〉Ω ∈ V. Then F/U and
F/V are one structure. Whence the structures equal on domains and interpretation
of the language L and thus are identical.

Proof. First observe that gU = gV for every g ∈ F since for every
g, h ∈ F , 〈〈g = h〉〉Ω ∈ U if and only if 〈〈g = h〉〉Ω ∈ V and so F/U = F/V .
Then for any function symbol F (x̄) ∈ L and f̄U ∈ F , FF/U(f̄U) = [FM ◦ f̄ ]U =
[FM ◦ f̄ ]V = FF/V(f̄V). But also for any relation symbol R ∈ L and ḡ ∈ F ,
ḡU ∈ RF/U if and only if {ω ∈ Ω | ḡ(ω) ∈ RM} = 〈〈R(ḡ)〉〉Ω ∈ U if and only if
〈〈R(ḡ)〉〉Ω = {ω ∈ Ω | ḡ(ω) ∈ RM} ∈ V if and only if ḡV ∈ RF/V . Whence

Now consider the following situation: Assume M is an infinite L-structure, Ω ⊆M
an M-definable infinite set and F ⊆ MM an infinite L-closed family of M-definable
functions. Then for any L-formula ϕ(x̄) and f̄ ∈ F , the set 〈〈ϕ(f̄)〉〉Ω is M-definable.
Thus if U is a filter on Ω then by the observation above the properties of F/U depends
only on definable sets contained in U . Hence when working in this setting working
with ultrafilters on the algebra of all subsets of Ω does not give any possibility to
construct more models.

We will continue with model theoretic properties of powers.

Lemma 1.2.2. Assume (F ,Ω) defines a power construction over M in language L
and U is an ultrafilter on Ω. Suppose that for every m ∈ M there is a function
cm ∈ F which is constant m on Ω. Then the function π : M → F/U defined by
π(m) = cUm is an embedding of M into F/U .

4i.e. P = {tN | t(x) is a term of LPV }
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Proof. Observe that π is injective as for any m1,m2, 〈〈cm1 = cm2〉〉Ω = ∅ and thus
cUm1
6= cUm2

. We will show that for any m0,m1, . . . ,mk−1 ∈M and an open L-formula
ϕ(x̄):

M |= ϕ(m0,m1, . . . ,mk−1) if and only if F/U |= ϕ(π(m0), . . . , π(mk−1)).

Since by Corollary 1.1.5 open formulae are  Los for F , we have that
F/U |= ϕ(π(m0), . . . , π(mk−1)) if and only if 〈〈ϕ(cm0 , . . . , cmk−1

)〉〉Ω ∈ U . But A =
〈〈ϕ(cm0 , . . . , cmk−1

)〉〉Ω = {ω ∈ Ω | M |= ϕ(m0, . . . ,mk−1)} and so A is either Ω in
case that M |= ϕ(m0,m1, . . . ,mk−1) or ∅ otherwise. Thus M |= ϕ(m0,m1, . . . ,mk−1)
if and only if 〈〈ϕ(π(m0), . . . , π(mk−1))〉〉Ω ∈ U and we are done.

Recall that an uncountable model M in language L is ℵ1-saturated if for every
countable A ⊆ M, any natural number r and an r-type p over A, p is realised in M
whenever it is finitely satisfiable in M.

Lemma 1.2.3. Let M be a countable infinite structure in countable language L,
Ω ⊆M an infinite countable set and U a non-principal ultrafilter on Ω. Then ΩM/U
is ℵ1-saturated (of size continuum) and ΩM/U |= Th(M).

Proof. Let a non-principal ultrafilter U over Ω be given. To show that ΩM/U is
ℵ1-saturated let A ⊆ ΩM/U be a countable set and p be an L-type over A which is
finitely satisfiable in M. For notational simplicity we assume that p is a 1-type. Let
{ϕi(x, f̄Ui )}i∈N be some enumeration of p where f̄Ui denotes the tuple of parameters
from A that appears in ϕi. Now for every n ∈ N let gn ∈ ΩM and Bn ⊆ Ω be
such that ΩM/U |= ∧i≤nϕi(gUi , f̄Ui ) and Bn = 〈〈∧i≤nϕ(gi, f̄i)〉〉Ω. Such gn exists for
every n ∈ N since p is finitely satisfiable in ΩM/U and all L-formulae are  Los by
the Corollary 1.1.11. We clearly have that for any n ∈ N, Bn ⊇ Bn+1. Moreover for
every ω ∈ Ω we define

r(ω) =

{
max{n | ω ∈ Bn} if ω ∈

⋃
n∈NBn and max{n | ω ∈ Bn} exists

∞ otherwise.

Now we define a function δ ∈ ΩM such that δU realises p in ΩM/U . Let Ω = {ωi}i∈N
be some enumeration of Ω and for ωi define

δ(ωi) =

{
gr(ωi)(ωi) if r(ωi) <∞
gi(ωi) otherwise.

Now assumeB =
⋂
i∈ω Bi ∈ U . We claim that for any n ∈ N, B−{ω0, . . . ωn−1} ∈ U

and thus for any n ∈ N, ΩM/U |= ∧i≤nϕi(δU , f̄Ui ). To see this note that B is infinite
since U is non-principle and B−{ω0, . . . ωn−1} ∈ U for any n since U is an ultrafilter.
Moreover if n ∈ N is given and ω ∈ B − {ω0, . . . ωn−1} then ω = ωn′ for some n′ ∈ N
with n′ ≥ n. But since ω ∈ B we get r(ω) =∞ and thus δ(ω) = gn′(ω). As ω ∈ Bn′

the definition of gn′ and Bn′ gives M |= ∧i≤n′ϕi(δ(ω), f̄i(ω)). But since n′ ≥ n we
have that for any ω ∈ B − {ω0, . . . , ωn−1}, M |= ∧i≤nϕi(δ(ω), f̄i(ω)). Finally by the
Corollary 1.1.11 all L-formulae are  Los for ΩM/U and that B − {ω0, . . . , ωn−1} ∈ U
gives ΩM/U |= ∧i≤nϕi(δU , f̄Ui ).
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If on the other hand B 6∈ U then Bn−B ∈ U for every n ∈ N. But if ω ∈ Bn−B
then n ≤ r(ω) < ∞ (by Bk ⊇ Bk+1 for all k ∈ N) and so δ(ω) = gr(ω)(ω). Thus
by the definition of Br(ω) and gr(ω), M |=

∧
i≤r(ω) ϕi(δ(ω), f̄i(ω)) and so since all

L-formulae are  Los for ΩM/U and Bn−B ∈ U we get that ΩM/U |= ∧i≤nϕi(δU , f̄Ui ).
Since for every n ∈ N, Bn −B ∈ U we get that δU realises p in ΩM/U .

The statement ΩM/U |= Th(M) is a part of the Corollary 1.1.11.

Lemma 1.2.4. Assume (F ,Ω) defines a power construction over M in language L
and U is an ultrafilter on Ω. Suppose further that K is a substructure of F/U . Then
G = {f ∈ F | fU ∈ K} is L-closed and in particular G/U = K.

Proof. Let G be as stated. We first show that G is L-closed. To do so, let a functional
symbol F (x̄) ∈ L and ḡ ∈ G be given. Since F is L-closed, there is a function h ∈ F
such that FM ◦ ḡ = h. By the Lemma 1.0.2 we have hU = [FM ◦ ḡ]U = FF/U(ḡU). By
the definition of G we have that ḡU ∈ K and thus FK(ḡU) = FF/U(ḡU) = hU ∈ K i.e.
h ∈ G and we are done.

To show that G/U ∼= K via the identity function let an open L-formula ϕ(x̄) and
ḡU ∈ G/U be given. Recall that by the Corollary 1.1.5 ϕ(x̄) is  Los for G/U and
F/U thus we have that G/U |= ϕ(ḡU) if and only if 〈〈ϕ(ḡ)〉〉Ω ∈ U if and only if
F/U |= ϕ(ḡU) if and only if K |= ϕ(ḡU) and we are done.

Lemma 1.2.5. Suppose (F ,Ω), (G,Ω) define a power construction over M in lan-
guage L, F ⊆ G. Then F/V ≤ G/V for every ultrafilter V over Ω.

Proof. Let a filter V over Ω be given. Then F ⊆ G gives F/V ⊆ G/V and the rest is
the definition of a power.

The following Lemma gives a different perspective on  Los property.

Lemma 1.2.6. Suppose (F ,Ω), (G,Ω) define a power construction over M in lan-
guage L an F ⊆ G. Suppose further V is a filter on Ω and ϕ(x̄) an L-formula which
is  Los for G/V.

Then ϕ(x̄) is  Los for F/V if and only if it is absolute between F/V and G/V.

Proof. First note that by the previous lemma F/V is a substructure of G/V and
so the notion of absoluteness between F/V and G/V is well-defined. To shows the
left-right implication let f̄V ∈ F/V be given and assume ϕ(x̄) is  Los for F/V . Since
ϕ(x̄) is also  Los for G/V we have that F/V |= ϕ(f̄V) if and only if 〈〈ϕ(f̄)〉〉Ω ∈ V if
and only if G/V |= ϕ(f̄V) and we are done.

For the right-left implication assume for a contradiction ϕ(x̄) is absolute be-
tween G/V and F/V but not  Los for F/V . Then there is f̄V ∈ F/V with either
F/V |= ϕ(f̄V) and 〈〈ϕ(f̄)〉〉Ω 6∈ V or F/V |= ¬ϕ(f̄V) and 〈〈ϕ(f̄)〉〉Ω ∈ V . In
the former case we get by the absoluteness of ϕ(x̄) that G/V |= ϕ(f̄V). But then
〈〈ϕ(f̄)〉〉Ω ∈ V since ϕ(x̄) is  Los for G/V contradicting the assumptions of the former
case. On the other hand the latter case gives G/V 6|= ϕ(f̄V) thus 〈〈ϕ(f̄)〉〉Ω 6∈ V
contradicting 〈〈ϕ(f̄)〉〉Ω ∈ V which finishes the argument.
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Corollary 1.2.7. (1)Let M be an L-structure. Then for any L-closed set of functions
F ⊆ MM and an ultrafilter U on M we have that for any L-formula ϕ(x̄): ϕ(x̄) is
 Los for F/U if and only if ϕ(x̄) is absolute between F/U and MM/U .

(2) Assume L = LPA and M |= PA. Let D be the set of all unary M-definable
functions. Then for any LPA-closed set of functions F ⊆ D and an ultrafilter U over
M we have for any LPA-formula ϕ(x̄): ϕ(x̄) is  Los for F/U if and only if ϕ(x̄) is
absolute between F/U and D/U .

Proof. By the Corollary 1.1.11, LPA-formulae are  Los for MM/U and by the Example
1.1.12 all LPA-formulae are  Los for D. Thus (1) and (2) follows by the previous
lemma.

We will give two examples of a use of the previous lemma. Recall that for any
models M1,M2 with M2 |= I∆0 we have that M1 |= I∆0 and ∆0 formulae are absolute
between M1 and M2 whenever M1 is an initial segment of M2.5.

Example 1.2.8. We first show a general way how to construct models of I∆0 via
ultrapower constructions for which ∆0-formulae are  Los .

Let M be a countable model of PA and let D be the set of unary M-definable
functions. Define the ordering <∗ on D by f <∗ g if and only if f(n) < g(n) for all
but finitely many n ∈M.

Now assume {fi}i∈N ⊆ D is such that f0 is constant 0, f1 is constant 1 and for
any i ∈M there is j ∈M with f 2

i <
∗ fj. The assumption on {fi}i∈N is strong enough

to ensure that the set

F = {g ∈ D | there is i ∈ N such that g <∗ fi}

is LPA-closed. Indeed, let � ∈ {+, ·} ⊆ LPA and g1, g2 ∈ F be given. Then g1, g2 <
∗ fi

for some i ∈ N and so there is j ∈ N such that g1 � g2 <
∗ f 2

i <
∗ fj i.e. g1 � g2 ∈ F .

On the other hand the assumption on {fi}i∈N does not imply F = D(M) as the
assumption can be true even if all functions from {fi}i∈N are <∗-bounded by the
function 2x.

If we now let U be an ultrafilter on M then F/U is an initial segment of D/U
by the definition of F . But by the Example 1.1.12 we have D/U |= PA and so
F/U |= I∆0. Moreover ∆0-formulae are absolute between F/U and D/U and thus
by the previous corollary we also get that ∆0-formulae are  Los for F/U .

Example 1.2.9. (Parikh’s theorem) Assume ϕ(x, y) ∈ ∆0 and I∆0 ` ∀x∃yϕ(x, y).
Then there is an LPA-term t(x) such that I∆0 ` ∀x∃y < t(x)ϕ(x, y).

Proof. Let ϕ(x, y) ∈ ∆0 with I∆0 ` ∀x̄∃yϕ(x, y) be given and assume for a contra-
diction that there is no LPA-term t(x) such that I∆0 ` ∀x∃y < t(x)ϕ(x, y). Then by
the Compactness there is a countable model M of I∆0 such that for any LPA-term
t(x) we have M |= ∃x∀y < t(x)¬ϕ(x, y).6

5i.e. whenever M1 ≤M2 and M1 = {m ∈M2 |M2 |= m ≤ m′ for some m′ ∈M1}
6The set I∆0 ∪ {∃x∀y < t(x)ϕ(x, y) | t(x) is an LPA term} is consistent by the Compactness

since I∆0 `
∨

i≤n ∀x∃y < ti(x)ϕ(x, y) for some LPAterms ti(x) implies I∆0 ` ∀x∃y < t0(x) + . . .+
tn(x)ϕ(x, y).
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Now we let for f, g ∈ MM the relation ≤∗ be defined as f ≤∗ g if and only if
f(m) ≤ g(m) for all but finitely many m ∈M and let

F = {f : M→M | f ≤∗ tM for some LPA-term t(x)}.

which is clearly LPA-closed7. We will first show that for any ultrafilter U on M,
F/U |= I∆0 and ∆0-formulae are  Los for F/U . Then we define an ultrafilter
U on M such that F/U |= ∀y¬ϕ(idU , y). This will contradict the assumption
I∆0 ` ∀x∃yϕ(x, y) and finish the argument.

Let an ultrafilter U on M be arbitrary. By the Lemma 1.2.3 we have that
MM/U |= I∆0 as M |= I∆0. But by the definition of F , F/U is an initial seg-
ment of MM/U and so F/U |= I∆0. Moreover ∆0-formulae are absolute between
F/U and MM/U and so by the corollary above ∆0-formulae are  Los for F/U .

To find the promised ultrafilter U over M let id ∈ F denote the identity function
on M and let

A = {〈〈¬ϕ(id, f)〉〉Ω | f ∈ F}.

We claim thatA has a finite intersection property. To show this, let f0, f1, . . . , fk−1 ∈ F
be given and assume for a contradiction that

⋂
i<k〈〈¬ϕ(id, fi)〉〉Ω = ∅. Let

t0, t1, . . . , tk−1 be unary LPA-terms such that fi ≤∗ tMi for every i < k. Then
M |= ∀x

∨
i<k ∃y < ti(x) + 1ϕ(x, y). But then also M |= ∀x∃y < t1(x)+, . . . +

tn(x) + kϕ(x, y) thus there is a single LPA-term t1(x)+, . . .+ tn(x) + k contradicting
the assumption on M.

Now let U be an ultrafilter on M extending A and assume F/U |= ∃yϕ(idU , y).
Then there is f ∈ F with F/U |= ϕ(idU , fU) but since ∆0-formulae are  Los for F/U
this implies 〈〈ϕ(id, f)〉〉Ω ∈ U contradicting the definition of U ⊇ A.

7Clearly constant 0 and constant 1 functions are in F . Thus it suffices to observe that if f, g ∈ F
are such that for some LPA-terms s, t, f ≤∗ sM and g ≤∗ tM then f · g, f + g ≤∗ sM · tM.
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1.3 Strong ultrapower

We prove the theorem we noted in the section discussing  Los property and Skolem
functions. Recall that by the Corollary 1.1.7 any ultrapower over a model N is
a model of the universal theory of N. The following theorem shows that the other
direction is true as well. Namely that any countable model M of the universal theory
of (a countable model) N is isomorphic to an ultrapower over N. We will start with
definition of a special kind of ultrapower:

Definition 1.3.1. Let M be an L-structure, Ω infinite set and F ⊆ ΩM infinite.
We say that F is strong wrt to L if:

(i) for any f, g ∈ F with f 6= g the set 〈〈f = g〉〉Ω is finite,
(ii) for any k ∈ N, k-ary function symbol F ∈ L and g0, g1, . . . , gk−1 ∈ F there is

g ∈ F such that 〈〈F (g0, g1, . . . , gk−1) = g〉〉Ω is co-finite,
(iii) for any k ∈ N, k-ary relation symbol R ∈ L and g0, g1, . . . , gk−1 ∈ F ,

〈〈R(g0, g1, . . . , gk−1)〉〉Ω is finite or co-finite.

Observe that in the definition above there is exactly one such g in (ii) as by the
condition (i) there is at most one such g.

The structure FFin Let M be an L-structure, Ω infinite set and F ⊆ ΩM strong
wrt to L. Then we denoted by FFin an L-structure with the universe F and the
interpretation of symblos from L defined as follows:

- For a k-ary function symbol F ∈ L and g0, g1, . . . , gk−1,

FFFin(g0, g1, . . . , gk−1) = g

for the g ∈ F such that 〈〈F (g0, g1, . . . , gk−1) = g〉〉Ω is co-finite.
- For a k-ary relation symbol R ∈ L we let

RFFin = {(f0, f1, . . . , fk−1) ∈ Fk | 〈〈R(f0, f1, . . . , fk−1)〉〉Ω is co-finite }.

We will call the structure FFin of this form a strong ultrapower over a model
M with domain Ω (in language L). and leave out the “with domain Ω” if Ω = M.
The following observation shows that strong ultrapowers are indeed a special kind
of ultrapowers.

Observation 1.3.2. Let M be an L-structure, Ω an infinite set and FFin a strong
ultrapower over M with domain Ω. Let F∗ = {f ∈ ΩM | there is g ∈ F and 〈〈f =
g〉〉Ω is co-finite}. Then

(i) for any open L-formula ϕ(x̄) and f̄ ∈ F , 〈〈ϕ(f̄)〉〉Ω is finite or co-finite,
(ii) for any open L-formula ϕ(x̄) and f̄ ∈ F , FFin |= ϕ(f̄) if and only if 〈〈ϕ(f̄)〉〉Ω

is co-finite,
(iii) F∗ is L-closed and FFin ∼= F∗/U for any non-principal ultrafilter U on Ω.

Proof. To show (i) we proceed by induction on complexity of an open L-formula
ϕ(x̄).
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a The case when ϕ(x̄) is of the form t(x̄) = s(x̄) for L-terms t(x̄), s(x̄) or
of the form R(t0(x̄), . . . , tk(x̄)) for a relation symbol R ∈ L and L-terms
t0(x̄), . . . , tk(x̄) follows easily from the definition of F being strong.

b The case when ϕ(x̄) is a boolean combination of formulae for which the induc-
tion assumption holds follows by an observation that a boolean combination of
finite and co-finite sets is a finite or co-finite set.

To show (ii) we will proceed by the induction on complexity of an open L-formula
ϕ(x̄).

a The case when ϕ(x̄) is of the form t(x̄) = s(x̄) for L-terms t(x̄), s(x̄) or
of the form R(t0(x̄), . . . , tk(x̄)) for a relation symbol R ∈ L and L-terms
t0(x̄), . . . , tk(x̄) follows easily from the definition of F being strong.

b Assume ϕ(x̄) = ¬ψ(x̄) for some ψ(x̄) for which the induction assumption holds
and f̄ ∈ F is given. Then FFin |= ¬ψ(f̄) if and only if FFin 6|= ψ(f̄) which
is by induction assumption if and only if 〈〈ψ(f̄)〉〉Ω is not co-finite which is by
(i) if and only if 〈〈ψ(f̄)〉〉Ω is finite. But the last is if and only if 〈〈ϕ(f̄)〉〉Ω is
co-finite.

c The case where ϕ(x̄) = ψ(x̄) ◦ θ(x̄) for ◦ ∈ {∨,∧} is similar and we leave it to
the reader.

To show (iii) fix a non-principal ultrafilter U on Ω. We claim that the function
i : FFin → F∗/U defined by i : f 7→ fU is an isomorphism. To show it is onto let
gU ∈ F∗/U be given. Then there is f ∈ F such that 〈〈f = g〉〉Ω is co-finite. But
as U is non-principal and maximal, this gives 〈〈f = g〉〉Ω ∈ U and so fU = gU i.e.
i(f) = gU . To show i is an injective embedding let ϕ(x̄) be an open L-formula and
f̄ ∈ F . Then by (ii) we have FFin |= ϕ(f̄) if and only if 〈〈ϕ(f̄)〉〉Ω is co-finite which
is if and only if 〈〈ϕ(f̄)〉〉Ω ∈ U since U is non-principal and maximal. But the last
holds if and only if F∗/U |= ϕ(f̄) since open formulae are  Los for F∗/U and we are
done.

Now we can state the theorem of this section:

Theorem 1.3.3. Let N, M be countable models in a countable language L and as-
sume that M models the universal theory of model N. Then M is isomorphic to
a strong ultrapower over N.

Proof. Let {mi}i∈ω be an injective enumeration of M and wlog assume N = ω.
The idea of the proof goes as follows: we are aiming to define a set of functions
F = {fi}i∈ω ⊆ NN such that for any open L-formula ϕ(x1, ..., xk) and i1, ..., ik from
ω:

(1) M |= ϕ(mi1 , ...,mik) if and only if

N |= ϕ(fi1(n), ..., fik(n)) for all but finitely many n ∈ N

Using (1) we show that F is strong wrt to L and that the function from FFin to M
mapping mi to fi is an isomorphism.
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We will start with some notations. For every i ∈ ω we let

pi = {ϕ(x0, x1, . . . , xi) |M |= ϕ(m0,m1, . . . ,mi)

and ϕ is an open L-formula}.

For every i ∈ ω let {χin}n∈ω ⊆ pi be such that for every n ∈ ω, χin+1 → χin and for
any ϕ ∈ pi there is n such that χin → ϕ. Such a set exists for every i ∈ ω as for every
i ∈ ω, pi is countable and closed under conjunction. Finally for n < i we define:

ψin(y0, y1, . . . , yi) = χin(y0, y1, . . . , yi)

and for n ≥ i :

ψin(y0, y1, . . . , yi) = ∃yi+1, . . . , yn+1

∧
j≤n+1

χjn(y0, y1, . . . , yj)

Where y0, y1, . . . , yi are not among yi+1, . . . , yn+1. Observe that for any n ∈ ω,
M |=

∧
j≤n+1 χ

j
n(m0,m1, . . . ,mj) and so M |= ψ0

n(m0).

Now we first inductively define the functions fi and then show the construction
is correct:

Let f0 ∈ NN be arbitrary such that

∀n ∈ N : f0(n) ∈ ψ0
n(N)

where ψ0
n(N) = {a ∈ N | N |= ψ0

n(a)} and for i > 0 let fi ∈ NN be arbitrary such
that :

(2) ∀n ≥ i : fi(n) ∈ ψin(f0(n), ..., fi−1(n),N)

where ψin(f0(n), ..., fi−1(n),N) = {a ∈ N | N |= ψin(f0(n), ..., fi−1(n), a)}.
To show that such functions exist, we have to show that for every i and every

n ≥ i the set ψin(f0(n), ..., fi−1(n),N) is non-empty To do so, we proceed by induction
on i:

For i = 0 and an arbitrary n we have that M |= ψ0
n(m0) i.e. M |= ∃xψ0

n(x) and
as ψ0

n is existential formula and M is an models the universal theory of N, we get
that N |= ∃xψ0

n(x) and thus the set ψ0
n(N) is non-empty

Now assume that the induction hypothesis holds for i, i.e. there are f0, ..., fi ∈ NN
satisfying (2). To show that ψi+1

n (f0(n), ..., fi(n),N) is non-empty for every n ≥ i+ 1
take an arbitrary n such. Then we have that

N |= ψin(f0(n), . . . , fi−1(n), fi(n))

and

N |= ψin(f0(n), ..., fi−1(n), fi(n))→ ∃xψi+1
n (f0(n), ..., fi(n), x)

since it is a tautology by the definition of ψin. Hence N |= ∃xψi+1
n (f0(n), ..., fi(n), x)

and thus ψi+1
n (f0(n), ..., fi(n),N) is non-empty
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Now we are ready to show that the property (1) holds i.e. that for any open
formula ϕ and i1, ..., ik ∈ ω:

M |= ϕ(mi1 , ...,mik) if and only if

N |= ϕ(fi1(n), ..., fik(n)) for all but finitely many n ∈ N

Assume M |= ϕ(mi1 , ...,mik) and ij is the maximal index, then there is nj ≥ ij with

χ
ij
nj → ϕ as ϕ ∈ pij and therefore ψ

ij
nj → ϕ as ψ

ij
nj → χ

ij
nj by the definition of ψ

ij
nj .

Moreover for any n ≥ nj we have χ
ij
n → χ

ij
nj and whence ψ

ij
n → ϕ as ψ

ij
n → χ

ij
n .

