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1. Hamiltonsche Wege und Kreise in transitiven Graphen — Lovasz's Vermutung

Ein Graph G heif3t (knoten-) transitiv, falls es zu je zwei beliebigen Knoten v, und v, einen
Automorphismus f von G gibt mit f(v,)= v, . Jeder transitive Graph ist regular (aber nicht
umgekehrt).

Lovasz conjecture (offen seit 1969): Jeder endliche zusammenhangende transitive Graph
enthalt einen Hamiltonschen Weg, bzw:

Jeder endliche zusammenhangende transitive Graph aul3er 5 bekannten Graphen (u.A. der
Petersen-Graph) enthalt einen Hamiltonschen Kreis. Dodekaeder

Schwachere Version fur Caleygraphen (Graphen definiert anhand von Gruppen und deren
Erzeugendensystemen).

Lovacz Vermutung wurde fir verschiedene Graphenklassen bewiesen. Dies soll unter
einheitlichen Gesichtspunkten und Berticksichtigung der neuesten Publikationen
zusammenzufasst, erklart und durch Beispiele illustriert werden. Auch auf Anwendungen
(Gray-Codes, Combinatorial design,...) ist einzugehen.

Petersen-Graph



2. Lineare Erweiterung von Halbordnungen - Algorithmen, Komplexitat, Anwendungen

Jede Halbordnung H kann zu einer Vollordnung (Lineare Erweiterung von H) fortgesetzt werden.
H={(a.d), (a,e), (b.d), (b.e), (c.e), (c.f)} w {(x.x)| xe{a,b,c.d.e.f}}

Beispiel:
d e f Sl e o
do f o
M\I f C O
. b . c I do
Lineare Erweiterungen b ¢ bQ

Springe a o ao

Die beiden wichtigsten algorithmischen Probleme:

1. Alle Linearen Erweiterungen einer gegebenen Halbordnung (eines bestimmtem Typs) mit n Elementen finden.

2. Das Sprungzahlproblem: Lineare Erweiterung finden, bei der die Anzahl von benachbarten Paaren von Elementen
minimal ist, welche in H unvergleichbar sind.

Anwendungen: Praferenzen bestimmen, Sortieren bei partieller Information, Folgenanalysen, ....

Die Literatur (bis einschliel3lich 2020) ist aufzubereiten, Algorithmen sind zu implementieren und Komplexitatsvergleiche
anzustellen.


https://de.wikipedia.org/wiki/Fibonacci-Folge

3. Ring-ahnliche Quantenlogiken

Zu Grunde liegende Logik Ring-ahnliche aquivalente Struktur
Klassische Physik Boolesche Algebra Boolescher Ring
Verband der abgeschlossenen Unterraume Ring-ahnliche Logiken
Quantenmechanik | eines separablen Hilbertraumes - und p)
Verallgemeinerungen davon '

Vorteil des Rechnens mit Ring-ahnlichen Strukturen: unmittelbare Interpretation der Multiplikation und
Addition als logisches ,und“ und ausschliel3endes ,oder sowie daraus ableitbare logische Operatoren

und Schltsse. (In der Quantenmechanik muss z.B. die doppelte Verneinung nicht notwendigerweise eine
Bejahung sein.)

Eine Serie von Publikationen, in welchen logische, algebraische und flr die Physik relevante Aspekte von
solchen Ring-ahnlichen Quantenlogiken untersucht werden, ist Uberblicksméafig zusammenzufassen und

mit Beispielen zu illustrieren. Insbesondere sind Logiken mit wenigen Elementen eigenstandig zu
konstruieren.




4. Design und Analyse eines Spiels mithilfe von Zellularen Automaten

Zellularer Automat: 1-, 2- oder 3-dimensionales Gitter gewisser Bauart , z.B.

X(1,j,1): Zustand der Zelle (i,j) zum Zeitpunkt t.
Uberfuhrungsfunktion F: x(i,j,t) = (i,j,t+1) in Abhangikkeit von Nachbarn von (i,j);
kann durch den Eingriff von Spielern mehrfach verandert werden.