But by the definition of fi1 , ..., fik , for any n ≥ ij : N |= ψ
ij
n (fi0(n)..., fij−1(n), fij(n))

whence for any n ≥ nj : N |= ϕ(fi1(n), ..., fik(n)) and we are done.
On the other hand if M 6|= ϕ(mi1 , ...,mik) then M |= ¬ϕ(mi1 , ...,mik) hence

N |= ¬ϕ(fi1(n), ..., fik(n)) for all but finitely many n’s by the previous paragraph
and whence N 6|= ¬ϕ(fi1(n), ..., fik(n)) for at most finitely many n’s.

Armed with property (1) we can now show that F is strong wrt to L. To check (i)
of the definition assume fi, fj ∈ F and i 6= j then since M |= mi 6= mj we get by (1)
that 〈〈fi = fj〉〉N is finite. Similarly for (ii), let a k-ary function symbol F ∈ L and
fi1 , ..., fik ∈ F be given. Then there is mi ∈ M such that M |= F (mi1 , ...,mik) = mi

and so 〈〈F (fi1 , ..., fik) = fi〉〉N is co-finite by (1). The condition (iii) follows in the
same way and we leave it to the reader. Thus F is strong wrt to L and so defines a
strong ultrapower FFin in language L over N.

Finally we can show that the map ξ : FFin → M defined by ξ(fi) = mi is an
isomorphism. But this is clear since it is onto by definition and the rest follows by
(1). Indeed, by (ii) of the Observation 1.3.2 we have that for any open L-formula
ϕ(x̄) and f̄ ∈ F :

FFin |= ϕ(f̄) if and only if 〈〈ϕ(f̄)〉〉N is co-finite

and so by (1) we get that that for any open L-formula ϕ(x̄) and fi1 , . . . , fik ∈ F :

FFin |= ϕ(fi1 , . . . , fik) if and only if M |= ϕ(mi1 , . . . ,mik)

which finishes the proof.
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Chapter 2

Density arguments and weak
inductions

Let M be a countable model of True Aritmetic in language Lall. In this chapter
we investigate some properties of power constructions with domain Ω ⊆M which is
coded in M and a set of M-definable functions F .

In the first part of this chapter we show that there is some sort of density argu-
ments which can be described as follows. Denote by B the algebra of M-definable
subsets of Ω and assume P is some model-theoretic property. Then one can sometimes
find a countable family DP of subsets of B such that if a filter V on B intersects all sets
from DP and F satisfies some additional properties corresponding to the property P
then F/U posses the property P.

In the next part of this chapter we combine this method with an idea from the
Construction B of [Gar15] to give a general construction theorem that produces pow-
ers which are models of a weak form of induction. This theorem will be used latter in
the Chapter 3 to derive the Construction B of Garĺık given in [Gar15, Theorem 3.4].
Before we start, some preparations are in order:

Let us fix a countable non-standard model M of True arithmetic in the language
Lall. We will not distinguish between M and its expansion into a language augment
by a function/realtion symbol for each M-definable function/relation. Recall that a
set definable in M is coded in M if and only if it is bounded. Suppose A ⊆ M is
coded in M then we will not distinguish between A and its code in M. We will stick
to the common notation and write m > N if m ∈M−N or equivalently if m ∈M is
non-standard.

We will use basic concepts from the non-standard analysis and denote by QM the
set of codes of tuples (a, b) with a, b ∈ M and b ≥ 1. We will call the elements of
QM as (positive) M-rationals and write a

b
or a/b rather then (a, b) or simply q if the

particular form is not important. The operations are defined on QM as usual i.e. for
example a/b+c/d = (ad+bc)/(bd), (a/b) · (c/d) = ac/bd, (a/b)c = ac/bc or (a/b)/c is
a shorthand for (a/b) · (1/c) and similarly for other common operations.1 Moreover
the order relation ≤ is extended to M-rationals by a/b ≤ c/d if and only if ad ≤ bc

1the last is an abuse of notation as (a/b)/c should denotes the tuple (code((a, b)), c) but this will
never be the case in this thesis

35
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and an M-rational q is considered to be non-standard if q > k/1 for every k ∈ N.
Strictly speaking we should define another symbol for the order relation on QM since
one could confuse a/b ≤ c/d with comparing the codes of a/b and c/d. However, in
the context of what will come the use of the relation ≤ will always be entirely clear
and in particular it will always mean comparing two M-rationals not its codes. For
a, b ∈ M we will denote by [a, b]Q the set {p/q ∈ QM | M |= a/1 ≤ p/q ≤ b/1}.
Moreover if A ⊆ QM and f : A → QM then for a, b,m ∈ M we will often write
f(m) in place of f(m/1) or a/b ≤ m in place of a/b ≤ m/1 but this will always be
clear from the context. Finally we will use the binary function symbol − such that
M |= ∀x, y(x− y = “the w such that w + y = x if it exists and 0 otherwise”).

Now we can finally fix

- a unary function symbol #(·) ∈ Lall with rng(#(·)M ⊆ QM such that #(·)M
assign to every A ⊆M which is coded in M its cardinality (or size) in M,

- a set Ω ⊆M coded in M with #(Ω) > N,

- the set H of all M-definable functions from Ω to M and

- the algebra B of M-definable subsets of Ω.

Note that since Ω is coded in M every function from H is coded in M and so H
is countable as M is countable. Since we will work exclusively with filters on B we
will not mention the algebra B i.e. from now on any filter considered in this section
is a subset of B.

Let further

- a non-standard n ∈M be fixed,

- ñ be a new constant symbol such that ñM = n and

- let L range over countable languages with ñ,≤∈ L such that the interpretation
of function/relation symbols from L is M-definable function/relation.

We denote by ∆<ñ
0 (L) the set of L-formulae with all quantifiers strictly bounded

by the term ñ i.e. of the form ∃x < ñ or ∀x < ñ. Moreover we let ∃∆<ñ
0 (L) =

{∃ȳϕ(x̄, ȳ) | ϕ(x̄, ȳ) ∈ ∆<ñ
0 (L)}.

If v ∈ M then by cv we denote the function from H which is constant v on Ω.
If t, s are terms of Lall and m̄ ∈ M then we will often abuse the notation and write
t(m̄) = s(m̄) or t(m̄) > s(m̄) instead of tM(m̄) = sM(m̄) or tM(m̄) >M sM(m̄), this is
to make the arguments more readable. If f is a unary function (not necessarily M-
definable) such that rng(f) ⊆ dom(f) then we denote by f (0) the identity function
on dom(f) and for any k ∈ N we denote by f (k+1) the function f ◦ f (k). Moreover if
a, b ∈M then [a, b] denotes as usual the set {m ∈M |M |= a ≤ m ≤ b}.

2.1 Density arguments

Definition 2.1.1. Let ג : [0,#(Ω)]Q → [0,#(Ω)]Q, we say that ג is large (wrt to Ω)
if it is non-decreasing and for any k ∈ N, ((Ω)#)(k)ג > N.

Definition 2.1.2. Let D ⊆ B and ג : [0,#(Ω)]Q → [0,#(Ω)]Q. We say that D is
dense-ג (subset of B) if for every A ∈ B there is a set B ∈ D such that B ⊆ A and
#(B) ≥ .((A)#)ג
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Note that we do not demand ג to be M-definable and that in the context of the
last definition #(A) ≥ #(B) ≥ ((A)#)ג and thus it follows that x ≥ (x)ג for any
x ∈ [0,#(Ω)]Q.

We will often write that D is a x/n-dense set or (x− n)-dense set etc. meaning
that D is dense-ג set for (x)ג = x/n or for (x)ג = x−n both restricted to [0,#(Ω)]Q
etc.

Observation 2.1.3. Let k,ג : [0,#(Ω)]Q → [0,#(Ω)]Q be non-decreasing functions
and Dג, Dk countable non-empty families of ,-ג k-dense sets respectively. Then
D = Dג ∪ Dk is a countable family of ג ◦ k-dense sets. Moreover if (x)ג ≥ k(x) for
any x ∈ [0,#(Ω)]Q then Dג is a countable family of k-dense sets.

Proof. Let D ∈ D and A ∈ B be given. We have to show that there is B ∈ D, B ⊆ A
such that #(B) ≥ ג ◦ k(#(A)). First assume D ∈ Dk, then there is B ∈ D with
B ⊆ A such that #(B) ≥ k(#(A)) ≥ ג ◦k(#(A)) where the last inequality holds as
x ≥ (x)ג for any x ∈ [0,#(Ω)]Q. If D ∈ Dג then there is B ∈ D with B ⊆ A such
that #(B) ≥ ((A)#)ג ≥ ג ◦k(#(A)) where the last inequality holds as x ≥ k(x) for
any x ∈ [0,#(Ω)]Q and ג in non-decreasing. The moreover part follows easily from
the definition of k-dense set.

Lemma 2.1.4. (Generic lemma) Let ג : [0,#(Ω)]Q → [0,#(Ω)]Q be a large function
and let D be a countable family of dense-ג sets on B. Then there is a filter V on B
intersecting all sets from D. Moreover V can be chosen such that for any B ∈ V,
#(B) > N.

Proof. Let {Dk}k∈N be some enumeration of D. We construct a decreasing sequence
(Ak)k∈N of elements from B such that for any k ∈ N, Ak+1 ∈ Dk and #(Ak) ≥
.((Ω)#)(k)ג Then we let V = {B ∈ B | there is k ∈ N with B ⊇ Ak}. Such V will
clearly intersects all dense sets from D and will also satisfy that for any B ∈ V ,
#(B) > N. We will construct (Ak)k∈N by induction on N:

Let A0 = Ω. Assume Ak with #(Ak) ≥ ((Ω)#)(k)ג is constructed. Since Dk is a
dense-ג set, there is Ak+1 ∈ Dk such that Ak+1 ⊆ Ak and #(Ak+1) ≥ ((Ak)#)ג ≥
(((Ω)#)(k)ג)ג = ((Ω)#)(k+1)ג where we used that ג is non-decreasing and the induc-
tion assumption on #(Ak). It is easy to see that the sequence constructed in this
way posses the properties described above.

Corollary 2.1.5. Let k be a natural number and ,0ג . . . , k−1ג : [0,#(Ω)]Q → [0,#(Ω)]Q
be large functions. Assume that for every i < k, Di is a countable family of i-denseג
sets and that 0ג ◦ . . . ◦ k−1ג is large. Then there is a filter V on B intersecting all sets
from D = D0 ∪ . . . ∪ Dk−1 and for any B ∈ V, #(B) > N.

Proof. Using the Observation 2.1.3 (k−1 many times) D is a family of 0ג ◦ . . -k−1ג◦.
dense sets thus by the assumption on 0ג ◦ . . k−1ג◦. we can apply the Generic Lemma
for D.

Moving toward definition of some prominent countable families of dense sets we
start with a notational convention and a simple observation. Let C be a covering of
Ω. Then we define

DC = {B ∈ B | B ⊆ c for some c ∈ C}.
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Observation 2.1.6. Let C ∈ M be a covering of Ω by p ∈ M many sets. Then DC

is x/p-dense set on B.

Proof. Assume C = {c1, . . . , cp} and let A ∈ B be given. Since {A∩ c1, . . . , A∩ cp} ∈
M is a covering of A by p-many sets there is a c ∈ C with #(A ∩ c) ≥ #(A)/p. But
then also A ∩ c ∈ DC by the definition of DC and we are done.

The assumption that C ∈M is crucial and in general we can not avoid it.
Suppose ϕ(x, ȳ) ∈ ∆<ñ

0 (L) and f̄ ∈ H. Then we denote by 〈∃x < ñϕ(x, f̄)〉
the covering of Ω by the sets 〈〈ϕ(c0, f̄)〉〉Ω, 〈〈ϕ(c1, f̄)〉〉Ω, . . . , 〈〈ϕ(cn−1, f̄)〉〉Ω, 〈〈∀x <
n¬ϕ(x, f̄)〉〉Ω and define the set

D
∆<ñ

0 (L)− Los = {D〈∃x<ñϕ(x,f̄)〉 | ϕ(x, ȳ) ∈ ∆<ñ
0 (L) and f̄ ∈ H}.

Since the functions from H are M-definable and Ω ∈M we have that for any ϕ(x, ȳ)
and f̄ as above 〈∃x < ñϕ(x, f̄)〉 ∈ M. As 〈∃x < ñϕ(x, f̄)〉 is a partition of Ω into
n+1 many sets, we get by the above observation that D

∆<ñ
0 − Los is a countable family

of (x/(n+ 1))-dense sets.

Lemma 2.1.7. Suppose F ⊆ H is an L-closed family of functions and cv ∈ F for
every v ≤ n. Assume further V is a filter intersecting all sets from D

∆<ñ
0 − Los. Then

∆<ñ
0 (L)-formulae are  Los for F/V and for any α ∈ F/U such that F/V |= α ≤ cVn

there is v ≤ n such that F/V |= α = cVv .
In particular such filer V exists whenever #(Ω)/(n+ 1)k > N for any k ∈ N.

Proof. Fist observe that for any ∃yψ(y, x̄) ∈ ∆<ñ
0 (L) and a tuple f̄ ∈ H either

there is w < n such that 〈〈cw < n ∧ ψ(cw, f̄)〉〉Ω ∈ V or 〈〈∀y < ñ¬ψ(y, f̄)〉〉Ω ∈ V .
Indeed, since V intersects the dense set D〈∃y<ñψ(y, ¯̄f)〉, there is A ∈ V such that

A ⊆ 〈〈cw < ñ ∧ ψ(cw, f̄)〉〉Ω ⊆ 〈〈ϕ(f̄)〉〉Ω for some w < n or A ⊆ 〈〈¬ϕ(f̄)〉〉Ω and we
are done.

By the previous paragraph we immediately get that for any ϕ(x̄) ∈ ∆<ñ
0 (L) and

f̄ ∈ F : 〈〈ϕ(f̄)〉〉Ω ∈ V or 〈〈¬ϕ(f̄)〉〉Ω ∈ V . To show this, we can wlog assume ϕ(x̄) =
∃y < ñψ(y, x̄) for some ψ(y, x̄) ∈ ∆<ñ

0 (L) (otherwise go to an equivalent formula).
But then by the previous paragraph for any f̄ ∈ F either there is w < n with
〈〈cw < ñ ∧ ψ(cw, f̄)〉〉Ω ∈ V and we are done as 〈〈cw < ñ ∧ ψ(cw, f̄)〉〉Ω ⊆ 〈〈ϕ(f̄)〉〉Ω.
Or 〈〈∀y¬ψ(y, f̄)〉〉Ω ∈ V and we are done as well.

Now we can proceed by induction on complexity of ϕ(x̄) ∈ ∆<ñ
0 (L). By the

previous paragraph the Lemma 1.1.4 gives that open formulae are  Los for F/V and
so the base of the induction holds. Moreover by the Lemma 1.1.2 and the previous
paragraph any boolean combination of formulae from ∆<ñ

0 (L) which are  Los for F/V
is  Los for F/V . Thus the only induction step which is to be considered is that if
ϕ(x̄) = ∃x < ñψ(y, x̄) for some ψ(y, x̄) ∈ ∆<ñ

0 (L) which is  Los for F/V .
To do so, assume ϕ(x̄) is of the form described above and let f̄ ∈ F be given.

Suppose 〈〈∃y < ñψ(y, f̄)〉〉Ω ∈ V . We have to show that F/V |= ∃y < ñψ(y, fV).
By the first paragraph there is w < n with 〈〈cw < ñ ∧ ψ(cw, f̄)〉〉Ω ∈ V and so as
y < ñ and ψ(y, x̄) are  Los for F/V and so are its boolean combinations we get that
F/V |= cw < ñ ∧ ψ(cVw, f̄) and we are done.
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If on the other hand F/V |= ∃y < ñψ(y, f̄V) then 〈〈g < ñ ∧ ψ(g, f̄)〉〉Ω ∈ V for
some g ∈ F as ψ(y, x̄) and y < ñ are  Los for F/V and so is its boolean combination.
But then 〈〈g < ñ ∧ ψ(g, f̄)〉〉Ω ⊆ 〈〈∃y < ñψ(y, f̄)〉〉Ω ∈ V and we are done.

Finally if F/V |= fV ≤ cVn for some fV ∈ F/V then either fV = cVn and we are
done or F/V |= ∃x < ñ(fV = x). But then 〈〈∃x < ñ(f = x)〉〉Ω ∈ V as ∆<ñ

0 (L)-
formulae are  Los for F/V . Hence there is w < n with 〈〈cw < ñ ∧ f = cw〉〉Ω ∈ V
as V intersects D〈∃x<ñ(f=x)〉. But this means F/V |= fV = cVv which finishes the
argument.

The “moreover” part follows from the Generic Lemma since the assumption gives
that the function x/(n+ 1) (restricted on [0,#(Ω)]Q) is large.

Now let F ⊆ H, f̄ ∈ H and ϕ(x, ȳ, z̄) be an L-formula. We define

DErrFΩ (ϕ(x,ȳ,f̄)) = {{B ∈ B | B ∩ 〈〈ϕ(id, ḡ, f̄)〉〉Ω = ∅} | ḡ ∈ F}.

Lemma 2.1.8. Assume F ⊆ H is L-closed, ϕ(x, ȳ, z̄) an L-formula and id, f̄ ∈ F .
Then

(i) DErrFΩ (ϕ(x,ȳ,f̄)) is a countable family of (x−#(Ω)q)-dense sets whenever there

is an M-rational q such that for any ḡ ∈ F , #(〈〈ϕ(id, ḡ, f̄)〉〉Ω)/#(Ω) ≤ q and
(ii) F/V |= ∀y¬ϕ(idV , y, f̄V) whenever V is a filter intersecting all sets from

DErrFΩ (ϕ(x,ȳ,f̄)) and ϕ(x, ȳ, z̄) is  Los for F/V

Proof. For (i) we are obligated to show that for any ḡ ∈ F , D¬ϕ(id,ḡ,f̄) = {B ∈ B | B∩
〈〈ϕ(id, ḡ, f̄)〉〉Ω = ∅} is (x−#(Ω)q)-dense set. To do so, let A ∈ B be given and let
B = A−〈〈ϕ(id, ḡ, f̄)〉〉Ω. Then #(B) ≥ #(A)−#(〈〈ϕ(id, ḡ, f̄)〉〉Ω) ≥ #(A)−#(Ω)q
where the last inequality is by the assumption 〈〈ϕ(id, ḡ, f̄)〉〉Ω/#(Ω) ≤ q. But we
also clearly have B ∈ D¬ϕ(id,ḡ,f̄).

To show (ii) let a filter V intersecting all sets from DErrFΩ (ϕ(x,ȳ,f̄)) be given. Assume

ϕ(x, ȳ, z̄) is  Los for F/V and assume for a contradiction that F/V |= ϕ(idV , ḡV , f̄V)
for some ḡ ∈ F . But there is B ∈ V ∩D¬ϕ(id,ḡ,f̄) such that B ∩ 〈〈ϕ(id, ḡ, f̄)〉〉Ω = ∅
contradicting that ϕ(x, ȳ, z̄) is  Los for F/V .

2.2 Powers of weak forms of induction

Suppose L0 is a language with binary predicate symbol <, a binary function symbol
+ and constant symbols 0, 1. Let ϕ(x, ȳ) be an L0-formula and Γ a set of L0-formulae.
Then we denote by ϕ(x, ȳ)− IND≤a the induction formula

∀ȳ[ϕ(0, ȳ)→ ∀x < a(ϕ(x, ȳ)→ ϕ(x+ 1, ȳ))→ ϕ(a, ȳ)]

which has a free variable a and by Γ−IND≤a the set {ϕ(x, ȳ)−IND≤a | ϕ(x, ȳ) ∈ Γ}.
Moreover if K is an L0-structure with m ∈ K and K |= Γ− IND≤m then we say that
K satisfies Γ-induction up to m and similarly for any ϕ(x, ȳ) ∈ Γ.

The following lemma is a motivation for models of such form of a weak induction
and in particular is a motivation for the construction presented in this chapter.
The proof of this lemma is not hard but long and tedious. Since we only show
the statement as a motivation for our construction we will skip the proof for this
moment. An interested reader can find the proof in the last section of this chapter.
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Lemma 2.2.1. Suppose L′ is a language with Lall ⊇ L′ ⊇ LBUSS ∪ {ñ} and K an
infinite L′-structure with m ∈ K such that

K |= Th∀∆<ñ
0 (L′)(M) and K |= ∃∆<ñ

0 (L′)− IND≤m.

Suppose further that (L):
For any r-ary function symbol F ∈ L′ there are c, k ∈ N with

M |= ∀y0, y1, . . . , yr−1(|F (y0, y1, . . . , yr−1)| ≤ c(c+ |y1|+ . . .+ |yr|)k).

Then K ′ = {b ∈ K | K |= |b| < ñk for some k ∈ N} is a domain of a structure
K′ ≤ K, K′ |= BASIC and

(i) if K |= ñ = m then K′ |= strictΣb
1(L′)− LIND and

(ii) if K |= |ñ| = m then K′ |= strictΣb
1(L′)− LLIND.

Thus our aim of this section is to develop a construction producing models like
K from the previous lemma that satisfies the assumption of the case (i) or (ii) to
get a suitable model K′ of strictΣb

1(L′)−LIND or strictΣb
1(L′)−LLIND which could

possibly serve as witness of some consistency result. We will show how to use our
construction for independence results in the Corollary 2.2.8 and the Corollary 2.2.13
of the construction theorem.

Before we present the idea of the construction some preparations are in order:
Let ` ∈ M and A ⊆ M be M-definable. Then the we can define the following in

M: Denote by A` the set of all sequences of elements from A of length `, by A<` the
set of sequences of elements from A of length < ` and by A≤` the set A<` ∪ A`. For
a sequence s we will write len(s) to denote the length of the sequence s. Moreover
for sequences s, t we will write s v t if s is the initial segment of t or equivalently
t extends s. We use the symbol ∅ to denote an empty sequence which by definition
initial segment of any sequence. If s, s′ are sequences and a some element (of M) then
we denote by s_s′ the concatenation of s and s′ (in the order shown) and by s_a
the sequence consisting from s followed by the element a. Finally we will abuse the
notation and write a ∈ s to denote that a appears in the sequence s and if u ∈ H≤`
then then we let Fct(u) = {h | h ∈ u}.

Definition 2.2.2. Assume F ⊆ H, ` ∈ M and X ⊆ F . We say that T F ⊆ F≤` is
an L-tree of height ` over X in F if:

(i) ∅ 6= T F ∈M,
(ii) for every u, s ∈ F≤`: if s ∈ T F and u v s then u ∈ T F and finally
(iii) for every u ∈ TF , for every function symbol F ∈ L and any f̄ ∈ Fct(u)∪X :

if len(u) < ` then u_FM ◦ f̄ ∈ TF .
Moreover if T F is such a tree, i ≤ ` and u ∈ T F then we denote by T Fi [u] the

set {s ∈ T F ∩ F≤i | s v u or u v s} and by T F [u] the set T F` [u].

Observe that if T F is as above, then any u ∈ T F has an extension in T F which
is of length i for any i ∈ [len(u), `]. The following example illustrates the definition
above and is used in Construction B of [Gar15] which we will derive in the next
chapter.
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Example 2.2.3. (SLP) Suppose ` ∈ M, X ⊆ H with ∅ 6= X ∈ M and L contains
finitely many function symbols. We say that a straight-line program (SLP for short)
over L and X of size ` is a sequence of functions y0, y1, . . . , y`−1 of the following form:
for i < ` the i−th function yi equals to FM◦(yi0 , . . . , yir−1 , f0, . . . , fk−1) where F ∈ L
is some (r + k)-ary function symbol, ij < i for all j < r and f0, f1, . . . , fk−1 ∈ X .
We denote by SLP`(X ) the set of all SLP programs over L and X of size ` and by
SLP≤`(X ) the set of all SLP programs over L and X of size ≤ `. Finally we let
FCT`(X ) = X ∪

⋃
P∈SLP`

Fct(P ).
Then SLP≤`(X ) is an L-tree of height ` over X in FCT`(X ). Indeed, since

∅ 6= X ∈ M, ` ∈ M and L contains finitely many function symbols we have that
∅ 6= SLP≤`(X ) ∈M. Moreover if P ∈ SLP≤`(X ) then P ′ ∈ SLP≤`(X ) for any P ′ v P
and finally if P ∈ SLP≤`(X ), h̄ ∈ Fct(P ) ∪ X , F ∈ L is a function symbol and P is
of size < ` (i.e. len(P ) < `) then P_(FM ◦ h̄) ∈ SLP≤`(X ).

Definition 2.2.4. Let m ∈ M, A ⊆ H and ϕ(x, z̄) be an L(H)-formula. We say
that ϕ(x, z̄) is m-good for A if there is ḡ ∈ A with 〈〈ϕ(c0, ḡ)〉〉Ω = Ω and for any
h̄ ∈ H, 〈〈ϕ(cm, h̄)〉〉Ω = ∅.

The following observation shows that we will only need to consider m-good for-
mulae in our construction.

Observation 2.2.5. Assume +, 0, 1 ∈ L, m ∈ M, m > 0, F ⊆ H is an L-closed
family of functions with cm ∈ F and

Γm = {∃z̄ϕ(x, z̄) | ϕ(x, z̄) ∈ ∆<ñ
0 (L(F)) and ϕ(x, z̄) is m-good for F}.

Assume further that V is a filter and ∆<ñ
0 (L)-formulae are  Los for F/V. Then

F/V |= ∃∆<ñ
0 (L)− IND≤c

V
m whenever F/V |= Γm − IND≤c

V
m.

Proof. Assume ψ(x, ȳ, z̄) ∈ ∆<ñ
0 (L), f̄ ∈ F and F/V |= ∃z̄ψ(c0, f̄

V , z̄)∧∀z̄¬ψ(cVm, f̄
V , z̄).

We have to show that there is α ∈ F with F/V |= α < cVm∧∃z̄ψ(α, f̄V , z̄)∧∀z̄¬ψ(α+
1, f̄V , z̄).

To do so, let ϕ(x, z̄) be the L(F)-formula x = c0 ∨ (x 6= cm ∧ ψ(x, f̄ , z̄)) Then
for some (in fact for any) ḡ ∈ F , M |= 〈〈ϕ(c0, ḡ)〉〉Ω = Ω and for any h̄ ∈ H, M |=
〈〈ϕ(cm, h̄)〉〉Ω = ∅ and so ϕ(x, z̄) is m-good for F and in particular ϕ(x, z̄) ∈ Γm.
Since ∆<ñ

0 (L)-formulae are  Los for F/V this gives F/V |= ∃z̄ϕ(cV0 , z̄)∧∀z̄¬ϕ(cVm, z̄).

Since F/V |= ∃z̄ϕ(x, z̄)− IND≤c
V
m by the assumption on Γm, there is α ∈ F/V with

F/V |= α < cVm ∧ ∃z̄ϕ(α, z̄) ∧ ∀z̄¬ϕ(α + 1, z̄). But then F/V |= ∃z̄ψ(α, f̄V , z̄) ∧
∀y¬ψ(α + 1, f̄V , z̄) by the definition of ϕ(x, z̄) which finishes the argument.

In the following paragraphs we describe the main idea of the construction which
is deeply inspired by [Gar15, Theorem 3.4].

Suppose +, 0, 1 ∈ L, m, ` ∈ M are non-standard {cw | w ≤ max(n,m)} = X ⊆
F ⊆ H with X ,F ∈ M and T F is an L-tree of height ` over X in F . Assume D is
a family of dense-ג sets on B for some ג : [0,#(Ω)]Q → [0,#(Ω)]Q. Finally assume
that a certain relation (E) between #(Ω),#(F), `, n,m and ג holds.

We will describe the main idea behind the construction of an L-closed set K
with X ⊆ K ⊆ F and a filter V interesting all sets from D such that K/V |=
∃∆<ñ

0 (L)− IND≤c
V
m .
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Assuming Γm is as in the Observation 2.2.5 we get that to ensure K/V |=
∃∆<ñ

0 (L)− IND≤c
V
m it suffices to ensure that K/V |= Γm− IND≤c

V
m and that ∆<ñ

0 (L)
formulae are  Los for K/V .

To do so, we will inductively construct a decreasing sequence (Ak)k∈N of sets
from B and a v-increasing sequence (sk)k∈N of elements from T F such that we can
let K = X ∪

⋃
k∈N Fct(sk) and V be the filter generated by {Ak}k∈N.2

Suppose {Dk}k∈N is some enumeration of D. By (E) we will wlog asume that
D

∆<ñ
0 (L)− Los ⊆ D. Once we will be done, this will ensure that ∆<ñ

0 (L) formulae will

be  Los for K/V . Let {ϕk(x, z̄)}k∈N be some enumeration of ∆<ñ
0 (L(F))-formulae

which are m-good for F such that every formula appears infinitely many times.
Moreover let H be the set of tuples (h̄, F ) where h̄ ∈ F , F ∈ L is a function symbol
and the length of h̄ match the arity of F . Finally let {(h̄, F )k}k∈N be an enumeration
of H such that every tuple appears infinitely many times.

We start with A0 = Ω and s0 = ∅. At each step k + 1
(a) we try to ensure that K/V |= ∃z̄ϕk(x, z̄) − INDcVm (assuming ϕk(x, z̄) is an

L(K) formula)
(b) for (h̄, F )k we ensure that FM ◦ h̄ ∈ K whenever h̄ ∈ Fct(sk) ∪ X and finally
(c) we ensure that Dk gets intersected by V .
For (a) we check whether ϕ(x, z̄) is m-good for X ∪ Fct(sk). If not then we skip

to (b). Otherwise we will use induction in M for a suitable formula with parameters
sk, Ak,Ω, T F ,X . It will be crucial for this step that T F [sk],X ∈ M (and of course
Ω ∈ M) and that (E) holds. Using the suitable formula we will show there is
Bk ⊆ Ak such that if Bk ∈ V and ∆<ñ

0 (L)-formulae are  Los for K/V then K/V |=
∃zϕk(x, z̄) − INDcVm (assuming ϕ(x, z̄) is an L(K) formula). This will also give us
some extension s′k+1 ∈ T F of sk. The purpose of the extension is that if it happens
that K/V |= ∃z̄ϕ(0, z̄) ∧ ∀z̄¬ϕ(cVm, z̄) then there will be w < m and a witness h̄ ∈
Fct(sk′+1) ∪ X for K/V |= ∃z̄ϕ(cUw, z̄) ∧ ∀z̄¬ϕ(cUw + 1, z̄).

To ensure (b) we simply go to an extension sk+1 = s′k+1
_FM ◦ h̄ ∈ T F which

exists by the definition of T F whenever h̄ ∈ Fct(sk) ∪ X (where s′k+1 = sk in the
case that (a) was skipped). Finally to ensure that Dk will be intersected by V we
let Ak+1 ∈ Dk be such that Ak+1 ⊆ Bk and #(Ak+1) ≥ ((Bk)#)ג where Bk = Ak in
case that the step (a) was skipped.

By the yet unspecified relation (E) we will get that `− len(sk+1) is non-standard
and that the Bk can be chosen to be big enough so that #(Ak+1) is non-standard as
well. This will ensure that the induction can be proceeded for infinitely many steps.

Finally K/V |= ∃∆<ñ
0 (L)− IND≤c

V
m will follow by {Ak}k∈N ⊆ V or more precisely

by {Bk}k∈N ⊆ V and the Observation 2.2.5 since ∆<ñ
0 (L)-formulae will be  Los for

K/V by the assumption on D made at the beginning.

The following lemma will be used to ensure the step (a) in the construction
described above. The idea of this proof is thanks to [Gar15].

Lemma 2.2.6. Suppose X ⊆ F ⊆ H, X ,F ∈ M and T F is an L-tree of height `
over X in F . Let m ∈M and let further t : QM×[0,m]Q → QM and s : [0,m]→ [0, `]

2We will need to construct one more auxiliary sequence of elements from M. However, the role
of this sequence is only technical and so we will not comment on this here.
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be functions definable in M such that for any A ∈ B and w < m: #(A) ≥ t(#(A), 0),
t(#(A),m) > 0 and s(w + 1) ≥ s(w).

Now suppose u ∈ T F with len(u) = s(0) and ϕ(x, z̄) is an L(H)-formula which
is m-good for Fct(u)∪X . Then for any A ∈ B there is B ∈ B and w < m such that:

(i) B ⊆ A,
(ii) there is s ∈ T Fs(w)[u] and ḡ ∈ Fct(s) ∪ X such that B ⊆ 〈〈ϕ(cw, ḡ)〉〉Ω,

(iii) for any s′ ∈ T Fs(w+1)[u] and h̄ ∈ Fct(s′) ∪ X : B ∩ 〈〈ϕ(cw+1, h̄)〉〉Ω = ∅ and

(iv) #(B) ≥ minw<m{t(#(A), w) −#(F)rt(#(A), w + 1)} where r is the length
of z̄.

Proof. Let A ∈ B be given. Since ϕ(x, z̄) is m-good for Fct(u)∪X and len(u) = s(0)
i.e. u ∈ TFs(0)[u] we have that

M |= ∃s′ ∈ T Fs(0)[u]∃h̄ ∈ Fct(s′) ∪ X : #(A ∩ 〈〈ϕ(0, h̄)〉〉Ω ) = #(A)

and
M |= ∀s′ ∈ T Fs(m)[u]∀h̄ ∈ Fct(s′) ∪ X : #(A ∩ 〈〈ϕ(cm, h̄)〉〉Ω ) = 0.

Since #(A) ≥ t(#(A), 0) and t(#(A),m) > 0 we have that

M |= ∃s′ ∈ T Fs(0)[u]∃h̄ ∈ Fct(s′) ∪ X : #(A ∩ 〈〈ϕ(0, h̄)〉〉Ω ) ≥ t(#(A), 0)

and

M |= ∀s′ ∈ T Fs(m)[u]∀h̄ ∈ Fct(s′) ∪ X : #(A ∩ 〈〈ϕ(cm, h̄)〉〉Ω ) < t(#(A),m).

Thus we can use induction in M for the formula

ψ(x) = ∃s′ ∈ T Fs(x)[u]∃h̄ ∈ Fct(s′) ∪ X : #(A ∩ 〈〈ϕ(cx, h̄)〉〉Ω ) ≥ t(#(A), x)3

to get w < m and s, ḡ ∈M with

M |= s ∈ T Fs(w)[u] ∧ ḡ ∈ Fct(s) ∪ X ∧#(A ∩ 〈〈ϕ(cw, ḡ)〉〉Ω ) ≥ t(#(A), w)

and

M |= ∀s′ ∈ T Fs(w+1)[u]∀h̄ ∈ Fct(s′) ∪ X : #(A ∩ 〈〈ϕ(cw+1, h̄)〉〉Ω ) < t(#(A), w + 1).

Now let r ∈ N be the length of the tuple z̄ in ϕ(x, z̄) and set C = {h̄ ∈ F r | h̄ ∈
Fct(s′) ∪ X for some s′ ∈ T Fs(w+1)[u]} and

B = A ∩ 〈〈ϕ(cw, ḡ)〉〉Ω −
⋃
{〈〈ϕ(cw+1, h)〉〉Ω | h ∈ C}

then (i),(ii),(iii) clearly holds. Finally to show (iv) consider the following estimations
for #(B):

#(B) ≥ #(A ∩ 〈〈ϕ(cw, ḡ)〉〉Ω)−
∑
h∈C

#(A ∩ 〈〈ϕ(cw+1, h)〉〉Ω)

≥ t(#(A), w)−#(C)t(#(A), w + 1) ≥ min
w<m
{t(#(A), w)−#(F)rt(#(A), w + 1)}

by C ⊆ F r and so #(C) ≤ #(F)r.

3we are using the convention discussed at the beginning and writting t(#(A),x) in place of
t(#(A),x/1)
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Now we can finally state the theorem of this section:

Theorem 2.2.7. Assume +, 0, 1 ∈ L, m, ` ∈ M and {cv | v ≤ max(m,n)} ⊆ X ⊆
F ⊆ H with X ,F ∈ M. Suppose there exists an L-tree of height ` over X in F .
Moreover suppose:

- ג : [0,#(Ω)]Q → [0,#(Ω)]Q is a non-decreasing function with (x)ג ≤ x/(n + 1)
on [0,#(Ω)]Q,

- D is a countable family of dense-ג sets on B,

- k : [0,#(Ω)]Q → [0,#(Ω)]Q is such that k(x) = x#(F)a−1−1)ג
#(F)am−1 ) for some M-

rational a > 1.
Finally assume that (E):

for any k ∈ N : k(k)(#(Ω)) > N and
`

mk
> N.

Then there is an L-closed K ⊆ H with X ⊆ K ⊆ F and a filter V intersecting all
sets from D such that ∆<ñ

0 (L)-formulae are  Los for K/V and

K/V |= ∃∆<ñ
0 − IND≤c

V
m .

Moreover if α ∈ K/V is such that K/V |= α ≤ cVn then there is v ≤ n such that
K/V |= α = cVv .

Proof. First we wlog assume D
∆<ñ

0 − Los ⊆ D. This is possible as (x)ג ≤ x/(n + 1)

on [0,#(Ω)]Q and D
∆<ñ

0 − Los is a countable family of x/(n + 1)-dense sets by the

Observation 2.1.6 and its definition.
Let D = {Dk}k∈N be some enumeration of D. Denote by G the a set of formulae

ϕ(x, z̄) ∈ ∆<ñ
0 (L(F)) which are m-good for F . Let further {(ϕk(x, z̄)}k∈N be an

enumeration of G such that every formula appears infinitely many times. Moreover
denote by H the set of tuples (h̄, F ) such that F ∈ L is an r-ary function symbol for
some r and f̄ ∈ F an r-tuple. Finally let {(h̄, F )k}k∈N be an enumeration of H such
that every tuple appears infinitely many times. 4 Note that by the assumption on
L made in the beginning of this section L is countable. Moreover as H is countable
as well (see the comment on the beginning of this section) we get that G and H are
countable and so such enumerations exist.

Let T F be an L-tree of height ` over X in F . We construct a decreasing sequence
(Ak)k∈N of elements from B, an v-increasing sequences (sk)k∈N of elements from T F
and a sequence (rk)k∈N of elements ≤ ` from M such that for every k ∈ N:

(a) rk − len(sk) ≥ `
m2k and if k > 0 then sk−1 v sk, rk ≤ rk−1

(b) if k > 0 then Ak ∈ Dk−1

(c) if k > 0 and ϕk−1(x, z̄) is m-good for Fct(sk−1)∪X then there is ḡ ∈ Fct(sk)∪
X and w < m such that Ak ⊆ 〈〈ϕ(cw, ḡ)〉〉Ω and for any s′ ∈ T Frk [sk] and h̄ ∈
Fct(s′) ∪ X , Ak ∩ 〈〈ϕ(cw+1, h̄)〉〉Ω = ∅.

(d) if k > 0 and (h̄, F )k is such that h̄ ∈ Fct(sk−1) ∪ X then FM ◦ h̄ ∈ sk and
(e) there is q ∈ N such that #(Ak) ≥ k(q)(#(Ω))

Then we let K = X ∪
⋃
k∈N Fct(sk) and V be the filter generated by {Ak}k∈N.

4Taking ϕ(x, z̄) ∈ ∆<ñ
0 (L(H)) in place of ϕ(x, z̄) ∈ ∆<ñ

0 (L(F)) with “ϕ(x, z̄) m-good for H” in
place of “ϕ(x, z̄) m-good for F” and f̄ ∈ H in place of f̄ ∈ F would make no difference.
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Base of induction: Let A0 = Ω, s0 = ∅ and r0 = ms for some non-standard s ∈M
with ms ≤ ` which exists by the assumption on `. Then clearly (a) − (e) holds for
A0.

Induction step: Having Ak, sk, rk satisfying properties (a) − (e) constructed we
construct Ak+1, sk+1, rk+1 satisfying (a) − (e). To do so, we will use the previous
lemma. Let s(x) be the function with domain [0,m] defined by s(w) = len(sk) +

wb rk−len(sk)
m

c for every w ≤ m. Then s(0) = len(sk) and for every w < m, s(w +

1) − s(w) = b rk−len(sk)
m

c ≥ rk−len(sk)
m

− 1 ≥ `/m2k+1 − 1 > N by the induction
assumption on sk, rk. Let the function t : [0,#(Ω)]Q × [0,m]Q → M be defined
by t(#(B), w) = #(B)/#(F )paw for any B ∈ B, w ∈ [0,m]Q where a is from the
assumption of the theorem and p ∈ N is the length of z̄ in ϕk(x, z̄). It is not hard to
see that s(x), t(x, y) ∈M and that s(x), t(x, y) satisfies assumptions of the previous
lemma. Moreover for any B ∈ B:

min
w<m
{t(#(B), w)−#(F)pt(#(B), w + 1)} = #(B)(

1

#(F )pa(m−1)
− #(F )p

#(F )pam
)

= #(B)
#(F)pa −Fp

#(F)pam
= #(B)

#(F)p(a−1) − 1

#(F)pam−p
≥ #(B)(

#(F)a−1 − 1

#(F)am−1
)p.

Now if ϕk(x, z̄) is not m-good for Fct(sk) ∪ X then let B = Ak, s
′
k+1 = sk,

rk+1 = s(1) and skip to the next paragraph. Otherwise apply the previous lemma
with the functions t(x, y), s(x) for ϕk(x, z̄), sk and Ak to find a set B ∈ B and w < m
such that:

(i) B ⊆ Ak,

(ii) there is s ∈ T Fs(w)[sk] and ḡ ∈ Fct(s) ∪ X such that B ⊆ 〈〈ϕ(cw, ḡ)〉〉Ω,

(iii) for any s′ ∈ T Fs(w+1)[sk] and h̄ ∈ Fct(s′) ∪ X : B ∩ 〈〈ϕ(cw+1, h̄)〉〉Ω = ∅ and

(iv) #(B) ≥ minw<m{t(#(Ak), w)−#(F )pt(#(Ak), w+1)} ≥ #(Ak)(
#(F)a−1−1
#(F)am−1 )p.

Finally let s′k+1 = s for the s from (ii) and rk+1 = s(w + 1).

In the both cases we get rk+1 − len(s′k+1) ≥ `/m2k+1 − 1.

To ensure (d) consider (h̄, F )k. If h̄ ∈ Fct(sk) ∪ X then let sk+1 = s′k+1
_FM ◦ h̄

otherwise let sk+1 = s′k+1. By the definition of T F we get sk+1 ∈ T F . Moreover
rk − len(sk+1) ≥ rk − len(s′k+1) − 1 ≥ `/m2k+1 − 2 ≥ `/m2k+2 and also rk ≥ rk+1

and sk v sk+1 thus (a) and (d) holds for k + 1.

To ensure (b) let Ak+1 be such that Ak+1 ∈ Dk, #(Ak+1) ≥ ((B)#)ג and Ak+1 ⊆
B. To check that (c) holds for Ak+1 is easy by (i)-(iii) since Ak+1 ⊆ B. To check (e)

we first observe that k(p)(x) ≤ x)ג · dp) where d = (#(F)a−1−1
#(F)am−1 ).5

5By induction on e ≥ 1. The case for e = 1 follows by the definition of k. For e + 1 we have:
x)ג · de+1) ≥ (d(xde)ג)ג = k(ג(x · de)) ≥ k(k(e)(x)) = k(e+1)(x) where the first is by xde ≥ (xde)ג
i.e. xde+1 ≥ d(xde)ג using that ג is non-decreasing and y ≥ (y)ג for y ∈ [0,#(Ω)]Q, then we used
definition of k and for the last inequality we used the induction assumption for e and that ג and
so k is non-decreasing.
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Then we have:

#(Ak+1) ≥ ((B)#)ג ≥ )(Ak)#)ג
#(F)a−1 − 1

#(F)am−1
)p) ≥ k(p)(#(A))

where we used (iv) for B and the observation from the previous paragraph. But
by the induction assumption on Ak there is some q ∈ N with #(Ak) ≥ k(q)(#(Ω))
and so #(Ak+1) ≥ k(p)(k(q)(#(Ω))) ≥ k(p+q)(#(Ω)) because k is non-decreasing
since ג is non-decreasing. Thus (e) holds for Ak+1 and so Ak+1, sk+1, rk+1 satisfying
conditions (a)− (e) has been constructed.

Now let K = X ∪
⋃
k∈N Fct(sk) and V be the filter generated by {Ak}k∈N.

By (d) the set K is L-closed. Indeed, if h̄ ∈ K and a function symbol F ∈ L are
given, then h̄ ∈ Fct(sk) ∪ X for some k ∈ N and thus (h̄, F ) was treated at some
stage k′ > k with the result FM ◦ f̄ ∈ sk′ .

Since V clearly intersects all dense sets from D by the condition (b) of the con-
struction and we assumed D

∆<ñ
0 − Los ⊆ D we have by the Lemma 2.1.7 that ∆<ñ

0 (L)-

formulae are  Los for K/V . Moreover the same lemma gives that if α ∈ K/U is such
that K/V |= α ≤ cVn then there is v ≤ n such that K/V |= α = cVv .

Now we can finally show that K/V |= ∃∆<ñ
0 − IND≤c

V
m . Let ϕ(x, ȳ, z̄) ∈ ∆<ñ

0 (L)
and f̄ ∈ K be given. By the Observation 2.2.5 we can wlog assume that ϕ(x, f̄ , z̄)
is m-good for K. Assume K/V |= ∃z̄ϕ(cV0 , f̄

V , z̄) ∧ ∀z̄¬ϕ(cVm, f̄
V , z̄). We will find

w < m and ḡ ∈ K such that K/V |= ϕ(cVw, f̄
U , ḡ) ∧ ∀z̄¬ϕ(cVw + 1, f̄V , z̄). To do so,

let ḡ0 ∈ K and k0 ∈ N be such that 〈〈ϕ(0, f̄ , ḡ0)〉〉Ω = Ω and ḡ0 ∈ Fct(sk0) ∪ X .
Then ϕ(x, f̄ , z̄) is m-good for Fct(sk0) ∪ X . Now let k ∈ N be such that k ≥ k0 and
ϕ(x, f̄ , z̄) has index k. Since ϕ(x, f̄ , z̄) is m-good for Fct(sk) ∪ X we constructed
Ak+1 satisfying the conclusions of (c). But K ⊆ X ∪ {h ∈ F | h ∈ s ∈ T Frk+1

[sk+1]}
and Ak+1 ∈ V thus by the  Los property of ∆<ñ

0 (L)-formulae for K/V we get that
K/V |= ϕ(cVw, f̄

V , ḡV) ∧ ∀z̄¬ϕ(cVw + 1, f̄V , z̄) for some ḡ ∈ Fct(sk+1) ∪ X and w < m.
This finishes the proof.

The following corollary shows how can this construction be used to give indepen-
dence of ∀∃ L-sentences6 for strictΣb

1(L)−LIND or strictΣb
1(L)−LLIND. Moreover

we will use the following corollary to derive the Construction B of Michal Garĺık in
the next section.

Corollary 2.2.8. Suppose +, 0, 1 ∈ L, m ∈ M with m ≤ n, s ∈ M with s > N
and {id} ∪ {cv | v ≤ max(m,n)} ⊆ X ⊆ F ⊆ H with X ,F ∈ M. Suppose there
exists an L-tree of height ms over X in F and call the tree T F . Assume further
ϕ(x, ȳ, z̄) ∈ ∆<ñ

0 (L), h̄ ∈ X , there is an M-rational q with:

(Q) for any f̄ ∈ F : #(〈〈ϕ(id, f̄ , h̄)〉〉Ω)/#(Ω) ≤ q

and there is a non-standard r ∈M with:

(q) :
n

#(F)2mr
> q and (Ω) : #(Ω) ≥ r#(F)2mr−1(n+ 1).

6i.e. the L-sentences of the form ∀x̄∃ȳϕ(x̄, ȳ) where ϕ(x̄, ȳ) is an open L-formula
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Then there is an L-closed K ⊆ H with X ⊆ K ⊆ F and a filter V such that ∆<ñ
0 (L)-

formulae are  Los for K/V,

K/V |= ∃∆<ñ
0 − IND≤c

V
m and K/V |= ∀ȳ¬ϕ(idV , ȳ, h̄V).

Moreover if α ∈ K/V is such that K/V |= α ≤ cVn then there is v ≤ n such that
K/V |= α = cVv .

In particular, if for any r-ary function symbol F ∈ L there are c, k ∈ N with

M |= ∀y0, y1, . . . , yr−1(|F (y0, y1, . . . , yr−1)| ≤ c(c+ |y1|+ . . .+ |yr|)k)

and there is k ∈ N such that for every hi from the tuple h̄, M |= ∀x ∈ Ω : |hi(x)| < nk

and M |= ∀x ∈ Ω : |x| < nk, then
(i) m = n implies strictΣb

1(L)− LIND + ∃x, z̄∀ȳ¬ϕ(x, ȳ, z̄) is consistent and
(ii) m = |n| implies strictΣb

1(L)− LLIND + ∃x, z̄∀ȳ¬ϕ(x, ȳ, z̄) is consistent.

Proof. Let D = DErrFΩ (ϕ(x,ȳ,h̄)) and ג : [0,#(Ω)]Q → [0,#(Ω)]Q be defined by (x)ג =

(x − q#(Ω))/(n + 1). Then clearly (x)ג ≤ x/(n + 1) (on [0,#(Ω)]Q). Moreover
by the Lemma 2.1.8 and the assumption (Q) the set D is a countable family of
(x− q#(Ω))-dense sets and thus a countable family of dense-ג sets.

We want to use the previous theorem for F , T F , n,m,D, ` = ms which suffices to
finish the argument. Indeed, the only property of K/V obtained in this way which
is not directly given by the previous theorem is that K/V |= ∀ȳ¬ϕ(idV , ȳ, h̄V). But
this will follow by the Lemma 2.1.8 as V intersects all sets from DErrFΩ (ϕ(x,ȳ,h̄)). The
in particular part is a direct application of the Lemma 2.2.1 since the assumption on
h̄ and id gives h̄V , idV ∈ {α ∈ K/V | K/V |= α < ñk for some k ∈ N} = K/V ′ and
ϕ(x, ȳ, z̄) is absolute between K/V ′ and K/V as {cVw | w ≤ n} is an initial segment
of K/V and K/V ′.

To use the previous theorem in this setting we need to ensure the inequalities
(E). But since s > N we have that ms/mk > N for every k ∈ N and thus the first
inequality holds. To ensure the second inequality we will pick a = 2 and make some
estimations on k (see the previous theorem) in other words:

Let f(x) = #(F)x, d = f(1)−1
f(2m−1)

and k(x) = (xd)ג = (xd− q#(Ω))/(n+ 1). Once

we show that for every k ∈ N, k(k)(#(Ω)) > N the argument will be finished.

Claim 2.2.9. Let c = d/(n+ 1) then for any k ∈ N,

k(k)(#(Ω)) ≥ #(Ω)(ck − q

n+ 1

1− ck

1− c
).

Proof. Induction on k. The case for k = 0 is clear. For k + 1 we have:

k(k+1)(#(Ω)) = k(k(k)(#(Ω))) = [dk(k)(#(Ω))− q#(Ω)]/(n+ 1)

= #(Ω)[d(ck− q

n+ 1

1− ck

1− c
)− q]/(n+ 1) = #(Ω)[

d

n+ 1
(ck− q

n+ 1

1− ck

1− c
)− q

n+ 1
]

= #(Ω)[ck+1 − c q

n+ 1

1− ck

1− c
− q

n+ 1
] = #(Ω)[ck+1 − q

n+ 1
(c

1− ck

1− c
+ 1)]

= #(Ω)(ck+1 − q

n+ 1

1− ck+1

1− c
).
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We will need those claims:

Claim 2.2.10. For any non-standard r ∈M and k ∈ N:

#(Ω)(ck − q

n+ 1

1− ck

1− c
) ≥ #(Ω)(cr − q

n+ 1

1− cr

1− c
)

Proof. The function d(x) = #(Ω)(cx − q
n+1

1−cx
1−c ) is definable in M. It is easy to see

that M |= ∀x(d(x) ≥ d(x + 1)) since M |= ∀x > 0(cx < 1) and so M |= ∀x, y(x <
y → d(x) ≥ d(y)).

Claim 2.2.11. For any r ∈M with r > 1,

#(Ω)(cr − q

n+ 1

1− cr

1− c
) ≥ #(Ω)f(1)(f(−2mr)− q

(n+ 1)
).

Proof. Using f(1) ≥ n+ 1 we have that

1− cr

1− c
≤ 1

1− c
=

f(2m− 1)(n+ 1)

f(2m− 1)(n+ 1)− f(1) + 1
≤ f(2m)

f(2m− 1)(n+ 1)− f(1)
≤ f(1)

and using (n+ 1)r ≤ f(r)

cr =
(f(1)− 1)r

f(r(2m− 1))(n+ 1)r
≥ f(1)

f(r(2m− 1))(n+ 1)r
≥ f(1)

f(2mr)
= f(1 − 2mr).

And so

#(Ω)(cr− q

n+ 1

1− cr

1− c
) ≥ #(Ω)(f(1−2mr)−qf(1)

n+ 1
) = #(Ω)f(1)(f(−2mr)− q

(n+ 1)
)

Thus to ensure that for any k ∈ N, k(k)(#(Ω)) > N it suffices to ensure that
there is r, s > N with

#(Ω)f(1)(f(−2mr)− q

(n+ 1)
) = #(Ω)f(1)(

(n+ 1)− qf(2mr)

f(2mr)(n+ 1)
) > s.

To do so, assume r is from the assumption of this theorem. Since (q) holds we have
that (n+ 1)− qf(2mr) > 0 and so the last inequality is equivalent to

#(Ω)f(1) >
sf(2mr)(n+ 1)

(n+ 1)− qf(2mr)
.
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Since (q) also gives (n+ 1)− qf(2mr) > 1 we have that to ensure the last inequality
it suffices to ensure #(Ω)f(1) ≥ sf(2mr)(n+ 1) which is equivalent to

#(Ω) ≥ sf(2mr − 1)(n+ 1).

But since (Ω) holds we can take s = r and we are done.

In the Section 3 we will give an example of a construction from [Gar15] with a set
of functions defined by Straight-line programs for which the estimations (q) and (Ω)
from the corollary above can be established. Now we will give one more statement
connected to the theorem above which we will also need in the Section 3.

Assume K ⊆ H is an L-closed family of functions and a ∈ Ω. Then we denote by
〈a〉K the substructure of M (in language L) with domain {f(a) | f ∈ K}. It is easy
to see that if we let V to be an ultrafilter generated by the set {a} then K/V ∼= 〈a〉K
via i : fV 7→ f(a). Thus the following lemma can be considered as a special case of
the previous theorem. Note that we will not need F ∈M.

Lemma 2.2.12. Assume +, 0, 1 ∈ L, `,m ∈M, {id}∪{cv | v ≤ max(n,m)} ⊆ X ⊆
F ⊆ H with X ∈M. Suppose T F is an L-tree of height ` over X in F and suppose
further that for every k ∈ N: `

mk > N.
Then for any a ∈ Ω there is K ⊆ H with X ⊆ K ⊆ F such that

〈a〉K |= ∃∆<ñ
0 − IND≤m and [0, n] is an initial segment of 〈a〉K.

Proof. Denote by G the a set of formulae ϕ(x, f̄ , z̄) where ϕ(x, ȳ, z̄) ∈ ∆<ñ
0 (L), f̄ ∈ F

and ϕ(x, f̄ , z̄) is m-good for F . Let further {(ϕk(x, f̄ , z̄)}k∈N be an enumeration of
G such that every formula appears infinitely many times. Moreover denote by H
the set of tuples (h̄, F ) such that F ∈ L is an r-ary function symbol for some r and
f̄ ∈ F an r-tuple. Finally let {(h̄, F )k}k∈N be an enumeration of H such that every
tuple appears infinitely many times.

To find a suitable set of functions K we proceed similarly as in the proof of
the previous theorem. Namely we construct an v-increasing sequences (sk)k∈N of
elements from T F and a sequence (rk)k∈N of elements ≤ ` from M such that for
every k ∈ N:

(a) rk − len(sk) ≥ `
m2k and if k > 0 then sk−1 v sk, rk ≤ rk−1

(b) if k > 0 and ϕk−1(x, f̄ , z̄) is m-good for Fct(sk)∪X then there is ḡ ∈ Fct(sk)∪
X and w < m such that M |= ϕk−1(w, f̄(a), ḡ(a)) and for any s′ ∈ T Frk [sk] and
h̄ ∈ Fct(s′) ∪ X , M |= ¬ϕk−1(w + 1, f̄(a), h̄(a).

(c) if k > 0 and (h̄, F )k−1 is such that h̄ ∈ Fct(sk−1) ∪ X then FM ◦ h̄ ∈ sk
Then we let K = X ∪

⋃
k∈N Fct(sk).

Let s0 = ∅, r0 = `, then s0, r0 satisfies (a) − (c). Assume sk, rk are constructed,
to construct sk+1, rk+1 let s(x) ∈ M be the function with domain [0,m] defined as

s(w) = len(sk) + wb rk−len(sk)
m

c for every w ≤ m. If ϕk(x, f̄ , z̄) is not m-good for
Fct(sk) ∪ X then let s′k+1 = sk, rk+1 = s(1) and skip the rest of this paragraph.
Otherwise, since ϕk(x, f̄ , z̄) is m-good for Fct(sk) ∪ X we have that

M |= ∃s′ ∈ T Fs(0)[sk]∃ḡ ∈ Fct(s′) ∪ X : 〈〈ϕ(c0, f̄ , ḡ)〉〉Ω = Ω
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and

M |= ∀s′ ∈ T Fs(m)[sk]∀ḡ ∈ Fct(s′) ∪ X : 〈〈ϕ(cm, f̄ , ḡ)〉〉Ω = ∅.

This gives

M |= ∃s′ ∈ T Fs(0)[sk]∃ḡ ∈ Fct(s′) ∪ X : ϕ(0, f̄(a), ḡ(a))

and

M |= ∀s′ ∈ T Fs(m)[sk]∀ḡ ∈ Fct(s′) ∪ X : ¬ϕ(m, f̄(a), ḡ(a)).

Thus we can use induction in M for the formula

ψ(x) = ∃s′ ∈ T Fs(x)[sk]∃ḡ ∈ Fct(s′) ∪ X : ϕ(x, f̄(a), ḡ(a))

to get w < m and s, ḡ ∈M such that

M |= s ∈ T Fs(w)[sk] ∧ ḡ ∈ Fct(s) ∪ X ∧ ϕ(w, f̄(a), ḡ(a))

and

M |= ∀s′ ∈ T Fs(w+1)[sk]∀h̄ ∈ Fct(s′) ∪ X : ¬ϕ(w + 1, f̄ , h̄(a)).

Finally we can let s′k+1 = s and rk+1 = s(w + 1).
In both cases we get rk+1 − len(s′k+1) ≥ b(rk − len(sk))/mc ≥ b`/m2k+1c ≥

`/m2k+1− 1 using the induction assumption on sk, rk. To ensure (c) consider (h̄, F )k
and assume h̄ ∈ Fct(sk)∪X . Then we let sk+1 = s′_k+1(FM◦ h̄) which is in T F by the
definition of T F . Then rk− len(sk+1) ≥ rk− len(s′k+1)−1 ≥ `/m2k+1−2 ≥ `/m2k+2

and clearly sk v sk+1, rk ≥ rk+1 and so (a) holds for k + 1. It is easy to see that (b)
and (c) holds for k + 1. Thus the sequences described above has been constructed.

Now we can let K = X ∪
⋃
k∈N Fct(sk). To see it is L-closed is easy by (c)

and so 〈a〉K is a well-defined substructure of M. Since {cv | v ≤ max(m,n)} ⊆ X
we get [0,m] ⊆ 〈a〉K. Moreover [0, n] is an initial segment of 〈a〉K and so we get
that ∆<ñ

0 (L)-formulae are absolute between 〈a〉K and M. To show that 〈a〉K |=
∃∆<ñ

0 (L)−IND≤m let a ϕ(x, ȳ, z̄) ∈ ∆<ñ
0 (L)-formula and b̄ ∈ 〈a〉K be given. Suppose

〈a〉K |= ϕ(0, b̄, c̄) ∧ ∀x̄¬ϕ(m, b̄, x̄) for some c̄ ∈ 〈a〉K. Let f̄ , ḡ ∈ K be such that
b̄ = f̄(a) and c̄ = ḡ(a) and let further k ∈ N be such that ḡ ∈ Fct(sk) ∪ X . Since
〈a〉K ∼= K/V for an ultrafilter V with {a} ∈ V we can apply the Lemma 2.2.5 on 〈a〉K
and wlog assume ϕ(x, f̄ , z̄) is m-good and so ϕ(x, f̄ , z̄) is m-good for Fct(sk) ∪ X .
Let k′ > k be such that ϕ(x, f̄ , z̄) has index k′. Then at step k′ + 1 we found
w < m such that there is ḡ′ ∈ Fct(sk′+1) ∪ X with M |= ϕ(w, f̄(a), ḡ′(a)) and for
any s′ ∈ T Frk′+1

[sk′+1] and any h̄ ∈ Fct(s′)∪X , M |= ¬ϕ(w+ 1, f̄(a), h̄(a)). But since

K ⊆ X ∪ {h ∈ s | s ∈ T Frk′+1
[sk′+1]} and ∆<ñ

0 (L)-formulae are absolute between 〈a〉K
and M this gives 〈a〉K |= ϕ(w, b̄, ḡ′(a)) ∧ ∀z̄¬ϕ(w + 1, b̄, z̄) and we are done.

In the following lemma we denote by LBUSS(g) the language LBUSS ∪ {g} where
g is some function symbol its interpretation in M is an M-definable function such
that there is c, k ∈ N with M |= ∀x ∈ Ω : |g(x)| ≤ c+ c|x|k).

Corollary 2.2.13. Let g ∈ Lall be a function symbol, ` ∈ M, {id} ∪ {cv | v ≤
max(n,m)} ⊆ X ⊆ F ⊆ H with X ∈M and assume there exists an L-tree of height
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` over X in F . Finally assume ϕ(x, y) is an LBUSS(g)-formula such that there is
a ∈M and k ∈ N with:

M |= |a| < nkand for any f ∈ F : M |= ¬ϕ(a, f(a)).

Then
(i) if for any k ∈ N : `/|n|k > N then strictΣb

1(LBUSS(g))−LIND+∃x∀y¬ϕ(x, y)
is consistent and

(ii) if for any k ∈ N : `/nk > N then strictΣb
1(LBUSS(g))−LLIND+∃x∀y¬ϕ(x, y)

is consistent.

Proof. Using the lemma above with L = LBUSS(g) ∪ {ñ} and m = n in case (i) and
m = |n| in case (ii) there is an LBUSS(g)-closed K ⊆ H with 〈a〉K |= ∃∆<ñ

0 − IND≤n

in case (i) and 〈a〉K |= ∃∆<ñ
0 − IND≤|n| in case (ii). By the assumption on a and

F in both cases 〈a〉K |= ∀y¬ϕ(a, y). But since in both cases 〈a〉K |= |a| < ñk as
M |= |a| < nk, (i) and (ii) follows from the Lemma 2.2.1.

2.3 Proof of the Lemma 2.2.1

Recall the statement of the Lemma 2.2.1:

Let Lall ⊇ L′ ⊇ LBUSS and K be an infinite L′-structure with m ∈ K such that

K |= Th∀∆<ñ
0 (L′)(M) and K |= BASIC and K |= ∃∆<ñ

0 (L′)− IND≤m.

Suppose further that (L):
For any r-ary function symbol F ∈ L′ there are c, k ∈ N with

M |= ∀y0, y1, . . . , yr−1(|F (y0, y1, . . . , yr−1)| ≤ c(c+ |y1|+ . . .+ |yr|)k).

Then K ′ = {b ∈ K | K |= |b| < ñk for some k ∈ N} is a domain of a structure
K′ ≤ K and

(i) if K |= ñ = m then K′ |= strictΣb
1(L′)− LIND and

(ii) if K |= |ñ| = m then K′ |= strictΣb
1(L′)− LLIND.

Proof. We separate the proof of this lemma into four claims. The first claim shows
the main proof idea:

Claim 2.3.1. Assume
(a) K |= ∃∆<ñ

0 (L′)− IND≤m
k

for all k ∈ N and
(b) for any w, p̄ ∈ K′ and any ϕ(x̄, ȳ) ∈ strictΣb

1(L′) there is a ψ(x̄, ȳ) ∈ ∃∆<ñ
0 (L′)

such that K |= ∀x̄ < w(ϕ(x̄, p̄)↔ ψ(x̄, p̄)) and
(c) bounded L′-formulae are absolute between K′ and K.
Then (i) and (ii) holds.

Proof. To show (i) assume K′ |= ñ = m and let ϕ(x, ȳ) ∈ strictΣb
1(L′) and p̄ ∈ K′ be

given. To show K′ |= ϕ(x, p̄)− LIND it suffices to show that for any w ∈ K′:

K′ |= ϕ(x, p̄)−IND≤|w| i.e. K′ |= ϕ(0, p̄)∧∀x < |w|(ϕ(x, p̄)→ ϕ(x+1, p̄))→ ϕ(|w|, p̄).
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Since ϕ(x, p̄)− IND≤|w| is a bounded L′(K′)-sentence, this holds by (c) if and only if
for any w ∈ K′, K |= ϕ(x, p̄)− IND≤|w|.

To show this let w ∈ K′ be given. As p̄, w ∈ K′ there is by (b) a formula
ψ(x, ȳ) ∈ ∃∆<ñ

0 (L′) such that K |= ∀x < w(ϕ(x, p̄) ↔ ψ(x, p̄)). By (a) we get

K |= ψ(x, ȳ) − IND≤ñ
k

for any k ∈ N (using the assumption K |= ñ = m). Finally
since K |= |w| < ñk for some k ∈ N by the definition of K ′ we have that K |=
ψ(x, ȳ) − IND≤|w| i.e K |= ψ(x, p̄) − IND≤|w| and so K |= ϕ(x, p̄) − IND≤|w| which
finishes the argument for (i).

The argument for (ii) is similar but with ϕ(x, p̄)− IND≤||w|| in place of ϕ(x, p̄)−
IND≤|w| where K′ |= |ñ| = m gives ||w|| < k|ñ| for some k ∈ N and (a) gives

K |= ∃∆<ñ
0 (L′)− IND≤|ñ|

k

for all k ∈ N i.e. K |= ϕ(x̄, p̄)− IND≤||w||.

Thus once we show that (a),(b) and (c) holds we are done.

Claim 2.3.2 ((a) holds). For all k ∈ N, K |= ∃∆<ñ
0 (L′)− IND≤m

k

.

Proof. Since we will give a folklore argument we only sketch the proof idea and leave
it to the reader to fill in the details.

Observe that it suffices to show that for any a, b ∈ K, if ∃∆<ñ
0 (L′)-induction

holds in K up to a and up to b then it holds in K up to a · b. Assume a, b ∈ K and
∆<ñ

0 (L′)-induction holds in K up to a and up to b. To show K |= ∃∆<ñ
0 (L′)− IND≤ab

let ϕ(x) ∈ ∃∆<ñ
0 (L′(K)) be given and assume K |= ϕ(0) ∧ ¬ϕ(a · b). Let ψ(x) =

ϕ(a · x), then either K |= ¬ϕ(a) and thus we can use induction up to a in K for
ϕ(x) to get w ≤ with K |= ϕ(w) ∧ ¬ϕ(w + 1) and we are done. Or K |= ϕ(a)
and then K |= ψ(1) ∧ ¬ψ(b). It is not hard to see that induction up to b in K for
a suitable ψ′ ∈ ∃∆<ñ

0 (L′) gives w < b such that K |= ψ(w) ∧ ¬ψ(w + 1) and so
K |= ϕ(a · w) ∧ ¬ϕ(a · (w + 1)). But since the interval [a · w, a · (w + 1)] is of length
a + 1 we can find using induction up to a in K (again by going to some suitable
ψ′′ ∈ ∃∆<ñ

0 (L′)) a witness w′ ∈ [a ·w, a · (w + 1)] such that K |= ϕ(w′) ∧ ¬ϕ(w′ + 1)
and we are done.

For the next claim we will need the following observation where D denotes the
set of L′-formulae with each quantifier strictly bounded by ñk for some k ∈ N (i.e.
the k can differ among the quantifiers of a formula from D).

Observation 2.3.3. For any ϕ(x̄) ∈ D there is ψ(x̄) ∈ ∆<ñ
0 (L′) such that K |=

∀x̄(ϕ(x̄)↔ ψ(x̄)).

Proof. We will proceed by induction on a number of quantifiers q in the formula
ϕ(x̄) ∈ D which we can wlog assume is in a prenex form. The case when q = 0
is clear as then ϕ(x̄) is an open formula. Now assume ϕ(x̄) = ∃y < ñkψ(y, x̄) for
some k ∈ N and for some ψ(y, x̄) for which the induction hypothesis holds. Let
sk(y0, . . . , yk−1) = y0 + y1 · ñ+ . . .+ yk−1 · ñk−1. It is not hard to see that

M |= ∀y[y < ñk ↔ ∃y0 < ñ, . . .∃yk−1 < ñ(y = sk(y0, . . . , yk−1))]
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which is a ∀∆<ñ
0 (L′)-sentence and thus also valid in K. Now let ψ′(y, x̄) ∈ ∆<ñ

0 (L′)
be such that K |= ∀x, ȳ(ψ(x, ȳ)↔ ψ′(x, ȳ)) which exists by the induction assumption
on ψ(y, x̄). Then

K |= ∀x̄(∃y < ñkψ(y, x̄)↔ ∃y0 < ñ, . . .∃yk−1 < ñψ′(sk(y0, . . . , yk−1), x̄)).

But the formula on the right-hand side of the equivalence is ∆<ñ
0 (L′)-formula and so

we are done. The case when ϕ(x̄) = ∀y < ñkψ(y, x̄) for some ψ(y, x̄) follows by the
above step by going to ¬ϕ(x̄). This finishes the argument.

Claim 2.3.4 ((b) holds). For any w, p̄ ∈ K′ and any ϕ(x̄, ȳ) ∈ strictΣb
1(L′) there is

a ψ(x̄, ȳ) ∈ ∃∆<ñ
0 (L′) such that K |= ∀x̄ < w(ϕ(x̄, p̄)↔ ψ(x̄, p̄)).

Proof. We first show that for any ϕ(x̄, ȳ) ∈ ∆b
0(L′) we have (∗): for any w, p̄ ∈ K′

there is ψ(x̄, ȳ) ∈ ∆<ñ
0 (L′) such that

K |= ∀x̄ < w(ϕ(x̄, p̄)↔ ψ(x̄, p̄)).

To do so, we proceed by induction on number of quantifiers q in the formula ϕ(x̄, ȳ) ∈
∆b

0(L′) which is wlog assumed to be in prenex form. The case when q = 0 is clear as
then ϕ(x̄, ȳ) is an open formula and so ϕ(x̄, ȳ) ∈ ∆<ñ

0 (L′).
Now assume that for any ϕ(x̄, ȳ) ∈ ∆b

0(L′) with q quantifiers (∗) holds. Suppose
ϕ(x̄, ȳ) ∈ ∆b

0(L′) has q + 1 many quantifiers, is wlog in prenex form and ϕ(x̄, ȳ) =
∃z ≤ |t(x̄, ȳ)|θ(z, x̄, ȳ) for some θ(z, x̄, ȳ) ∈ ∆<ñ

0 (L′).
Now observe that by (L) we have that K |= ∀x̄ < w(|t(x̄, p̄)| ≤ c(c+r · |w|+ |p̄|)k0)

for some c, k0 ∈ N where r is the number of elements in the tuple x̄. But as c(c+ r ·
|w| + |p̄|)k0 ∈ K′ and K′ |= BASIC there is w′ ∈ K′ with c(c + r · |w| + |p̄|)k0 ≤ |w′|
thus |w′| < ñk for some k ∈ N and K |= ∀x̄ < w(|t(x̄, p̄)| < ñk). Now it is not hard
to see that

K |= ∀x̄ < w(ϕ(x̄, p̄)↔ ∃z < ñk(z ≤ |t(x̄, p̄)| ∧ θ(z, x̄, p̄))).

Finally let c = max(w, ñk) and let θ′(z, x̄, ȳ) be such that

K |= ∀x̄, z < c(θ(z, x̄, p̄)↔ θ′(z, x̄, p̄))).

Then clearly

K |= ∀x̄ < w(ϕ(x̄, p̄)↔ ∃z < ñk(z ≤ |t(x̄, p̄)| ∧ θ′(z, x̄, p̄))

and we are done. Indeed, the formula ∃z < ñk(z ≤ |t(x̄, ȳ)| ∧ θ′(z, x̄, ȳ) is in D and
thus by the observation above equivalent to some ∆<ñ

0 (L′))-formula.
The case when the first quantifier of ϕ(x̄, ȳ) is universal follows from the previous

by going to negation of ϕ(x̄, ȳ).
To finish the proof let ϕ(x̄, ȳ) ∈ strictΣb

1(L′) be be of the form ∃z1 ≤ t1(x̄, ȳ)∃z2 ≤
t2(z1, x̄, ȳ) . . . ∃zk−1 ≤ tk(z1, . . . zk, x̄, ȳ)θ(z̄, x̄, ȳ) for some θ(z̄, x̄, ȳ) ∈ ∆b

0(L′) where
z̄ = (z1, . . . , zk). Then for any w, p̄ ∈ K′ there is some w′ ∈ K′ such that by (L) and
a similar argument as above

K′ |= ∀x̄ < w∀z1 ≤ t(x̄, p̄)∀z2 ≤ t(z1, x̄, p̄) . . . ∀zk ≤ tk(z1, . . . zk−1, x̄, p̄)(z̄ < w′).
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If we let c = max(w,w′) then by what was proven above there is θ′(z̄, x̄, ȳ) ∈ ∆<ñ
0 (L′)

such that K′ |= ∀x̄, z̄ < c(θ(z̄, x̄, p̄)↔ θ′(z̄, x̄, p̄)) and so

K′ |= ∀x < w(ϕ(x̄, p̄)↔ ∃z̄(z1 ≤ t(x̄, p̄)∧. . .∧zk ≤ tk(z1, . . . zk−1, x̄, p̄)∧θ′(z̄, x̄, p̄)))

where the formula on the right-hand side of the equivalence is in ∃∆<ñ
0 (L′) and we

are done.

Claim 2.3.5 ((c) holds). Bounded L′-formulae are absolute between K′ and K.

Proof. To show this we proceed by induction on complexity of a bounded L′-formula
ϕ(x̄). The case when ϕ(x̄) is an open L′-formula is clear as K′ ≤ K thus the only
case to consider is if ϕ(x̄) = ∃y < t(x̄)ψ(y, x̄) for some ψ(y, x̄) which is absolute
between K′ and K.

Assume ϕ(x̄) is of the form described above, p̄ = (p0, p1, . . . , pr−1) ∈ K is given
and K |= ∃y ≤ t(p̄)ψ(y, p̄) i.e. K |= q ≤ t(p̄) ∧ ψ(q, p̄) for some q ∈ K. Thus if we
show that q ∈ K′ the rest will follow by induction assumption. Since by the definition
of K ′ there is k0 ∈ N with |pi| < ñk0 for any i < r we get by (L) a natural number k
with |t(p̄)| < ñk. But then |q| < ñk and so q ∈ K′.



Chapter 3

Garĺık’s construction

It was shown in the Corollary 3.9, the Theorem 3.9 and the Theorem 4.1 of [Gar15]
using the Construction B given in the Theorem 3.4 ibid that three pairs of theories
relevant to the Complexity theory are not (logically) equivalent under a certain
Complexity theoretic assumption. In this section we show that the Construction B
of Michal Garĺık can be derived from the Corollary 2.2.8. The author consider this
as a plausible argument that the construction developed in the previous section can
indeed be used for reasoning about arithmetical theories.

From now on let M be a countable model of TA in the language Lall and:
- n ∈M− N,
- Ω ⊆ {m ∈M |M |= m < 2n} a definable (and so coded) infinite set
- B an algebra of M-definable subsets of Ω,
- L first order countable language with binary relation symbol ≤ and a finite

number of function symbols containing a unary function symbol S and a constants
0, 1, ñ. Interpretations of all function symbols from L is some M-definable function
with S interpreted as the successor function, ñ by n and 0, 1, ≤ as usual. Finally let

- X = {h1, . . . , hd} ∪ {id} ∪ {cv | v ∈ M and M |= v ≤ n} for d ∈ N be a set of
definable functions from Ω to M where id is the identity function on Ω and for any
v ∈M, cv ∈ ΩM is the function which is constant v on Ω.

Recall the definition of a Straight-line program given in the Section 2:

Definition 3.0.1. Suppose ` ∈ M. We say that a straight-line program (SLP for
short) over L and X of size ` is a sequence of functions y0, y1, . . . , y`−1 of the following
form: for i < ` the i− th function yi equals to FM ◦ (yi0 , . . . , yir−1 , f0, . . . , fk−1) where
F ∈ FL is some (r + k)-ary function, ij < i for all j < r and f0, f1, . . . , fk−1 ∈ X .
Moreover we let SLP`(X ) be the set of all SLP programs over L and X of size `
and SLP≤`(X ) to be the set of all SLP programs over L and X of size ≤ `. If
P ∈ SLP≤`(X ) then we define Fct(P ) to be the set of all functions f : Ω → M
such that either f ∈ X or f = yi for some i < ` with yi in P . Finally we let
FCT`(X ) =

⋃
P∈SLP`

Fct(P ).

Where we changed the notion of Fct from the Section 2 according to [Gar15].
Note that for any ` ∈M this definition can be formalised in M since X ∈M and the
number of function symbols from L is a standard number and so FCT`(X ), SLP≤`(X ) ∈
M. This is a crucial point for the whole construction.

55
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A reader familiar with the [Gar15] might recognised that we gave a “semantic”
definition of the “syntactic” notion of SLP defined in [Gar15]. More precisely, the
SLP of length ` according to [Gar15] is a sequence of instructions of the form F ◦
(yi0 , . . . , yir−1 , f0, . . . , fk−1) with the same meaning of F, ȳ, f̄ as in the definition above
(i.e. F in place of FM). The set of functions defined by such an SLP consists from
functions which can be obtained by interpreting the instructions in M or which are
elements of X . However, this difference is immaterial as it will be obvious from the
statement of the Theorem of Garĺık. This is because FCT`(X ) from above is equal to
FCT`(X ) defined in the way taken in [Gar15] and the Theorem is independent of the
particular definition of SLP as far as it defines the same set of functions FCT`(X ).

Now for a non-standard m, s ∈ M with m < n and for ψ(x, y, x̄) ∈ ∆<ñ
0 (L) and

an M-rational number q with q ∈ (0, 1) we denote by (H) the following hypothesis:

For every f ∈ FCTms : #(〈〈ψ(id, f, h0, h1, . . . , hd−1)〉〉Ω)/#(Ω) < q.1

Further we denote by (R) the following relation between q, n,m:

For every k ∈ N : q <
1

nmk .

Then the Theorem of Garĺık states:

Theorem 3.0.2. [Gar15, Theorem 3.4]
Let M, Ω, n, L, X be as above. Let ψ(x, y, z̄) ∈ ∆<ñ

0 (L) be a formula, m, s ∈M
non-standard with m < n and an M-rational q ∈ (0, 1) be such that the hypothesis
(H) and (R) holds.

Then there is an L-closed K ⊆ FCTms(X ) with X ⊆ K and a filter V on B such
that:

(1) if α ∈ K/V is such that K/V |= α ≤ cVn then there is v ≤ n such that
K/V |= α = cVv ,

(2) ∆<ñ
0 (L)-formulae are  Los for K/V,

(3) K/V |= ∀y¬ψ(idV , y, hV1 , . . . , h
V
d ) and

(4) K/V |= ∃∆<ñ
0 (L)− IND≤c

V
m.

We will show that this theorem can be derived from the Corollary 2.2.8 where H
denotes the set of all M-definable functions from Ω to M:

Corollary 2.2.8. Suppose +, 0, 1 ∈ L, m ∈ M with m ≤ n, s ∈ M with s > N,
F ⊆ H, and {id} ∪ {cv | v ≤ max(m,n)} ⊆ X ⊆ F with X ,F ∈ M. Suppose there
exists an L-tree of height ms over X in F and call the tree T F . Assume further
ψ(x, y, z̄) ∈ ∆<ñ

0 (L), h̄ ∈ X , there is an M-rational q with:

(Q) for any f ∈ F : #(〈〈ψ(id, f, h̄)〉〉Ω)/#(Ω) ≤ q

and there is a non-standard r ∈M with:

(q) :
n

#(F)2mr
> q and (Ω) : #(Ω) ≥ r#(F)2mr−1(n+ 1).

1For the discussion about M-rationals and definition of the function #(·) see beginning of the
previous chapter.
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Then there is an L-closed K ⊆ H with X ⊆ K ⊆ F and a filter V such that
∆<ñ

0 (L)-formulae are  Los for K/V ,

K/V |= ∃∆<ñ
0 − IND≤c

V
m and K/V |= ∀y¬ψ(idV , y, h̄V).

Moreover if α ∈ K/V is such that K/V |= α ≤ cVn then there is v ≤ n such that
K/V |= α = cVv .

Note that the K/V from the corollary above posses all properties (1)-(4). Note
also the assumption (H) holds for any s′ < s and SLP≤ms′ (X ) is an L-tree of

height ms′ over X in FCTms′ (X ) for any s′ ∈ M. Thus once we find a suitable
non-standard s′ ≤ s such that that (q) and (Ω) can be satisfied for some r > N
and F = FCTms′ (X ), we can use the corollary above for F = FCTms′ (X ) with
q,Ω, ψ(x, y, z̄), h̄ and L from the theorem of Garĺık and we will be done.

Unfortunately, we will have to handle one obstacle. To proceed as described
above, we will have to derive some lower bound on #(Ω). However, the assumption
(R) on n,m, q in Garĺıks theorem does not give explicit lower bound on #(Ω). This
can be solved by the following considerations:

If there is a function f ∈ FCTms(X ) such that 〈〈ψ(id, f, h̄)〉〉Ω 6= ∅ then q must be
at least 1

#(Ω)
. But since (R) gives q < 1

nmk for all k ∈ N we will get that #(Ω) ≥ nm
k

for all k ∈ N which will be sufficient to ensure the estimation (Ω).
On the other hand, if for any f ∈ FCTms(X ), 〈〈ψ(id, f, h̄)〉〉Ω = ∅ then we will

use Lemma 2.2.12 to derive the Theorem of Garĺık directly.

We will need an upper bounds on the size of FCT`(X ) for any non-standard ` ∈
M. Our upper bound is quite generous but still sufficient for the latter estimations.

Observation 3.0.3. Let ` ∈M be non-standard. Then #(FCT`(X )) ≤ (#(X )+`)`
2
.

Proof. Recall that for any i < ` the i − th function yi of an SLP P of size ` is a
function equal to FM ◦ (yi0 , . . . , yir−1 , f0, . . . , fk−1) where ij < i for all j < r, F ∈ L
for some (r+k)-ary function symbol and f0, f1, . . . , fk−1 ∈ X . Let w be the maximal
arity between function symbols from L and symb the number of function symbols
in L. Then the number of tuples (yi0 , . . . , yir−1 , f0, . . . , fk−1) with i0, i1, . . . , ir−1 < `,

f0, f1, . . . , fk−1 ∈ X and r+k ≤ w is at most
∑

i≤w #(X + `)i < (#(X + `))w
2

where
the inequality holds as #(X) + ` is non-standard. Thus the number of sequences of
length ` of the functions defined as described above is at most (symb ·(#(X )+`)w

2
)`.

Since any P ∈ SLPell is of such form we get #(SLP`(X )) ≤ (symb · (#(X ) + `)w
2
)`

and together with #(Fct(P )) ≤ #(X ) + ` for every P ∈ SLP`(X ) we get that:

#(FCT`(X )) ≤
∑

P∈SLP`(X )

#(Fct(P )) ≤
∑

P∈SLP`(X )

(#(X ) + `)

= #(SLP`(X ))(#(X ) + `) ≤ (symb · (#(X ) + `)w
2

)`(#(X ) + `)

≤ (#(X ) + `)(1+w2)`+1 ≤ (#(X ) + `)`
2

where we used symb < #(X ) + ` and w2 + 1 < ` by ` > N and symb, w ∈ N.

To ensure the estimations (q) and (Ω) we need this technical observation.
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Observation 3.0.4. Let s, r,m, n > N and f(x) = #(FCTms(X ))x. Then

n

f(2mr)
> q and #(Ω) ≥ rf(2mr − 1)(n+ 1)

whenever s + 1, 2r ≤ m < n and r(n + 1) ≤ #(FCTms(X )) and q < 1

nm2s+3 and

#(Ω) ≥ q−1.

Proof. By the previous observation, #(FCTms(X )) ≤ (#(X )+ms)m
2s

= (2+d+n+
ms)m

2s
where d ∈ N. Thus if n ≤ ms then #(FCTms(X )) ≤ (ms+1)m

2s
= m(s+1)m2s ≤

mm2s+1
where the last is by s + 1 ≤ m and so f(2mr) ≤ mm2s+12mr ≤ mm2s+3

since
2r ≤ m. If ms ≤ n then #(FCTms(X )) ≤ (n2)m

2s
= n2m2s ≤ nm

2s+1
and so

f(2mr) ≤ nm
2s+12mr ≤ nm

2s+3
again since 2r ≤ m.

Now let e = m if ms ≥ n and e = n otherwise.

Then the first inequality n
f(2mr)

≥ q holds if n

em2s+3 ≥ q which holds if 1

em2s+3 ≥ q.

Since m < n we have 1

nm2s+3 < 1

mm2s+3 and so the last inequality holds under the

assumption q < 1

nm2s+3 .

The second inequality #(Ω) ≥ rf(2mr−1)(n+1) holds if #(Ω) ≥ f(2mr) under
the assumption r(n + 1) ≤ #(FCTms(X )). By the first paragraph #(Ω) ≥ f(2mr)
holds if #(Ω) ≥ em

2s+3
. Finally by the assumption q ≤ 1

nm2s+3 and #(Ω) ≥ q−1 and

m < n we get #(Ω) ≥ nm
2s+3

> mm2s+3
and thus #(Ω) ≥ em

2s+3
holds.

Now we can derive the Theorem of Garĺık:

Proof of the Theorem of Garĺık. We will distinguish between two cases:

Case 1: Assume that for every non-standard s′ there is a function f ∈ Fctms′ (X )
such that 〈〈ψ(id, f, h̄)〉〉Ω 6= ∅.

Let t > N be non-standard such that q < 1

nmt and let s′ > N we arbitrary such
that t > 2s′ + 3 and m > s′. Observe that (H) holds for FCTms′ (X ) as it holds for
any subset of FCTms(X ). Moreover SLP≤ms′ (X ) is an L-tree of height ms′ over X
in FCTms′ (X ). Thus the only condition we have to establish to use the Corollary
2.2.8 for FCTms′ (X ), s′, n,m,X , ψ(x, z, h̄) and L as described above is to find r > N
with

(q)
n

#(FCTms′ (X ))2mr
> q and (Ω) #(Ω) > r#(FCTms′ (X ))2mr−1(n+ 1).

But by the choice of s′ and t we have: q < 1

nmt <
1

nm2s′+3 , s′ < m < n and by the

assumption of the Case 1 we also have #(Ω) > q−1. Thus if we let r > N be such
that r < min(bm/2c, b#(FCTms′ (X ))/(n+1)c) we get by the Observation 3.0.4 that
(q) and (Ω) holds for the r.

Case 2: Assume there is s′ > N such that for every f ∈ FCTms′ (X ) we have
〈〈ψ(id, f, h̄)〉〉Ω = ∅ and wlog s′ < s.
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By the Lemma 2.2.122 for F = FCTms′ (X ), ` = ms′ ,X we get an L-closed K ⊆ H
with X ⊆ K ⊆ FCTms′ (X ) ⊆ FCTms(X ) such that 〈a〉K |= ∃∆<ñ

0 − IND≤cm , where
〈a〉K is the substructure of M with the domain {f(a) | f ∈ K}.

Now let V be an ultrafilter on Ω generated by {a}. Observe that K/V ∼= 〈a〉K via
i : fV 7→ f(a) thus we get (4) for K/V . Since {cv | v ≤ n} ⊆ X ⊆ K we have that
[0, n] is an initial segment of 〈a〉K. But this gives (1) and also that ∆<n

0 (L)-formulae
are absolute between 〈a〉K and M. Then to show (2) we have: for any ϕ(x̄) ∈ ∆<n

0 (L)
and f̄ ∈ F : K/V |= ϕ(f̄V) if and only if 〈a〉K |= ϕ(f̄(a)) if and only if M |= ϕ(f̄(a))
if and only if 〈〈ϕ(f̄)〉〉Ω ∈ V . So ∆<ñ

0 (L)-formulae are  Los for K/V .
Finally to show (3) assume for a contradiction that for some f ∈ F : K/V |=

ψ(idV , fV , h̄V). Since by (2) ∆<ñ
0 (L)-formulae are  Los forK/V we get 〈〈ψ(id, f, h̄)〉〉Ω ∈

V and thus M |= ψ(a, f(a), h̄(a)) contradicting the assumption of the Case 2. This
finishes the proof.

2Assume +, 0, 1 ∈ L, `,m ∈ M, {id} ∪ {cv | v ≤ max(n,m)} ⊆ X ⊆ F ⊆ H with X ∈ M.
Suppose T F is an L-tree of height ` over X in F and suppose further that for every k ∈ N:
`

mk > N.

Then for any a ∈ Ω there is K ⊆ H with X ⊆ K ⊆ F such that 〈a〉K |= ∃∆<ñ
0 − IND≤m and

[0, n] is an initial segment of 〈a〉K.
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Chapter 4

A variation on the theorem of
Hirschfeld

We will give an a theorem of Hirschfeld from [Hir75, section 3.7]. To do so, some
preparations are in order.

Definition 4.0.1. We say that a structure M in language L is generated by one
point (in language L) if there is c ∈M such that

M = {tM(c) | t(x) a term of L}.

Moreover if c is as above then we say that M is generated by c (in language L).

Note that the isomorphism type of such models is only dependent on the set of
open L-formulae satisfied by c. More precisely by the Observation 1:

Observation 4.0.2. Assume M1,M2 are L structures of the same size, M1 is gen-
erated by c1 in L, M2 is generated by c2 in L. Assume further that for any open
L-formula ϕ(x), M1 |= ϕ(c1) if and only if M2 |= ϕ(c2). Then M1

∼= M2.

We show latter that the the following condition on a theory T ensures that any
(countable for the case (ii)) model of the theory T has an extension which is generated
by one point.

Definition 4.0.3. Let T be a theory in language L.
(i) We say that T admits one point extensions if for any countable model M

of T there is a countable set of L-terms {tm}m∈M such that the set of formulae
{tm(x) = m | m ∈M} is finitely satisfiable in M.

(ii) We say that T admits coding of standard length tuples if for every k, i ∈ N
there is a k-ary function symbol (x0, x1, . . . , xk−1) ∈ L and a unary function symbol
πi ∈ L such that if i < k then T ` πi((x0, x1, . . . , xk−1)) = xi

Observation 4.0.4. Assume T is a theory in language L. Then T admits one point
extensions whenever T admits coding of standard length tuples.

Proof. Let M |= T be countable and {mi}i∈ω some enumeration of M. Then
{πi(x) = mi | i ∈ ω} is finitely satisfiable in M as for any k ∈ N there is m ∈M with
m = (m0,m1, . . . ,mk)

M and M |= ∧i≤kπi(m) = mi.
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Note that the property (ii) in the definition above holds for all so called sequential

theories which were studied in [HP93, p. 150-151] and in particular for P̃V, Si2(PV)
for any i ≥ 1.

Next we define another type of ultrapowers called limit ultrapowers whose special
type first appeared in [Hir75]. We only note in advance that the name “limit”
signalise the fact that if the ground model satisfies enough arithmetical theory one
can view limit ultrapowers as a union of an increasing chain of ultrapowers which we
will show latter.

We first settle some notation regarding partitions:

Definition 4.0.5. Let M be a set.

1. We say that a family P of subsets of M is a partition of M if ∀p, q ∈ P :
p ∩ q = ∅ and

⋃
P = M . Moreover for any A ⊆M we let PA - the restriction

of P on A - to be the set {p ∩ A | p ∈ P}

2. If P,Q are partitions of M then we say that P is coarser then Q or equivalently
Q is finer then P and write Q ≤ P if for any q ∈ Q there is p ∈ P with q ⊆ p.
We say that a partition R of M is a common refinement of partitions Q,P of M
if P ≥ R and Q ≥ R and we denote by Q∧P the set {q∩p | q ∈ Q and p ∈ P}.1

3. We say that a set G of partitions of M is a partition filter on M if for any two
partitions from G its common refinement is in G and if any partition coarser
than a partition from G is in G.

4. Let f : M → M be a function and let =f⊆ M ×M be an equivalence relation
defined by x =f y if and only if f(x) = f(y). Then we denote by 〈f〉 the
partition generated by an equivalence relation =f i.e. the set M/=f .

Observation 4.0.6. Let M be a set, f, g : M → M , P 0, . . . , P n−1, R0, . . . , Rn−1

partitions of M , B0, B1, . . . , Bn−1, A ⊆M and B = ∩i<nBi. Then:
(i) 〈f ◦ g〉 ≥ 〈g〉 and if f is injective then 〈f ◦ g〉 = 〈g〉,
(ii) (

∧
i<n P

i)A =
∧
i<n P

i
A,

(iii) if for every i < n,P i
Bi
≥ Ri

Bi
then (

∧
i<n P

i)B ≥ (
∧
i<nR

i)B.

Proof. (i) is trivial. To show (ii) we have (
∧
i<n P

i)A = {A ∩
⋂
i<n pi | pi ∈

P i for all i < n} = {
⋂
i<n (pi∩A) | pi ∈ P i for all i < n} =

∧
i<n P

i
A. Finally to show

(iii) let r ∈ (
∧
i<nR

i)B be given. Let for i < n, ri ∈ Ri be such that r = B ∩
⋂
i<n ri.

For every i < n there is by the assumption pi ∈ P i with pi ∩ Bi ⊇ ri ∩ Bi and thus⋂
i<n pi ∩ B ⊇

⋂
i<n ri ∩ B i.e. B ∩

⋂
i<n pi ⊇ B ∩

⋂
i<n ri = r where the former set

is in (
∧
i<n P

i)B which finishes the argument.

Definition and Lemma 4.0.7. Let M be a structure in language L, F ⊆ MM,
L-closed and U an ultrafilter on M. Suppose further G is a partition filter on M. Let

UOpen = {A ∈ U | A is in M definable by an open L-formula without parameters}
1Note that this coincides with the common use of ∧ for lattices as one can easily see that

{q ∩ p | q ∈ Q and p ∈ P} is the maximal common refinement of Q and P .
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and assume

D = {fU ∈ F/U | there is A ∈ UOpen and P ∈ G such that 〈f〉A ≥ PA}

is non-empty. Then the substructure of F/U with the domain D is called the limit
ultrapower of F/U generated by G and will be denoted by F/U/G. Moreover if D is
non-empty then we will say that the limit ultrapower of F/U is defined for G.

Justification: We have to check that for any function symbol F (x̄) ∈ LPV and ᾱ ∈ D,
FF/U(ᾱ) ∈ D. To do so, let an r-ary function symbol F ∈ L and fU0 , f

U
1 , . . . , f

U
r−1 ∈

F/U/G be given. Then for any i ≤ r there is Bi ∈ UOpen and P i ∈ G such that
〈fi〉Bi

≥ P i
Bi

. Thus for B =
⋂
i≤r Bi ∈ UOpen and P =

∧
i≤r P

i ∈ G we have

(
∧
i≤r〈fi〉)B ≥ PB. Let gU ∈ F/U be such that F/U |= F (fU0 , f

U
1 , . . . , f

U
n−1) = gU i.e.

A = 〈〈F (f0, f1, . . . , fr−1) = g〉〉M ∈ UOpen. Since 〈F ◦ (f0, f1, . . . , fr−1)〉 ≥
∧
i≤r〈fi〉

and 〈g〉A = 〈F ◦ (f0, f1, . . . , fr−1)〉A we get that 〈g〉A∩B ≥ (
∧
i≤r〈fi〉)A∩B ≥ PA∩B.

Thus A ∩B ∈ UOpen and P ∈ G give gU ∈ F/U/G and we are done.

In the context of the previous definition and lemma note that the limit ultrapower
of F/U is defined for any G whenever there is a constant function in F or in particular
a constant symbol in L. Indeed, if f : M→M is a constant function then 〈f〉A ≥ PA
for any A ∈ Uopen and P ∈ G and thus fU ∈ D. Moreover if L contains a constant
symbol then F contains a constant function as it it L-closed. Finally the following
last definition:

Definition and Lemma 4.0.8. Assume M is a structure in a non-empty countable
language L. Let

F = {tM ∈ MM | t(x) is a term of L}

and let U be an ultrafilter on M. We say that the ultrapower F/U in language L
is an ultrapower over the language L wrt to M and denote it as M(L,U). We will
omit the “wrt to M” if the model M is known from the context.

Justification: F is non-empty since xM ∈ F and it is also L-closed by the definition
thus M(L,U) is a well-defined ultrapower for any ultrafilter U over M.

Recall that an L-structure M is existentially closed in an L-structure K (in sym-
bols M ≤∃ K) if M ⊆ K and for any open L-formula ϕ and m̄ ∈M: K |= ∃x̄ϕ(x̄, m̄)
implies M |= ∃x̄ϕ(x̄, m̄). Moreover recall that we do not notationally distinguish be-
tween a model M in language L and its natural expansion into the language L(M).

Observation 4.0.9. Assume M is a countable L-structure and U an ultrafilter over
M. Let id denote the function which is identity on M. Then idU ∈ M(L,U) and
M(L,U) is generated by idU in the language L. Moreover up to an isomorphism
M ≤∃ M(L(M),U) for any ultrafilter U over M.

Proof. We have that {tM ∈ MM | t(x) is a term of L} contains an identity function
on M represented by the interpretation of a free variable i.e by xM. Moreover since
open formulae are  Los for M(L,U) we have that for any L-term t(x), M(L,U) |=
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t(idU) = [tM]U if and only if 〈〈t(id) = tM〉〉M ∈ U but the latter is always true as
〈〈t(id) = tM〉〉M = M.

For the moreover part let an ultrafilter U over M be given. Note that for any
m ∈ M and the function cm which is constant m on M we have cUm ∈ M(L(M,U))
and thus if we identify {cUm | m ∈ M} with M we get M ≤ M(L(M),U). But if
M(L(M),U) |= ∃x̄ϕ(x̄) for an open L(M) formula ϕ(x̄) then 〈〈ϕ(ḡ)〉〉M ∈ U for some
ḡU ∈M(L(M),U) and thus M |= ϕ(ḡ(ω)) for some ω ∈ 〈〈ϕ(ḡ)〉〉M.

4.1 Variation on the theorem of Hirschfeld

Now we can state our theorem:

Theorem 4.1.1. Let N be a countably infinite L-structure and let T be the universal
theory of N in language L. Assume further that T admits one point extensions.

Then for any countable model M of T there is a partition filter G on M and
an ultrafilter U on M such that M ∼= N(L,U)/G. On the other hand for every
partition filter G on M and an ultrafilter U on M, N(L,U)/G |= T whenever the
limit ultrapower of N(L,U) is defined for G.

As a direct corollary of this theorem we get a variation on the theorem of
Hirschfeld from [Hir75, Section 3.7]:

Corollary 4.1.2. Let N be the standard model of True arithmetic in the language
LR which is LPA augment by a function symbol for every recursive function with the
natural interpretation. Suppose R is the set of unary recursive functions on N. Then
a countable model M in the language LR is a model of Th∀(N,LR) if and only if there
is a partition filter G on N and an ultrafilter U over N such that M ∼= R/U/G.

Assume from now on that N,L and T are as in the statement of the Theorem
4.1.1. We split the proof of this theorem into three lemmas.

Lemma 4.1.3. Let M be a countable model of T . Then up to an isomorphism, M
has an extension which is generated by one point and in which M is existentially
closed.

Proof. We will show that there is an ultrafilter U over M such that up to an isomor-
phism, M ≤∃ M(L(M),U) and the latter model is generated by idU in the language
L.

For every m ∈ M let cm ∈ L(M) − L be a constant symbol such that cMm = m.
Since T admits one point extensions there is a set of L-terms {tm}m∈M such that
the set A = {〈〈tMm = cm〉〉M | m ∈ M} has a finite intersection property. Thus
there is an ultrafilter U over M extending A. By the Observation 4.0.9 we have
that M ≤∃ M(L(M),U) (up to an isomorphism of M). Further M(L(M),U) is by
the Observation 4.0.9 generated by idU in the language L(M). But since for every
constant symbol cm we have that 〈〈tMm = cm〉〉M = 〈〈tm(id) = cm〉〉M ∈ U we get
M(L(M),U) |= tm(idU) = cm and so M(L(M),U) is generated by idU in the language
L.
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Lemma 4.1.4. Let S be a countable model of T generated by one point. Then there
is an ultrapower over L wrt to N which is isomorphic to S.

Proof. For an open L-formula ϕ(x) let ϕ(S) = {s ∈ S | S |= ϕ(s)} and similarly for
ϕ(N). Let c ∈ S be the generator of S. We claim that (a):

B = {ϕ(N) | ϕ(x) open L-formula and S |= ϕ(c)}

has a finite intersection property and that (b): if we let U ⊇ B be an ultrafilter then
N(L,U) ∼= S.

For (a) assume ϕ0(N), . . . , ϕn−1(N) ∈ B are given. Then S |=
∧
i<n ϕi(c) i.e.

S |= ∃x
∧
i<n ϕi(x) i.e. T 6` ∀x

∨
i≤n ¬ϕi(x) i.e. N |= ∃x

∧
i≤n ϕi(x) i.e. B has finite

intersection property.
Let U be an ultrafilter on N extending B. To show (b) note that by the Ob-

servation 4.0.9, N(L,U) is generated by idU and so by the the Observation 4.0.2
it suffices to show that for every open L- formula ϕ(x), S |= ϕ(s) if and only if
N(L,U) |= ϕ(idU). But since open L-formulae are  Los for N(L,U) we have: S |= ϕ(s)
if and only if ϕ(N) ∈ B if and only if 〈〈ϕ(id)〉〉Ω ∈ U if and only if N(L,U) |= ϕ(idU)
and we are done.

Now we can make a comment on the intuition behind the word “limit” in the defi-
nition of limit ultrapower. Assume a countable model S is not generated by one point
in language L. Then we can decompose it into countably many models {Si}i∈ω each
generated by one point. Namely, fix some well ordering < of S and let c0 = min< S
and let S0 = {tS(c0) | t(x) is a term of L}. For i + 1 let ci+1 = min<(S −

⋃
j≤i Sj)

and Si+1 = {tS(ci+1) | t(x) is a term of L}. Then for any i ∈ ω, Si ≤ S and so
Si |= Th∀(S). Assume for a simplicity that T admits coding of standard length tuples.
Then we can let R0 = S0 and Ri+1 = {tS((c0, c1, . . . , ci+1)) | t(x) is a term of L}.
Since S |= πj((c0, . . . , ci)) = cj for every j ≤ i we have that Sj ⊆ Ri for every j ≤ i.
Then also Ri ⊆ Ri+1 for every i ∈ ω and thus S is the limit

⋃
i∈ω Ri of the increasing

chain of models {Ri}i∈ω. Since for every i ∈ ω, Ri is generated by one point we
have that for every i ∈ ω there is an ultrafilter Ui over N such that Ri

∼= N(L,Ui).
Whence one can see S as a limit of some increasing chain of ultrapowers over N. The
next lemma shows that the limit of this ultrapower construction can be achieved in
one step by finding suitable partition filter on N and an ultrafilter on N.

Lemma 4.1.5. Let U be an ultrafilter on N and let M be a substructure of N(L,U)
which is existentially closed in N(L,U). Then there is a partition filter G on N such
that the limit ultrapower of N(L,U) is defined for G and M = N(L,U)/G.

Proof. Let G be a partition filter generated2 by the set G = {〈f〉 | fU ∈ M}. Then
clearly M ⊆ N(L,U)/G.

For the other inclusion assume gU ∈ N(L,U)/G i.e. there is A ∈ UOpen and
〈f0〉, . . . , 〈fn−1〉 ∈ G such that 〈g〉A ≥ (

∧
i<n〈fi〉)A =

∧
i<n〈fi〉A. By the definition

of G we have fU0 , f
U
1 , . . . , f

U
n−1 ∈ M. Let ϕ be the formula defining A in N. Since

A = 〈〈ϕ(id)〉〉N ∈ U and thus N(L,U) |= ϕ(id) we have

N(L,U) |= ϕ(idU) ∧ g(idU) = gU ∧
∧
j<n

fj(id
U) = fUj .

2i.e. A ∈ G if and only if A ≥ B1 ∧B2 ∧ . . . ∧Bn for some B1, B2, . . . , Bn ∈ G
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Since M is existentially closed in N(L,U) there are some iU , bU ∈M with

M |= ϕ(iU) ∧ g(iU) = bU ∧
∧
j<n

fj(i
U) = fUj .

But then also
N(L,U) |= ϕ(iU) ∧ g(iU) = bU ∧

∧
j<n

fj(i
U) = fUj

thus B = 〈〈ϕ(i) ∧ g(i) = b ∧
∧
j<n fj(i) = fj〉〉N ∈ U . To finish the proof we show

that b and g equals on B ∩ A and thus gU = bU ∈ M. Assume ω ∈ B ∩ A is given.
Then by ω ∈ B we have

N |= g(i(ω)) = b(ω) ∧
∧
j<n

fj(i(ω)) = fj(ω)

and so ω =fj i(ω) for every j < n. Since ω ∈ A∩B this implies by 〈g〉A ≥
∧
i<n〈fi〉A

and N |= ϕ(i(ω)) i.e. i(ω) ∈ A that ω =g i(ω) i.e. g(i(ω)) = g(ω). Finally by ω ∈ B
we get b(ω) = g(i(ω)). Whence g equals to b on B ∩ A and we are done.

Proof of the Theorem: Let M be a countable model of T . Then by the Lemma 4.1.3
there is an extension S of M generated by one point in which M is existentially closed
(up to an isomorphism of M). Moreover by the Lemma 4.1.4 there is an ultrafilter U
over N such that S ∼= N(L,U). Thus M is isomorphic to a substructure M′ of N(L,U)
which is existentially closed in N(L,U) . By the last lemma there is a partition filter
G on N such that M′ = N(L,U)/G and so M ∼= N(L,U)/G.

On the other hand if an ultrafilter U over N is given then any substructure of
N(L,U) is a model of T . Indeed, T is a universal theory, open L-formulae are  Los for
N(L,U) since U is an ultrafilter and so N(L,U) |= T which finishes the argument.

Corollary 4.1.6. Let N be an L-structure, T = Th∀(N) and T admits one-point
extensions. Then for any countable L-structure M, M |= T if and only if M ∼= H/U
for some L-closed H ⊆ F = {tN | t(x) is a unary term of L} and an ultrafilter U on
N.

Proof. The right-left implication is clear since T is a universal theory and
H/U ≤ F/U for any L-closed set of functions H ⊆ F . For the left-right implication
let U be an ultrafilter on N and G a partition filter on N such that M ∼= N(L,U)/G.
Then (up to an isomorphism of M) M ≤ N(L,U) = F/U and thus M ∼= H/U for
some L-closed family of functions H ⊆ F by the Lemma 1.2.4 .

4.2 Some corollaries for P̃V

In this section we investigate some corollaries of the Theorem 4.1.1 with focus on
the theory P̃V. Although most of the statements from this chapter can be easily
generalised for any theory T in language L satisfying the assumptions of the Theorem
4.1.1 we will state them for P̃V and LPV to make them more explicit.
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Since P̃V is a theory defined to reason about polynomial-time one may be inter-
ested in some analogue to polynomial-time in non-standard models of P̃V. We will
give two possible definitions of polynomial-time in non-standard models of P̃V.

Let M be a countable model of P̃V and H ⊆, H(M) be sets of unary terms of
LPV and LPV (M) respectively. Then we define the sets:

PM = {fM | f ∈ LPV is a unary function symbol}

P(M) = {tM | t(x) is an LPV (M)-term}.

Moreover we omit the model M in the definition if M is the standard model N. Thus
we will write P for P(N) or PN. This is correct as clearly P(N) = PN. Note that since

P̃V admits coding of standard length tuples, the set P(M) remains the same even if
we allow only terms containing at most one symbol form L(M)-L. We also have that
for any ultrafilter U on M, PM/U = M(LPV ,U) and P(M)/U = M(LPV (M),U).

This also gives that P(M)/U |= P̃V and PM/U |= P̃V for any ultrafilter U over M
and we will call those ultrapowers polynomial ultrapowers over M.

Assume from now on that N is the standard model of True arithmetic in the
language LPV . We can start with one simple observation:

Observation 4.2.1. Assume there is a countable model of S1
2(PV) + P̃V which is

generated by one point (in the language LPV ) and not isomorphic to N.

Then for any LPV -sentence σ, S1
2(PV)+P̃V +σ is consistent whenever P/U |= σ

for all non-principal ultrafilters U over the standard model N.

Proof. Let M |= S1
2(PV) + P̃V be a countable model generated by one point with

M 6∼= N. Then M ∼= P/U for some ultrafilter U and U is non-principal as M 6∼= N.
Thus M |= σ as P/U |= σ and we are done.

Assume M |= P̃V. We defined PM and P(M) with an intention to use them as
a set of functions for power constructions over M. We can immediately make two
observations about this type of constructions.

First, since for any ultrafilter U over M we have PM/U = M(LPV ,U) we get by
the Observation 4.0.9 that PM/U is generated by idU in the language LPV . Thus
by the Lemma 4.1.4 it is isomorphic to N(LPV ,UN) = P/UN for some ultrafilter
UN over N. Checking the proof of this Lemma we get that UN extends the set
{ϕ(N) | ϕ(x) is an open LPV -formula and ϕ(M) ∈ U}. Thus there is no practical
difference between working with PM over M and P over N.

On the other hand, for an ultrafilter U over M the ultrapower P(M)/U =
M(LPV (M),U) is generated by idU in the language LPV (M) but not always in the
language LPV . By the Corollary 4.1.6, P(M)/U ∼= H/V for some ultrafilter V over
N and any LPV -closed H ⊆ P . By the previous considerations we very often get
H ( P and thus we can reach models which are not generated by one point. One can
see this as an advantage since to show some properties of H/V may be harder then
to show properties of P(M)/U as in the latter case one have access to all polynomial
functions wrt to M (i.e. interpretations of function symbols from LPV with param-
eters from M). In the next chapter we show that when using the set of functions

P(M) it is useful to consider special type of models M of P̃V.
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Herbrand saturated models in the role of groundmodel

In accord with the article [Avi02] we say that a model M in language L is Herbrand
Saturated if for every open L(M) formula ϕ, M |= ∃x̄∀ȳϕ(x̄, ȳ) whenever ∃x̄∀ȳϕ(x̄, ȳ)
is consistent with Th∀(M,L(M)).

By [Avi02, Theorem 3.2] every (countable) consistent universal theory has a
(countable) Herbrand saturated model. The reason why we are going to use a Her-
brand saturated model is the following property which is a direct corollary of [Avi02,
Theorem 3.3]:

Theorem 4.2.2. Let M |= P̃V be a Herbrand saturated model in language LPV ,
ϕ(x̄, y, z̄) an open LPV -formula and m̄ a tuple of parameters from M. Assume that

M |= ∀x̄∃yϕ(x̄, y, m̄)

then there is a function symbol f ∈ LPV and a parameter c ∈M i.e. fM(·, c) ∈ P(M)
such that

M |= ∀x̄ϕ(x̄, f(x̄, c), m̄).

Let M |= P̃V be Herbrand saturated. Since ∆b
0(LPV )-formulae are P̃V-provably

equivalent to open LPV -formulae the theorem above applies to ϕ ∈ ∆b
0(LPV ) as

well. Thus it also follows that unary functions which are Σb
1(LPV )-definable in M are

in P(M)3. Since it is not known whether the unary functions which are Σb
1(LPV )-

definable in N are in P , having a Herbrand saturated model as a ground-model
instead of having the standard model N as a groundmodel may give us certain ad-
vantage. An example of a construction where this is the case can be found in the
Section 5.

Observation 4.2.3. Let M,K be countable models of P̃V, M Herbrand saturated
and M ≤∃ K. Then Th∃∀∃(M) ⊆ Th∃∀∃(K).4

Proof. Let ϕ(x, y, z) be an open LPV -formula with M |= ∃x∀y∃zϕ(x, y, z). Let
m ∈M be such that M |= ∀y∃zϕ(m, y, z). Since M is Herbrand saturated there is a
function symbol F ∈ LPV and d ∈ M with M |= ∀yϕ(m, y, F (y, d)). Since M ≤∃ K
it is not the case that K |= ∃y¬ϕ(m, y, F (y, d)) and thus K |= ∀yϕ(m, y, F (y, d)) i.e.
K |= ∃x∀y∃zϕ(x, y, z).

Lemma 4.2.4. Let M be a countable Herbrand saturated model of P̃V. Then:
(i) for any ultrafilter U over M, Th∃∀∃(M) ⊆ Th∃∀∃(P(M)/U) and
(ii) there is an ultrafilter U over N such that Th∃∀∃(M) ⊆ Th∃∀∃(P/U).

Proof. To see (i) observe that M ≤∃ P(M)/U (up to an isomorphism of M) for any
ultrafilter U over M thus (i) follows from the previous observation.

To see (ii) let U be an ultrafilter on N such that up to an isomorphism
M ≤∃ N(LPV ,U) = P/U and use the observation above.

3if ∃wψ(x, y, w) for ψ(x, y, z) ∈ ∆b
1(LPV (M)) defines a (unary) function F in M then there is a

binary function symbol f ∈ LPV and c ∈ M such that M |= ∀xψ(x̄, π0(f(x, c)), π1(f(x, c))) and so
the function F = πM

0 ◦ fM(·, c) ∈ P(M)
4the set of ∃∀∃ LPV -sentences is the set of sentences of the form ∃x∀y∃zϕ(x, y, z) with an open

LPV -formula ϕ(x, y, z).
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Corollary 4.2.5. Assume σ is ∀∃∀ sentence in language LPV such that for any non-
principal ultrafilter U over N, P/U |= σ. Then S1

2(PV) + P̃V + σ is consistent.

Proof. By [Avi02] or [Kra95, Theorem 7.6.3] any Herbrand saturated model of P̃V
is a model of S1

2(PV). Moreover by the same reference there is a countable Herbrand

saturated model M |= P̃V. By the previous lemma there is a non-principal ultrafilter
U such that Th∃∀∃(M) ⊆ Th∃∀∃(P/U). But then by P/U |= σ we get that M |= σ

and so M |= S1
2(PV) + P̃V + σ.

It is not known to the author whether for every ultrapower P/U with U non-

principal there is a Herbrand saturated model M of P̃V such that M ≤∃ P/U .
In particular, it is not known to the author whether one can state the corollary
above with “for some non-principal ultrafilter U” instead of “for any non-principal
ultrafilter U”.
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Chapter 5

Unprovability of circuit upper
bounds in P̃V

Recall that P̃V denotes the set of all universal LPV - sentences valid in the standard
model N. For a binary function g ∈ LPV , a unary function h ∈ LPV and a natural
numbers c, k we define the following three formulae:

UPk(g(·, y)) : ∃c∀` > 0∃C[Circuit(C, |`|) ∧ size(C) ≤ |c| · |`|k

∧ ∀i(|`| = |i| → (g(i, y) = 0↔ eval(C, i) = 0))]

UPk(h) : ∃c∀` > 0∃C[Circuit(C, |`|) ∧ size(C) ≤ |c| · |`|k

∧ ∀i(|`| = |i| → (h(i) = 0↔ eval(C, i) = 0))]

UPc,k(h) : ∀` > 0∃C[Circuit(C, |`|) ∧ size(C) ≤ c|`|k

∧ ∀i(|`| = |i| → (h(i) = 0↔ eval(C, i) = 0))]

where UPk(g(·, y)) contains a free variable y. The functions and predicates
Circuit(C, n), size(C), eval(C, i) have its natural meaning i.e to check whether C
is a circuit with n inputs, to output the number of gates of a circuit C and to evalu-
ate a circuit C on input i where a precise definition of those functions will be given
latter.

It was shown in [KO17] that for every natural number k ≥ 1 there is a unary

function symbol h ∈ LPV such that the theory P̃V∪{¬UPc,k(h) | c ∈ N} is consistent.
We answer the question from [KO17, Remark 2.2] whether for every natural number

k ≥ 1 there is a unary function symbol h ∈ LPV such that P̃V+¬UPk(h) is consistent.

Using polynomial ultrapower over a Herbrand saturated model of P̃V we show that
the answer is positive.

After the following section with notational conventions and definitions which are
necessary to present our proof idea we remind the proof idea of [KO17] and present
the main idea of our construction. We encourage a reader with basic knowledge on
ultrapower constructions who is familiar with traditional concepts regarding models
of P̃V to skip to the Section 5.2.
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5.1 Preparation

Recall that the universal diagram of a structure M in language L is the set of all
universal sentences in language L(M) which are valid in M. In accord with the article
[Avi02] we say that a model M in language L is Herbrand Saturated if for every
open L(M) formula ϕ, M |= ∃x̄∀ȳϕ(x̄, ȳ) whenever ∃x̄∀ȳϕ(x̄, ȳ) is consistent with
the universal diagram of M.

By [Avi02, Theorem 3.2] every (countable) consistent universal theory has a
(countable) Herbrand saturated model. The reason why we are going to use a Her-
brand saturated model in our construction is the following property which is a direct
corollary of [Avi02, Theorem 3.3]:

Theorem 5.1.1. Let M |= P̃V be a Herbrand saturated model in language LPV ,
ϕ(x̄, y, z̄) an open LPV -formula and m̄ a tuple of parameters from M. Assume that

M |= ∀x̄∃yϕ(x̄, y, m̄)

then there is a function symbol f ∈ LPV and a parameter c ∈M such that

M |= ∀x̄ϕ(x̄, f(x̄, c), m̄).

Let M be a (countable) model of P̃V. For a function symbol f ∈ LPV we
will denote its interpretation in the standard model N as fN and similarly for fM

and M. We will frequently use the phrase “Let f ∈ LPV be a function symbol
corresponding to the following algorithm (or Turing machine)...” meaning that fN is

in N computed by the described algorithm (or Turing machine) and P̃V proof about
f all the properties claimed about the algorithm (or Turing machine).

Recall that we say that A ⊆ M is M-definable if there is an LPV (M) formula
ϕ(x) such that A = {m ∈ M | M |= ϕ(m)} and in this case we will often write
x ∈ A in place of ϕ(x). We follow the usual notation and denote by LogM the
set {|m|M | m ∈ M} of lengths of M. Moreover for an LPV (M)-formula ϕ(x) we
will write ∃n ∈ Log : ϕ(n) for ∃N, n(n = |N | ∧ ϕ(n)) and ∀n ∈ Log : ϕ(n) for
∀n,N(n = |N | → ϕ(n)). For a number n ∈ LogM we will denote by 1(n) the
number (1#N) − 1 where N ∈ M is such that |N |M = n. Thus for any n ∈ LogM
and m ∈ M we have m = 1(n) if and only if m = (1#m) − 1. Finally for a LPV -
formula ϕ(x, y, z̄) we will often write ∀n ∈ Log : ϕ(n, 1(n), z̄) as a shorthand for
∀n,N(n = |N | → ϕ(n, 1#N − 1, z̄)). Now we can make one technical observation
considering our notational convention:

Observation 5.1.2. Assume M is Herbrand staurated model of P̃V, ϕ(x, y, z, w̄) is
an open LPV -formula, ā ∈M and M |= ∀n ∈ Log∃z : ϕ(n, 1(n), z, ā).

Then there is a binary function f ∈ LPV and b ∈ M such that M |= ∀n ∈ Log :
ϕ(n, 1(n), f(1(n), b), ā).

Proof. By our notational convention M |= ∀n ∈ Log∃z : ϕ(n, 1(n), z, ā) stands for

M |= ∀n,N(n = |N | → ∃zϕ(n, 1#N − 1, z, ā)).
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This gives

M |= ∀n,N(n = |N | ∧ 1#N − 1 = N → ∃zϕ(n, 1#N − 1, z, ā)).

By the Herbrand saturation there is a ternary function symbol f0 ∈ LPV and b ∈M
such that

M |= ∀n,N(n = |N | ∧ 1#N = N → ϕ(n, 1#N − 1, f0(n,N, b), ā))

i.e.

M |= ∀n,N(n = |N | ∧ 1#N = N → ϕ(n, 1#N − 1, f0(n, 1#N − 1, b), ā)).

Thus we get

M |= ∀n,N(n = |N | → ϕ(n, 1#N − 1, f0(n, 1#N − 1, b), ā))

because M |= ∀N1, N2(1#N1 − 1 = 1#N2 − 1). But using the notational convention
the last reads as M |= ∀n ∈ Log : ϕ(n, 1(n), f0(n, 1(n), b), ā). Now if we let f ∈ LPV
be a binary function symbol such that P̃V ` ∀x, p : f(x, p) = f0(|x|, x, p) then we
get M |= ∀n ∈ Log : ϕ(n, 1(n), f(1(n), b), ā) and we are done.

We define the following set of functions

P(M) = {fM(·, p) : M→M | f ∈ LPV a binary function symbol and p ∈M}.

Pall(M) = {fM(·, . . . , ·, p) : Mr →M | r ∈ N,
f ∈ LPV an (r+1)-ary function symbol and p ∈M}.

If M is a model of LPV we always implicitly assume we are working with its expansion
into the language L ⊇ LPV augment by a symbol for each function from Pall(M)

with its natural interpretation. This is correct as any model of P̃V clearly has such
expansion. By the expression fM ∈ Pall(M) we will always mean that fM is an
interpretation of a function symbol f from the language L. In case we will demand
fM ∈ Pall(M) to be such that f is a function symbol from the language LPV we will
always state it explicitly. Moreover we will say that fM ∈ Pall(M) does not contain
a parameter if there is a function symbol g ∈ LPV of an arity matching the arity
of fM such that gM = fM. Recall that we say that an LPV -function symbol f(x̄) is

a Boolean function in P̃V if P̃V ` f(x̄) = 0 ∨ f(x̄) = 1 and that gM ∈ Pall(M) is
a Boolean function in M if M |= ∀x̄(g(x̄) = 1 ∨ g(x̄) = 0). Finally let id ∈ P(M)
denote the identity function on M and for every a ∈M let ca ∈ P(M) be the function
which is constant a.

Observation 5.1.3. P(M) is closed under definitions by distinction by cases by open
LPV -formulae i.e:
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Suppose ϕ0(x, ā0), . . . , ϕk(x, āk) are open LPV -formulae with tuples of parameters
ā0, . . . āk ∈M, fM

0 (·, b0), . . . , fM
k (·, bk) ∈ P(M) with f0, f1, . . . , fk−1 ∈ LPV and that a

function F on M is defined by:

F (m) =



fM
0 (m, b0) if M |= ϕ0(m, ā0)
fM

1 (m, b1) if M |= ϕ1(m, ā1) ∧ ¬ϕ0(m, ā0)
...

...
fM
k−1(m, bk−1) if M |= ϕk−1(m, āk−1) ∧

∧
i<k−1 ¬ϕi(m, āi)

fM
k (m, bk) otherwise.

Then there is fM ∈ P(M) such that F = fM.

Proof. Let for every i ≤ k, ri be length of the tuple āi. Let f ∈ LPV be a binary
function symbol corresponding to the following algorithm: given input x, p check
whether p is a code of a tuple of the form (b0, b1, . . . , bk, ã0, . . . , ãk) where ãi is a code
of some tuple āi of length ri. If p is not of this form then output 0. Otherwise try
to find minimal i < k such that ϕi(x, āi) holds. If such i exists output fN

i (x, bi),
otherwise output fN

k (x, bk).

Now let b ∈ M be such that b is a code of the tuple (b0, . . . , bkã0, . . . , ãk) where
ãi is a code of the tuple āi for every i ≤ k. Then clearly F = fM(·, b).

We will leave it to the reader to check that for the functions from P(M) we also
have the following:

Observation 5.1.4. Let fM ∈ P(M). Then there is s ∈ N and d ∈ M such that
M |= ∀x > d : |f(x)| ≤ |x|s.

Note that d is dependent on the parameter from fM thus in general it is well
possible that d ∈ M − LogM. This is one of the reasons why we will choose the
domain of our ultrapower Ω to be unbounded in M:

Let Ω = {1(n) | n ∈ LogM}. Then by the definition of 1(n), Ω is M-definable
by an open LPV -formula x = 1#x − 1. Thus for every open LPV -formula ϕ and
f̄M ∈ P(M) the set 〈〈ϕ(f̄)〉〉Ω = {1(n) ∈ Ω |M |= ϕ(f̄(1(n)))} is definable by an open
LPV -formula. Recall that:

Definition 5.1.5. Let A ⊆ M be non-empty, we say that an ultrafilter U on A is
unbounded if for any b ∈M : {a ∈ A | a ≤M b} 6∈ U .

Lemma 5.1.6. Let Ω be as defined above. Then there exists an unbounded ultrafilter
on Ω.

Proof. For every b ∈ M let [b,∞) denote the set {a ∈ M | b ≤M a}. Since Ω is
cofinal in M the set B = {[b,∞) ∩ Ω | b ∈ M} has finite intersection property thus
there is an ultrafilter U on Ω extending B. This ultrafilter is unbounded on Ω by
the definition of B.

For unbounded ultrafilters on Ω we can make one simple observation:
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Observation 5.1.7. Suppose U is an unbounded ultrafilter on Ω, fM
0 , f

M
1 , . . . , f

M
k−1 ∈

P(M) and ϕ(x̄) an open LPV -formula. Let α0, α1, . . . , αk−1 ∈ P(M)/U be equivalence
classes of fM

0 , f
M
1 , . . . , f

M
k−1 respectively.

Then P(M)/U |= ϕ(α0, α1, . . . , αk−1) whenever there is d ∈ LogM such that
M |= ∀n ∈ Log(n > d→ ϕ(f0(1(n)), . . . , fk−1(1(n)))).

Proof. Since M |= ∀n ∈ Log(n > d→ ϕ(f0(1(n)), . . . , fk−1(1(n)))) for some d ∈ LogM
we have that {1(n) ∈ M | n >M d} ⊆ 〈〈ϕ(f0, . . . , fk−1)〉〉Ω. As Ω is unbounded in M
we also have that {1(n) ∈ M | n >M d} 6= ∅. Thus as U does not contain bounded
sets we get {1(n) ∈ M | n >M d} ∈ U and so 〈〈ϕ(f0, . . . , fk−1)〉〉Ω ∈ U . Finally since
U is an unbounded ultrafilter we have that open LPV -formulae are  Los for P(M)/U
and so P(M)/U |= ϕ(α0, α1, . . . , αk−1).

The following will be convenient for working with the formulae UPk(g(·, y)) and
UPk(h). Let k ∈ N and g ∈ LPV be a binary function symbol. We will denote by
UP′k(g(·, y)) the formula:

∃c∀` > 0∃C[Circuit(C, |`|) ∧ size(C) ≤ |c| · |`|k ∧ ∀i(|`| = |i| → g(i, y) = eval(C, i))]

which has a free variable y. The formula UP′k(h) is defined analogously. Then we
have:

P̃V ` ∀y[∀x(g(x, y) = 1 ∨ g(x, y) = 0)→ (UPk(g(·, y))↔ UP′k(g(·, y)))].

Henceforth if M is a model of P̃V with a ∈M such that gM(·, a) is a Boolean function
we will freely interchange UPk(g(·, a)) and UP ′k(g(·, a)). Moreover if gM(·, a) is a
Boolean function and U a ultrafilter on Ω then gP(M)/U(·, cUa ) is a Boolean function
on P(M)/U . Indeed, we have that M |= ∀x(g(x, a) = 1∨g(x, a) = 0) and ca ∈ P(M)
thus it follows by Corollary 1.1.8.

Finally throughout this chapter we let ε to range exclusively over the standard
rational numbers i.e. the numbers of the form s/t for some standard s, t. For any
such ε and a standard number k we will fix a unary function symbol ·k+ε ∈ LPV such

that for every n ∈ N, nk+εN is the lower part of nk+ε.

5.2 The proof idea of [KO17]

We remind the arful proof idea of [KO17]. For a given natural k this proof can
be divided into two steps. Adapting the result of [SR14, Proposition 2.1] one first

(provably in P̃V) find a suitable function symbol g ∈ LPV . The g has the property

that if P̃V ` UPc,k(h) for any c ∈ N and a unary function symbol h ∈ LPV then
for any uniform sequence of circuits (Cn)n∈N of size ≤ nk there is d ∈ N such that
g can not be computed by (Cn)n∈N on any length bigger then d. The next step is

based on an argument that provability of UPc,k(g) (for any c) from P̃V gives via
KPT Theorem a finite number of uniform sequences of circuits of size ≤ nk which
can together compute g on any length. But this contradicts the property of g and
so the first or the second assumption fails which in both cases gives the consistency
result claimed.
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However, since UPk(h) is an ∃∀∃∀-formula one can not use KPT Theorem to get
suitable polynomial algorithms and proceed similarly as in [KO17]. It is exactly this
part of the proof which we show can be bypassed by an ultrapower construction over
a Herbrand saturated model of P̃V.

5.3 The ultrapower construction

Let throughout this section M be a fixed countable Herbrand saturated model of P̃V
and Ω = {1(n) | n ∈ LogM}. We will employ an ultrapower construction with the
set of functions P(M) on the domain Ω modulo an unbounded ultrafilter U on Ω to
show that for any given k ∈ N there is a binary function symbol g ∈ LPV and a ∈M
such that gM(·, a) is a Boolean function on M and M |= ∃x¬UPk(g(·, x)) or there is
a binary function symbol g ∈ LPV and a ∈ M such that gP(M)/U(·, cUa ) is a Boolean
function on P(M)/U and P(M)/U |= ∃x¬UPk(g(·, x)). Since by the Corollary 1.1.7

we get P(M)/U |= P̃V this will give the consistency of P̃V + ∃x¬UPk(g(·, x)) for
some binary function symbol g ∈ LPV (and given k). After that we will show:

Lemma 5.5.4. Let M be a model of P̃V, k ∈ N and g2 ∈ LPV a binary function
symbol. Assume a ∈ M is such that M |= ¬UPk(g2(·, a)) and gM2 (·, a) is a Boolean
function. Then there is a unary function symbol g1 ∈ LPV such that M |= ¬UPk(g1).

and so the consisteny of P̃V +¬UPk(h) for some unary function symbol h ∈ LPV
(and given k) will follow.

We consider this the following observation as a first step in bypassing the KPT
theorem from the proof given in [KO17] which will become clear latter.

Observation 5.3.1. Let k ∈ N, g ∈ LPV be a binary function symbol, a ∈M and U
an unbounded ultrafilter on Ω. Assume that for every s ∈ N there is t ∈ N such that

(∗) ∀C[Circuit(C, |idU |t)∧size(C) ≤ |idU |kt+s → ∃i(|i| = |idU |t∧g(i, cUa ) 6= eval(C, i))]

holds in P(M)/U . Then ¬UP ′k(g(·, cUa )) i.e.

∀c∃` > 0∀C[Circuit(C, |`|) ∧ size(C) ≤ |c||`|k → ∃i(|i| = |`| ∧ g(i, cUa ) 6= eval(C, i))]

holds in P(M)/U .

Proof. Let α ∈ P(M)/U be given and let fM
α ∈ P(M) be some representative of α. By

the Observation 5.1.4 there is s ∈ N and d ∈M such that M |= ∀x > d|fα(x)| ≤ |x|s
and so M |= ∀n ∈ Log(n > |d| → |fα(1(n))| ≤ ns). Since U is unbounded we get by
the Observation 5.1.7 that P(M)/U |= |α| ≤ |idU |s. To find a witness for ` let t ∈ N
be such that the assumption (∗) holds for s and t. Now choose for the variable `
the element β = idU#M . . .#MidU (t-times) of P(M)/U i.e. P(M)/U |= |idU |t = |β|.
To sum up, we have P(M)/U |= |β| = |idU |t ∧ |α||β|k ≤ |idU |s+kt.

Now we can show

P(M)/U |= ∀C[Circuit(C, |β|)∧size(C) ≤ |α||β|k → ∃i(|i| = |β|∧g(i, cUa ) 6= eval(C, i))].
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Assume γ ∈ P(M)/U is such that P(M)/U |= Circuit(γ, |β|)∧size(γ) ≤ |α||β|k which
gives P(M)/U |= Circuit(γ, |idU |t) ∧ size(γ) ≤ |idU |kt+s. Since (∗) holds for s and t
this gives P(M)/U |= ∃i(|i| = |idU |t ∧ g(i, cUa ) 6= eval(γ, i)) i.e.
P(M)/U |= ∃i(|i| = |β| ∧ g(i, cUa ) 6= eval(γ, i)) and we are done.

We present the next observation and lemma in greater generality to point out
that this step is only dependent on a syntactic form of the formula and not on its
particular meaning. The following definition will latter be used to define the notion
of uniform sequences of circuits in M:

Definition 5.3.2. Let ϕ(x, y) be an open LPV -formula with all free variables shown
and A ⊆ Ω definable by an open LPV -formula.

We say that a function fM ∈ P(M) is ϕ(x, y)-uniform on A if M |= ∀z ∈ A :
ϕ(f(z), z). Moreover we say that fM ∈ P(M) is ϕ(x, y)-uniform if it is
ϕ(x, y)-uniform on Ω.

The following observation and lemma is the second ingredient for bypassing the
step of the proof from [KO17] which uses the KPT theorem.

Observation 5.3.3. Assume ϕ(x, y) is an open LPV -formula, M |= ∃x∀y ∈ Ω :
ϕ(x, y), U is an ultrafilter on Ω and α ∈ P(M)/U such that P(M)/U |= ϕ(α, idU).

Then there is fM
α ∈ P(M) which is a ϕ(x, y)-uniform representative of α.

Proof. Assume α ∈ P(M)/U is such that P(M)/U |= ϕ(α, idU). Let gα ∈ P(M) be a
representative of α. Since LPV formulae are  Los we have A = 〈〈ϕ(gα, id)〉〉Ω ∈ U and
A is clearly definable by an open LPV formula as Ω is. So we get that gα is ϕ(x, y)-
uniform on A. We have that P(M) is closed under the definition by distinction
by cases by open LPV (M)-formulae. Thus there is a function fM

α ∈ P(M) such
that fM

α (x) = gMα (x) if x ∈ A and fM
α (x) = m otherwise for some fixed m ∈ M

with M |= ∀yϕ(m, y). Then fα is ϕ(x, y)-uniform by the assumption on m. Since
〈〈fα = gα〉〉Ω = A ∈ U ,fα is a representative of α and we are done.

Lemma 5.3.4. Assume ϕ(x, y), ψ(x, y, z, w) are open LPV - formulae, M |= ∃x∀y ∈
Ω : ϕ(x, y) and let hM ∈ P(M). Assume further that:

For every fM ∈ P(M) which is ϕ(x, y)-uniform there is d ∈ LogM such that

M |= ∀n ∈ Log(n > d→ ∃iψ(f(1(n)), 1(n), i, h(1(n)))).

Then for any unbounded ultrafilter U on Ω

P(M)/U |= ∀x(ϕ(x, idU)→ ∃iψ(x, idU , i, β))

where β denotes the equivalence class of hM.

Proof. Assume α ∈ P(M)/U is such that P(M)/U |= ϕ(α, idU). By the previous
observation there is a representative fM

α ∈ P(M) of α which is ϕ(x, y)-uniform.
Thus by the assumption M |= ∀n ∈ Log(n > d → ∃iψ(fα(1(n)), 1(n), i, h(1(n))) for
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some d ∈ LogM. By the Observation 5.1.2 there is a binary function symbol i ∈ LPV
and b ∈M i.e. iM(·, b) ∈ P(M) with

M |= ∀n ∈ Log(n > d→ ψ(fα(1(n)), 1(n), i(1(n), b), h(1(n)))).

Thus by the Observation 5.1.7 we get that P(M)/U |= ψ(α, idU , ι, β) where
ι ∈ P(M)/U denotes the equivalence class of iM(·, b) and we are done.

Now we can define the uniform property relevant to our proof. For every
s, t, k ∈ N let ϕks,t(x, y) be the formula Circuit(x, |y|) ∧ size(x) ≤ |y|kt+s.

Definition 5.3.5. We say that fM ∈ P(M) is a uniform sequence of circuits (in M)
of size ≤ nkt+s with nt many inputs if fM is ϕks,t(x, y)-uniform.

Let k, s, t ∈ N, a ∈M and g ∈ LPV be a binary function symbol. We will denote
by RULB

g(·,a)
k (s, t) the following meta-statement:

gM(·, a) is a Boolean function and for all fM ∈ P(M) such that fM is a uniform
sequence of circuits of size ≤ nkt+s with nt many inputs there is d ∈ LogM for which

M |= ∀n ∈ Log(n > d→ ∃i(|i| = nt ∧ g(i, a) 6= eval(f(1(n)), i))).

Where RULB stands for Relative uniform lower bound.
Using the previous observation and the lemma above we can show:

Theorem 5.3.6. Let k ∈ N be given and assume that there is a binary function
symbol g ∈ LPV and a ∈ M such that for every s ∈ N there is t ∈ N such that
RULB

g(·,a)
k (s, t) holds.

Then P(M)/U |= ¬UPk(g(·, cUa )) for any unbounded ultrafilter U on Ω.

Proof. Fix an unbounded ultrafilter U on Ω. For every t ∈ N let ψt(C, `, i, a) be
the formula |i| = |`|t ∧ g(i, a) 6= eval(C, i). Since gM(·, a) ∈ P(M) is a Boolean
function the function gP(M)/U(·, cUa ) is a Boolean function as well. Thus to show
P(M)/U |= ¬UPk(g(·, cUa )) it suffices to show that P(M)/U |= ¬UP ′k(g(·, cUa )). To
do so, by the Observation 5.3.1 it suffices to show that for every s ∈ N there is t ∈ N
such that P(M)/U |= ∀C(ϕks,t(C, id

U)→ ∃iψt(C, idU , i, cUa )).

To show this assume s ∈ N is given and let t ∈ N be such that RULB
g(·,a)
k (s, t)

holds. Following our notation the statement RULB
g(·,a)
k (s, t) reads:

Whenever fM ∈ P(M) is a ϕks,t(x, y)-uniform sequence then there is d ∈ LogM such
that

M |= ∀n ∈ Log(n > d→ ∃iψt(f(1(n)), 1(n), i, ca(1
(n)))).

Since we can consider 0 as a code of a circuit of size 0 we get that for every
s, t, k ∈ N, M |= ∀x ∈ Ω : ϕks,t(0, x). Thus by the Lemma 5.3.4 we get that
P(M)/U |= ∀C(ϕks,t(C, id

U)→ ∃iψt(C, idU , i, cUa )) and we are done.

Before we define one more meta-statement we will slightly extend our concept of
uniform sequences of circuits in M. Let for every k ∈ N and a standard rational ε
let ϕkε (x, y) be the formula Circuit(x, |y|) ∧ size(x) ≤ |y|k+ε. Then:

Definition 5.3.7. We say that fM ∈ P(M) is a uniform sequence of circuits (in M)
of size ≤ nk+ε if fM is ϕkε (x, y)-uniform.
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Now we can give the meta-statement:
Let k ∈ N, a ∈ M, g ∈ LPV be a binary function symbol and ε a standard

rational. We will denote by ULB
g(·,a)
k (ε) the meta-statement:

gM(·, a) is a Boolean function and for all fM ∈ P(M) such that fM is a uniform
sequence of circuits of size ≤ nk+ε there is d ∈M such that

M |= ∀n ∈ Log(n > d→ ∃i(|i| = n ∧ g(i, a) 6= eval(f(1(n)), i))).

Where ULB stands for Uniform lower bounds. It is only a technicality which we
will prove latter that:

Lemma 5.5.2. Let M be a model of P̃V, a ∈ M, k ∈ N and g ∈ LPV be a binary
function symbol. Assume there is a standard rational ε > 0 such that ULB

g(·,a)
k (ε)

holds. Then for every s ∈ N there is t ∈ N such that RULB
g(·,a)
k (s, t) holds.

Based on the previous paragraphs we can describe how the rest of our proof
works. We will fix a Herbrand saturated model M of LPV . For a given k ≥ 1
we will wlog assume that k > 3. This is possible as for any k ∈ N we have that
P̃V ` ∃x¬UPk+1(g(·, x) → ∃x¬UPk(g(·, x))). To find the suitable function symbol
g ∈ LPV we formalize the proof of [KO17, Lemma 3.1] in M. The symbol g will
be such that if there is no binary function symbol f ∈ LPV and no b ∈ M such
that fM(·, b) is a Boolean function on M with M |= ∃x¬UPk(f(·, x)). Then there is

a standard rational ε > 0 and a ∈ M such that ULB
g(·,a)
k (ε) holds in M. To show

this, we will give a proof almost identical to the proof of Lemma 3.2 ibid modulo the
“+ε” factor with an assumption ε < (k−3)/2 and modulo formalisation in M. Hence
using the Lemma 5.5.4 we get that either the consistency result is witnessed by M.
Or using the theorem above with Lemma 5.5.2 and the Lemma 5.5.4 the consistency
result will be witnessed by P(M)/U for any unbounded U .

Finally, we remark and proof latter that our construction will have the following
corollary:

Corollary 5.5.7. Assume there is a countable Herbrand saturated model M of P̃V
and an unbounded ultrafilter U on Ω = {1(n) | n ∈ LogM} with P(M)/U |= S1

2(PV).
Then for every natural nnumber k ≥ 0 there is a binary function symbol g ∈ LPV

and a unary function symbol h ∈ LPV such that

S1
2(PV) + P̃V + ∃x¬UPk(g(·, x)) and S1

2(PV) + P̃V + ¬UPk(h)

are consistent.

5.4 Complexity in non-standard models of P̃V

Recall that an r-ary function f : Nr → N is in DTIME(nd) for some d ∈ N if there is a
constant c ∈ N and a Turing machine A computing f on each input w0, w1, . . . , wr−1

in less than c(1 + |w1|+ . . .+ |wr|)d many steps. We define the deterministic time in
M as follows: for any d ∈ N

DTIMEM(nd) = {fM(·, . . . , ·, p) : Mr →M | r ∈ N, p ∈M,

f ∈ LPV an (r + 1)-ary function symbol and fN ∈ DTIME(nd)}.
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In the following paragraphs we will clarify concepts of coding of strings and simu-
lations of Turing machines in M.

First we fix encoding functions:

bit(·, ·) : Let bit(x, i) ∈ LPV be a binary function symbol such that

bit(x, i)N =

{
“the i-th bit in the binary expansion of x” if i < |x|
0 otherwise

where the 0-th bit is by convention the least significant bit. Thus a number m ∈M
codes the string ‘bit(m, 0)bit(m, 1) . . . bit(m, |m| − 1)’. Moreover if `, p ∈ M and
ϕ(x, y) ∈ ∆b

0(LPV ) then there is a number m ∈ M such that
M |= ∀i ≤ |l| : bit(m, i) = 1↔ ϕ(i, p).

· ∗ · : Let · ∗ · ∈ LPV be a binary function symbol definded by an algorithm which
on input x, y decode the string wx coded by x and wy coded by y and output the
number coding the string wxwy.

In other words, the following formulae are provable in P̃V and thus its universal
closure hold in M

(i < |a| → bit(a ∗ b, i) = bit(a, i))∧ (|a| ≤ i < |b|+ |a| → bit(a ∗ b, i) = bit(b, i− |a|))1

|a ∗ b| = |a|+ |b|

(·, . . . , ·) : Let for any standard number k, (·, . . . , ·) ∈ LPV be an k-ary function
symbol corresponding to an algorithm which given input x0, x1, . . . , xk−1 interpret
xi as a code of a string wi and output code of the k-tuple (w0, w1, . . . , wk−1). This

functions can be chosen such that for any k ∈ N there is c ∈ N such that P̃V proves
the formula

|(x1, . . . , xk)| ≤ c(k + |x1|+ . . .+ |xk|).
For the following definitions we fix some notion of coding of a sequence (in N) such
that any number codes some sequence.

len(·) : Let len(x) ∈ LPV be a unary function symbol definded by an algorithm
which on input x outputs the number of items in the sequence coded by x.

For decoding sequences we have the following function:

(·)i : Let (·)i ∈ LPV be a binary2 function symbol definded by an algorithm which
on input x, i outputs the i-th element in the sequence coded by x and 0 if the index
i is bigger then the number of items in the sequence coded by x.

We can assume that the functions (·)Ni , lenN(·) and thus the notion of coding of
a sequence (in N) were chosen such that for some c ∈ N the following formula is

provable in P̃V:

|m| ≤ c(len(m) +
∑

i<len(m)

|(m)i|).

1where x-y is defined as usual if x > y and equals 0 otherwise
2the second variable is i
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Where the above sum is definable in P̃V as P̃V ` len(m) ≤ |m|. With aid of the
function bit we can now easily code (in M) sequences of n many k-tuples for any
standard k and n ∈ LogM. Clearly the interpretations of the function symbols above
in N can be chosen such that they all are in DTIME(n2).

Next recall that by [AB09, Theorem 1.9] there is a universal Turing machine
which given a code cA of a Turing machine A and an input x simulates in dA log(T )T
steps the first T steps of the computation of A on input x. The constant dA is
independent on |x| and depends only on A’s alphabet size, number of input tapes
and number of states. Using the universal Turing machine we have:

Lemma 5.4.1. For any d ∈ N, d ≥ 2 there is a 4-ary function symbol und ∈ LPV
with unN

d ∈ DTIME(log4(n)nd) such that for any ternary function symbol f ∈ LPV
with fN ∈ DTIME(nd) there is cf , lf ∈ N such that

(1) P̃V ` ∀x > lf∀p, a(|a| = |x|2/3 → und(x, a, p, cf ) = f(x, a, p)).

Proof. Let und ∈ LPV be 4-ary function symbol corresponding to the following
algorithm:

Given input x, a, p, cf check whether cf is a code of a Turing machine. If not
output 0, otherwise let A be the Turing machine coded by cf . Simulate computation
of A on input x, a, p and stop the simulation after log(|x|+ |a|+ |p|)4(|x|+ |a|+ |p|)d
many steps. If the simulated computation halts, output the computed value of A on
x, a, p. Otherwise output 0.

We claim that the algorithm runs in O(log4(n)nd). Given input x, a, p, cf with
|x| + |a| + |p| + |cf | = n to check whether cf is a code of a Turing machine can be
done in O(|cf |2) and so in O(n2) many steps. To count the number of steps of the
simulation and proceed the simulation for log(|x|+ |a|+ |p|)4(|x|+ |a|+ |p|)d many
steps is in O(log(n)4nd). Thus for d ≥ 2 we have unN

d ∈ DTIME(log(n)4nd).
Now we will show that for any ternary function symbol f ∈ LPV with

fN ∈ DTIME(nd) there is cf , lf ∈ N such that (1) holds. Assume f is such a
function symbol and let cf ∈ N be a code of a Turing machine A computing fN

in time O(nd). Then for all x, a, p, |x| + |a| + |p| = n with x big enough the com-
putation of A on x, a, p halts in log(|x|)nd many steps. By the previous paragraph
there is dA such that for any x, a, p the first log(|x|)nd many steps of the compu-
tation of A on input x, a, p can be simulated in dA log(log(|x|)nd) log(|x|)nd many
steps. For big enough x this is ≤ log(|x|)3 log(n)nd ≤ log(n)4nd. Thus if x, p, a for
x big enough are given then the simulation of A on input x, p, a halts in less then
log(|x| + |a| + |p|)4(|x| + |a| + |p|)d many steps and so the algorithm above outputs
fN(x, a, p) i.e. unN

d (x, a, p, cf ) = fN(x, a, p). Moreover since we made the estimations
for “big enough x” independent on size of a and p we indeed do not have to give any
lower bound on a, p.

The previous lemma gives us a possibility to use unM
d for a certain kind of diag-

onalization in M against DTIMEM(nd):

Lemma 5.4.2. For every standard d ≥ 2 there a unary function symbol gd+1 ∈ LPV
such that gMd+1 ∈ DTIMEM(nd+1) is a Boolean function and for every binary function
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hM ∈ DTIMEM(nd) there is dh ∈ LogM with:

(2) M |= ∀n ∈ Log∀a(n > dh ∧ |a| = n2/3 → ∃x(|x| = n ∧ gd+1(x) 6= h(x, a))).

Moreover if hM does not contain parameter from M then dh can be chosen to be in
N.

Proof. Let gd+1 ∈ LPV be a function symbol corresponding to the following algo-
rithm:

Given x interpret it as a code of a binary string w. Interpret first ||x|| bits
of w as a binary representation of a number ch, interpret the next |x|2/3 bits as a
binary representation of an advice a and finally interpret the last bits as a binary
representation of a parameter p. Output 1 if und(x, p, a, ch) = 0 and 0 otherwise.

Since to compute unN
d (x, p, a, ch) is in time O(log(n)4nd) and to code/decode

strings is in time O(n2), the described algorithm runs in time O(nd+1) and so
gMd+1 ∈ DTIMEM(nd+1).

Now assume a Boolean function hM(·, ·, p) ∈ DTIMEM(nd) for h ∈ LPV and
p ∈ M is given. We are obligated to show that there is dh ∈ M such that (2)
holds. To do so, let ch, lh ∈ N be such that (1) holds for h. Let further n > dh
and a ∈ M with |a|M = (n2/3)M be given where dh is big enough specified by the
following paragraphs. It suffices to let m ∈M be of length n coding a string w with
the following property:

(i) the first (|n|M)-many bits of w are 0’s followed by binary representation of ch,
(ii) the next (n2/3)M-many bits of w are binary representation of a and
(iii) the last part of w consists of 0’s followed by a binary representation of p.
Such m clearly exists as it can be computed from a, p, ch if a is big enough wrt

p. Then by the definition of gd+1, gMd+1(m) 6= unM
d (m, a, p, ch) and so if in addition

n > lh then by (1) we get gMd+1(m) 6= unM
d+1(m, a, p, ch) = hM(m, a, p) which finishes

the argument.
For the second part of the statement observe that if hM does not contain any

parameter then the element m from above does not have to code any parameter p.
But then the length of m is only dependent on a and ch0 and thus such m exists for
any n ∈ logM with |n| > cf ∈ N.

Before stating the next lemma, we will discuss what uniform sequences of circuits,
circuits and coding of circuits means in M. We describe two ways of codding circuits
and uniform families of circuits following [SR14] and [KO17].

Assume C is a (standard) circuit with n inputs then it can be coded as a sequence
of 4-tuples

(1(n), u, v, w)

where u, v are gates of C such that there is a wire from the gate u to the gate v and w
describes the type of a gate u. If S denotes the number of gates in C then u, v ≤ S,
w ≤ e for a fixed e independent on C and so |(1(n), u, v, w)| is in O(n+ log(S)).

We let Circuit(·, ·) ∈ LPV be a binary function symbol corresponding to an
algorithm which for input C, n outputs 1 if the given number C is a code of a
sequence coding a circuit with n many inputs according to the coding above and
outputs 0 otherwise. We will abuse the notation and use this function symbol as a
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predicate thus we will write Circuit(C, n) instead of Circuit(C, n) = 1. Moreover we
fix a unary function symbol size ∈ LPV such that sizeN assign to every circuit in N
its size (i.e. number of gates) and 0 to any number which is not a code of a circuit.
The symbols Circuit and size, can be chosen so that CircuitN, sizeN ∈ DTIME(n2).

Finally we let eval ∈ LPV be a binary function symbol corresponding to the
following algorithm: given input C, i check whether C is a code of a circuit and
output 0 if not. Otherwise let n be the number of inputs of the circuit coded by C
and compute the value of C with the assignment of input variables of C where the
j-th input variable of C get as an input the j-th bit of i if j < |i| and 0 otherwise.
To compute the value of a circuit C on input i can be done in O(size(C)2 + |i|) many
steps. Thus the algorithm runs in O(C2 + |i|) for any C, i.

We say that C ∈ M is a circuit (in M) if M |= ∃nCircuit(C, n). Recall that
for a given standard number k and a standard rational ε we say that a function
fM ∈ P(M) is a uniform sequence of circuits (in M) of size ≤ nk+ε, if

M |= ∀n ∈ Log : Circuit(f(1(n)), n) ∧ size(f(1(n))) ≤ nk+ε.

where the function symbols Circuit and size are now fixed by the previous para-
graphs.

Finally we define a more efficient way of coding uniform sequences of circuits
called the “succint” version which is thanks to [SR14] with a slight change following
[KO17]3. Let fM ∈ P(M) be a uniform sequence of circuits of size ≤ nk+ε for some
k ∈ N and a standard rational ε. Then for every n from LogM we can code the
circuit fM(1(n)) by a sequence of 5-tuples of the form

(n ∗ 0 ∗ 1(n1/(3k)), u, v, w, t)

with the same meaning of u, v, w as above and t is a code of a string of 1’s to padd the
length of the tuple to n1/(2k) if possible. The padding is possible for any big enough
n since for some fixed e ∈ N u, v ≤ nk+ε, w ≤ en and so |(n ∗ 0 ∗ 1(n1/(3k)), u, v, w)| is
O(|n|+ n1/(3k) + |u|+ |v|+ |w|) = O(n1/(3k) + log(n)) = O(n1/(3k)).

We denote by χfsucc ∈ P(M)/UM the characteristic function of the language
which consists of all 5-tuples that appear in the sequence coding the circuit fM(1(n))
for some n ∈ LogM with n big enough so that the tuples can be padded to the length
n1/(2k). Since χfsucc can be defined using fM we have that χfsucc ∈ P(M).

Considering size of codes we will need the following claim:

Claim 5.4.3. Let k > 3 be a standard number and assume {Dn}n∈LogM is such that
for any n ∈ LogM, M |= Circuit(Dn, n)∧ size(Dn) ≤ (n1/(2k))k. Then there is d ∈ N
such that M |= |Dn| ≤ n2/3 for any n ∈ logM with n > d.

Proof. Let n ∈ LogM be given and let D be the circuit coded by the number Dn.
Recall that if D has r ≤ n1/(2k) many inputs it is coded by a sequence of 4-tuples
(1(r), u, v, w) where for each wire of D there is exactly one 4-tuple in the sequence.
For each gate of D there are at most two incoming wires and there is at most (n1/(2k))k

many gates. Using that each wire is an incoming wire of some edge the number of

3in [SR14] the 5-tuples defined bellow are not padded to exact length
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wires inD and so the length of the sequence codingD is inO(n1/2). Since each 4-tuple
is coded by a number of length O(r+log(n1/(2k))) and so O(n1/(2k)) by r ≤ n1/(2k) we
get that D can be coded by a number of length O(n1/2n1/(2k)) = O(n1/2+1/(2k)). But
then D can be coded by a number of length ≤ n2/3 for all big enough n as 1/2k < 1/6
by the assumption on k and thus O(n1/2+1/(2k)) < O(n2/3). Thus |Dn| ≤ n2/3 for all
big enough n ∈ LogM. Since the estimations holds for big enough standard numbers,
we can have d ∈ N.

The proof of the following Lemma is almost identical with the proof of [KO17,

Lemma 3.2] modulo the factor “+ε” and formalisation in a model of P̃V.

Lemma 5.4.4. Let k > 3 be a standard natural number. Then there is unary
function symbol g ∈ LPV such that g ∈ DTIMEM(n3k) is a Boolean function and
whenever fM ∈ P(M) is a sequence of uniform circuits of size ≤ nk+ε for ε < (k−3)/2
and M |= UP′k(χ

f
succ)

4 then there is df ∈ N such that:

M |= ∀n ∈ Log[n > df → ∃x(|x| = n ∧ g(x) 6= eval(f(1(n)), x))].

Proof. Let g be the gd+1 from the Lemma 5.4.2 for d = 3k−1. We show that there is
a binary function symbol h ∈ LPV with hM(·, ·) ∈ DTIMEM(n3k−1), a set of advices
{Dn}n∈LogM in M and d ∈ N such that:

For any n > d from LogM,

M |= |Dn| = n2/3 ∧ ∀x(|x| = n→ h(x,Dn) = eval(f(1(n)), x)).

Using this and assuming conclusion of this lemma fails, we will derive a contradiction
with the Lemma 5.4.2.

Let h ∈ LPV be a binary function symbol corresponding to the following algo-
rithm: Given x, a where |x| = n, if a is not a (padded) code of a circuit of size
≤ (n1/(2k))k with (n1/(2k)) many inputs then reject. Otherwise let D be the cir-

cuit coded by a. Try all possible 5-tuples of the form (n ∗ 0 ∗ 1(n1/(3k)
), u, v, w, t) of

length n1/(2k) with u, v ≤ nk+ε, w ≤ e and t coding string of one’s and using D
check whether they are in a sequence defining a circuit. After trying all possible 5-
tuples check whether the constructed sequence of accepted 5-tuples correctly defines
a circuit of size ≤ nk+ε, if not - reject. Otherwise call C the circuit defined by the
sequence and output the value of C on input x.

We first show that:

Claim 5.4.5. The algorithm above runs in O(n3k−1) and thus hM ∈ DTIMEM(n3k−1).

Proof. Let an input x, a where |x| = n be given. Since u, v ≤ nk+ε and w ≤ en the
number of relevant 5-tuples is ≤ en2k+1+2ε. To evaluate a circuit D of size ≤ (n1/(2k))k

i.e. O(n1/2) is in time O(n). Thus to create the sequence of accepted 5-tuples is in
O(n · n2k+1+2ε) = O(n2k+2+2ε) many steps. To evaluate the computed circuit C of
size ≤ nk+ε on input x with |x| = n is in time O(n2k+2ε). Altogether gives that the
above algorithm runs in O(n2k+2+2ε + n2k+2ε) which is O(n3k−1) for ε < (k− 3)/2 on
any input tuple x, a. Thus hN ∈ DTIME(n3k−1) and so hM ∈ DTIMEM(n3k−1).

4i.e. M |= UP′k(χ(·, b)) for some binary function symbol χ ∈ LPV and b ∈ M with χM(·, b) =
χf
succ
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Now for any n ∈ LogM let Dn be a circuit of size ≤ (n1/(2k))k with n1/(2k)

many inputs computing χfsucc on inputs of length n1/(2k). Such circuits exist for
every n ∈ LogM by the assumption M |= UP′k(χ

f
succ). We can wlog assume there

is d0 ∈ N such that for any n > d0 with n ∈ LogM: M |= |Dn| = n2/3. This
is correct because by the Claim 5.4.3 as k > 3 there is d0 ∈ N such that for any
n ∈ LogM , M |= |Dn| ≤ n2/3 and we can padd Dn if necessary to be of size n2/3 for
any n ∈ LogM with n > d0 . Moreover let d1 ∈ N be such that for any n ∈ LogM
with n > d1 the 5-tuples (n ∗ 0 ∗ 1(n1/(3k)), u, v, w, t) can be padded to length n1/(2k).
Finally set d = max(d0, d1).

Now we can show:

Claim 5.4.6. For any n ∈ LogM with n > d:

M |= |Dn| = n2/3 ∧ ∀x(|x| = n→ h(x,Dn) = eval(f(1(n)), x)).

Proof. Assume n ∈ LogM with n > d is given. Since n > d0 we have that |Dn| = n2/3.
Since n > d1 we also have that the 5-tuples corresponding to the circuit fM(1(n)) are
padded to length n1/(2k). Thus by definition of χfsucc and definition of Dn, the circuit
coded by Dn can decide whether given 5-tuple of length n1/(2k) corresponds to the
circuit fM(1(n)). Now assume an input i ∈M with |i| = n is given. Since the circuit
coded by Dn is of size ≤ (n1/(2k))k the algorithm above will on input i,Dn correctly
compute the sequence coding the circuit fM(1(n)). Since sizeM(fM(1(n))) ≤ nk+ε it
will continue and output evalM(fM(1(n)), i).

Now we can derive the promised contradiction. First, by the definition of g
together with hM ∈ DTIMEM(n3k−1) there is by the Lemma 5.4.2 some c ∈ N (h
does not use parameter from M) with

M |= ∀n ∈ Log∀a(n > c ∧ |a| = n2/3 → ∃x(|x| = n ∧ g(x) 6= h(x, a))).

Assuming the conclusion of this lemma fails there is n > max(c, d) from LogM such
that M |= ∀x(|x| = n → g(x) = eval(f(1(n)), x)). But by the previous paragraph
as n > d also M |= |Dn| = n2/3 ∧ ∀x(|x| = n → h(x,Dn) = eval(f(1(n)), x)) and
thus M |= ∀x(|x| = n → g(x) = h(x,Dn)) contradicting n > c. Hence we can let
df = max(c, d) i.e. df ∈ N and we are done.

In the context of the previous lemma we remark that it is not known to the author
whether one can under the assumption that M |= UP′k(χ

f
succ) construct explicitly a

function iM ∈ P(M) which can compute witness for x in the statement

M |= ∀n ∈ Log[n > df → ∃x(|x| = n ∧ g(x) 6= eval(f(1(n)), x))].

In particular, having such function explicitly constructed for every given f of the
form as above assuming M |= UP′k(χ

f
succ) one could avoid the assumption that M is

Herbrand saturated in the construction.
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5.5 The result

Recall the definition of the meta-statements ULB
g(·,a)
k (ε) and RULB

g(·,a)
k (s, t) from

the Section 5.3. As a direct corollary of the last lemma we get:

Corollary 5.5.1. Let M be a model of P̃V and let k > 3 be a natural number.
Assume there is no binary function symbol f ∈ LPV and a ∈M such that fM(·, a) is
a Boolean function with M |= ¬UP′k(f(·, a)). Then there is a binary function symbol

g ∈ LPV and a ∈ M such that ULB
g(·,a)
k (ε) holds for any standard rational ε with

ε < (k − 3)/2.

The following lemma is the last missing bit of our construction:

Lemma 5.5.2. Let M be a model of P̃V and let k ∈ N be given. Assume a binary
function symbol g ∈ LPV and a ∈M is such that ULB

g(·,a)
k (ε) holds for some standard

rational ε > 0. Then for every s ∈ N there is t ∈ N such that RULB
g(·,a)
k (s, t) holds.

Proof. The proof idea of this lemma is straightforward: Assume no uniform se-
quence of circuits of size ≤ nk+ε can compute gM(·, a) on all big enough lengths and
fM ∈ P(M) is a uniform sequence of circuits of size ≤ nkt+s with with nt many inputs
and s/t ≤ ε. Then fM cannot on input 1(n) with n big enough produce a circuit
computing gM(·, a) on inputs of length nt. Indeed, the size of the circuit computed
by fM from 1(n) wrt to m = nt is ≤ nkt+s ≤ mk+s/t ≤ mk+ε. But then we could use
fM to define a uniform sequence of circuits of size ≤ nk+ε computing gM(·, a) on all
big enough lengths. Formally the proof goes as follows:

Let ε be such that ULB
g(·,a)
k (ε) holds. Let s ∈ N be given and choose a t ∈ N such

that s/t < ε. Assume fM ∈ P(M) is a uniform sequence of circuits of size ≤ nkt+s

with nt many inputs.
Let hM ∈ P(M) be any such that M |= ∀n ∈ Log : h(1(n)) = f(1(n1/t)). Then

clearly M |= ∀n ∈ Log : Circuit(h(1n), (n1/t)t). Moreover we can wlog assume that
M |= ∀n ∈ Log : Circuit(h(1(n)), n).5 This is possible as M |= ∀n ∈ Log : (n1/t)t ≤ n
and so we can add to each circuit computed by hM on 1(n), add(n) = n−(n1/t)t many
inputs not connected to any other gate. Then M |= ∀n ∈ Log : size(h(1(n))) ≤ nk+ε.

Indeed, reasoning in M: if n ∈ Log then size(h(1(n))) ≤ size(f(1(n1/t))) + add(n) ≤
(n1/t)kt+s + add(n) ≤ ((n1/t)t + add(n))kns/t ≤ nk+s/t ≤ nk+ε. Hence hM is a uniform
sequence of circuits of size ≤ nk+ε.

Using the assumption ULB
g(·,a)
k (ε) for hM, there is d ∈ LogM such that :

M |= ∀n ∈ Log(n > d→ ∃i(|i| = n ∧ g(i, a) 6= eval(h(1(n)), i))).

This implies

M |= ∀n ∈ Log(n > d→ ∃i(|i| = nt ∧ g(i, a) 6= eval(h(1(nt)), i)))

but then

M |= ∀n ∈ Log(n > d→ ∃i(|i| = nt ∧ g(i, a) 6= eval(f(1(n)), i)))

since M |= h(1(nt)) = f(1(n)) for any n ∈ LogM and we are done.

5as defined in the beginning of this chapter we use the convention that n1/t is the lower part of
n1/t and so in general it is not true that (n1/t)t = n
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Now we can put everything together and state:

Theorem 5.5.3. For any natural number k ≥ 1 there is a binary function symbol
g ∈ LPV such that

P̃V + ∃x¬UPk(g(·, x))

is consistent.
Moreover in the context of the previous paragraphs, either there is a binary func-

tion symbol g ∈ LPV such that M |= ¬UPk(g(·, a)) for some a ∈ M and gM(·, a)
is a Boolean function. Or there is a binary function symbol g ∈ LPV such that
P(M)/U |= ¬UPk(g(·, cUa )) for some a ∈M and gP(M)/U(·, cUa ) is a Boolean function.

Proof. Let M be a countable Herbrand saturated model of P̃V and let a natural
number k ≥ 1 be given. Since for any binary function symbol g ∈ LPV we clearly
have P̃V ` ∃y¬UP′k+1(g(·, y)) → ∃y¬UP′k(g(·, y)) we can wlog assume k > 3. We
can also assume there is no binary function symbol f ∈ LPV and no a ∈ M such
that fM(·, a) is a Boolean function and M |= ¬UP′k(f(·, a)) as otherwise we are done.
Indeed, if fM(·, a) is a Boolean function then M |= UP′k(f(·, a))↔ UPk(f(·, a)).

Then by the Corollary 5.5.1 there is a function symbol g ∈ LPV and a parameter
a ∈M such that ULB

g(·,a)
k (ε) holds for some standard rational ε > 0 (the function g

we constructed is in fact unary but we can wlog assume it has a parameter a). But

then by the previous lemma for every s ∈ N there is t ∈ N such that RULB
g(·,a)
k (s, t)

holds. Finally using the Theorem 5.3.6 we get that for any unbounded ultrafilter U
on Ω, P(M)/U |= ¬UP′k(g(·, cUa )).

The moreover part follows by the assumption made on M and since the gM(·, a)
and thus gP(M)/U(·, cUa ) is a Boolean function.

Lemma 5.5.4. Let M be a model of P̃V, k ∈ N and g2 ∈ LPV a binary function
symbol. Assume a ∈ M is such that M |= ¬UPk(g2(·, a)) and gM2 (·, a) is a Boolean
function. Then there is a unary function symbol g1 ∈ LPV such that M |= ¬UPk(g1).

Proof. Let k be given. Since gM2 (·, a) is a Boolean function on M, we have
M |= UP′k(g2(·, a)). We will show there is g1 ∈ LPV such that gM1 is a Boolean
function with M |= UP′k(g1) and so M |= UPk(g1).

Let 〈·, ·〉 ∈ LPV be a binary function symbol corresponding to the following
algorithm:

Given input x, a let i0i1 . . . i|x|−1 and j0j1 . . . j|a|−1 be the strings coded by x and a
respectively. Output the code of the string i0i0i1i1 . . . i|x|−1i|x|−101j0j0j1j1 . . . j|a|−1j|a|−1.

We claim that we can let g1 ∈ LPV be a unary function symbol such that

P̃V ` ∀x, a(g1(〈x, a〉) = g2(x, a)) ∧ ∀y(g1(y) = 0 ∨ g1(y) = 1).

We will need the following claim which is the only trick of this proof.

Claim 5.5.5. Let a,N ∈M be given and let C be a circuit in M with 2|N |+ 2 + 2|a|
many inputs such M |= ∀x(|x| = |N | → eval(C, 〈x, a〉) = g1(〈x, a〉)). Then there is
a circuit Ca in M of size ≤ sizeM(C) with |N | many inputs such that M |= ∀x(|x| =
|N | → eval(Ca, x) = g2(x, a)).
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Proof. We will argue in M: Assume a,N and C satisfying the assumptions are given.
Let a0a1 . . . a|a|−1 be the string coded by a. By the definition of 〈·, ·, 〉 we have that
for any x with |x| = |N |, 〈x, a〉 is of the form

i0i0i1i1 . . . i|N |−1i|N |−101a0a0a1a1 . . . a|a|−1a|a|−1

where im ∈ {0, 1} for any m < |N |. Now we construct the circuit Ca from C as
follows:

- If q, p are the input gates of C that get evaluated by im, im for some m < |N |,
then substitute q, p by one input gate q′ which is connected to all wires of q and p.

- If q is the input gate of C that get evaluated by the constant 0 then substitute
q by the constant 0 (and keep the wires of q).

- If q is the input gate of C that get evaluated by the constant 1 then substitute
q by the constant 1 (and keep the wires of q).

- If q, p are the input gates of C that get evaluated by am, am for some m < |a|.
Then substitute q, p by the constant 0 (or 1) which is connected to all wires of q and
p if am = 0 (or if am = 1).

It is easy to see that size(Ca) ≤ size(C), the number of inputs of ca is |N | and
for any x with |x| = |N |, eval(C, 〈x, a〉) = eval(Ca, x).

For the rest of this proof we fix a d ∈ N such that

P̃V ` N > 0→ |e|(2|N |+ 2 + 2|a|)k ≤ d(|e|+ 1)(|a|+ 1)k|N |k.

Now we will argue in M as follows: Assume that ¬UP′k(g2(·, a)) for some a and
assume for a contradiction that UP′k(g1). Let e be such that

∀` > 0∃C[Circuit(C, |`|) ∧ size(C) ≤ |e| · |`|k ∧ ∀i(|`| = |i| → (g1(i) = eval(C, i)))]

then by ¬UP′k(g2(·, a)) (choosing for c an element of length d(|e|+ 1)(|a|+ 1)k) there
is some N > 0 such that

∀C[Circuit(C, |N |) ∧ size(C) ≤ d(|e|+ 1)(|a|+ 1)k|N |k

→ ∃i(|N | = |i| ∧ (g2(i, a) 6= eval(C, i)))].

But then by

∀` > 0∃C[Circuit(C, |`|) ∧ size(C) ≤ |e| · |`|k ∧ ∀i(|`| = |i| → (g1(i) = eval(C, i)))]

(choosing for ` an element of length 2|N | + 2 + 2|a|) there is a circuit D of size
≤ |e|(2|N |+ 2 + 2|a|)k with 2|N |+ 2 + 2|a| many inputs such that

∀i(2|N |+ 2 + 2|a| = |i| → (g1(i) = eval(D, i))).

Now since for any x of length |N |, |〈x, a〉| = 2|N |+ 2 + 2|a| we get that for any x of
length |N |, g1(〈x, a〉) = eval(D, 〈x, a〉). Then by the the claim above there is a circuit
Da with |N | many inputs such that for any x of length |N |, g2(x, a) = eval(Da, x).
But since size(D) ≤ |e|(2|N |+2+2|a|)k and N > 0 we get size(Da) ≤ d(|e|+1)(|a|+
1)k|N |k contradicting the choice of N .

So we have shown that M |= ¬UP′k(g1) and since gM1 is a Boolean function we get
M |= ¬UPk(g1).
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Corollary 5.5.6. For any natural number k ≥ 1 there is a unary function symbol
h ∈ LPV such that

P̃V + ¬UPk(h)

is consistent.

Proof. Apply the lemma above to the previous theorem.

Corollary 5.5.7. Assume there is a countable Herbrand saturated model M of P̃V
and an unbounded ultrafilter U on Ω = {1(n) | n ∈ LogM} with P(M)/U |= S1

2(PV).
Then for every natural number k ≥ 1 there is a binary function symbol g ∈ LPV

and a unary function symbol h ∈ LPV such that

S1
2(PV) + P̃V + ∃x¬UPk(g(·, x)) and S1

2(PV) + P̃V + ¬UPk(h)

are consistent.

Proof. It is only necessary to note that any Herbrand saturated model of P̃V is a
model of S1

2(PV ) (see [Avi02] or [Kra95, Theorem 7.6.3]). Thus by the assumption

we can choose U such that M and P(M)/U are models of S1
2(PV) + P̃V. The rest

follows by the same argument as in the proof of the last theorem using the lemma
above.

We only note that it is not known to the author whether there is any model of
P̃V such that the assumption of the previous corollary without “Herbrand saturated”
holds. We also note that it is not known to the author whether the assumption is
strictly weaker than P̃V ` S1

2(PV).
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Chapter 6

Conclusion

In the Chapter 1 we gave a general definition of the (ultra)power constructions. In
the Theorem 1.3.3 we showed that by (ultra)power constructions one can reach all
models of the universal theory of the groundmodel for any countable groundmodel.
We left open whether one can generalise this theorem for uncountable cardinalities
and use it for reasoning about model-theoretic problems.

In the Chapter 2 we generalised the Construction B of [Gar15] which lead to
a general technique of a construction of models of weak forms of induction. We
augmented the construction of Michal Garĺık by some sort of density arguments that
gives more flexibility to this technique. However, a general construction leading to
models of stronger form of induction or a construction of this type in more elegant
framework is still missing.

In the Section 4.1 we gave a variation on the Theorem of Hirschfeld from [Hir75]
for a rich class of universal theories which can prove basic facts about coding of
(standard) finite tuples. The generalisation has direct implications for the theory

P̃V. Although we did not use this theorem to derive some new results we believe
this result gives a new inside in the behaviour of countable models of theories like
P̃V.

Finally in the Section 5 we did an ultrapower construction to answer an open
question from the article [KO17]. The Corollary 5.5.7 of this construction gives
a conditional answer to another question from ibid. However, the strength of the
condition given in this corollary is unknown and the author is sceptical in this direc-
tion. A question whether a similar construction can be made for other theories then
S1

2(PV) asked in the paper is open.
We believe that this thesis gave good examples of a use of the technique of

power constructions in reasoning about complexity theory, bounded arithmetic and
arithmetic and that more research in this direction could help to foster the current
state of knowledge in bounded arithmetics and related areas.
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[Sko34] Thoralf A. Skolem. Über die nichtcharakterisierbarkeit der zahlreihe mittles
endlich oder abzahlbar unendlich vielen aussage mit ausschliesslich zahlvari-
ablen. Fundamenta Mathematicae, 23:150–161, 1934.

[SR14] Rahul Santhanam and Williams Ryan. On uniformity and circuits lower
bounds. Computational Complexity, 55(1):177–205, 2014.

[ZT12] Martin Ziegler and Katrin Tent. A Course in Model Theory. The Associa-
tioon for Symbolic Logic. Cambridge University Press, 2012.