Bekanntestes Beispiel: Conway Spiel des Lebens.

Eigenschaften: Grenzzyklen, Randeffekte, Entscheidbarkeit , Reversibilitat, Erhaltungssatze, u.A.

Es ist ein einfaches Spiel zu entwickeln und anschliel3end sind dessen Eigenschaften zu analysieren.
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1. Bruhat- Ordnungen und Bruhat- Graphen

Coxeter Gruppe: Gruppe G mit einem Erzeugendensystem E={e,, ....,e,} mit 2 =1und (e;e,)™¢:K =1
fur ein m(i,k)22 , izk. Das Paar (G,E) heil3t Coxeter-System.

Reduziertes Wort geG: Darstellung von g als Produkt von einer minimalen Anzahl I(g) von e;eS.
Wichtiges Beispiel: G= Symmetrische Gruppe S, , E= {Transpositionen (i,i+1)} .

Bruhat-Ordnung auf (G,E): g,<g, fur g,,0, €G < ein Teilstring eines
reduzierten Wortes fur g, ist ein reduziertes Wort flr g, .

Bruhat-Graph: Knotenmenge G, eine gerichtete Kante von g, nach g,

©l(g,)<I(g,) und g,= tg,, t eine Spiegelung (d.h. t=geg* mit g G, e E) w/ P s
Beispiel (S, ,E) von oben fiir n=4 ; t ist dann eine beliebige Transposition: ¥ ™\ Xﬁ,

Aufgabe: Motivation, Zielsetzungen, wichtigste Zusammenhange und

Ergebnisse sind, illustriert durch Beispiele, darzustellen . \L/



2. Anzahlberechnungen von Halbordnungen Anzahl der Isomorphie -

klassen von HO mit

Berechnung und Abschéatzung der Anzahlen von HO (Halbordnungen) n Elementen

von n paarweise verschiedenen Elementen (=Anzahlen von T -Topologien)

=
-

tolTe)

bzw. deren Isomorphieklassen sowie auch von speziellen Klassen von HO: ‘]:_, ;
Zusammenhangende HO, HO mit einer fixen Anzahl von vergleichbaren 3 5
. - . . . . 4 6

Elementen, zweidimensionale HO, HO mit Rangfunktion (gradierte HO), - ;j
HO mit vorgegebener Lange,... 6 318
T 2045

8 16 999

Aufgabe: Die wichtigsten Ergebnisse, Algorithmen, Beweise, Beweisskizzen 9 183 231
. . . : : 10 2 56T 284
sind zusammenzustellen, eigene Beispiele sind zur lllustration anzugeben 1 16740 497

sowie ggf. ein Verfahren fur die Berechnung fur HO mit wenigen Elementen 12 1 104 891 746
13 33823827452

zU implementieren . 14 1338193159 77




3. Dedekind-Zahlen

Dedekind-Zahl D(n)

= Anzahl der monotonen Booleschen Funktionen f: {O0,1}" — {0,1}

= Anzahl der Elemente eines von n Elementen frei erzeugten distributiven Verbandes

= Anzahl der Antiketten in der Menge der Teilmengen einer n-elementigen Menge

= Anzahl der abstrakten Simplizialkomplexe mit n Elementen

=Anzahl der kombinatorischen Schaltungen, die nur durch AND und OR-Gatter aufgebaut sind.

D(n) bekannt flr n<8, darlber hinaus gibt es nur Abschatzungen. Z.B.:
D(n) ~ olar2) . exp [( %"_] ) (272 4 n?27"5 — nz‘”“*)} , forevenn

Auch Teilklassen der genannten Strukturen werden abgezahlt,

Aufgabe: Es ist ein Uberblick in die Thematik zu geben, wichtigste Ergebnisse und deren Beweise
sind (in Skizzen) darzustellen, Algorithmen zu erklaren und ggf. ein Verfahren zu implementieren.


https://de.wikipedia.org/wiki/Datei:DreidimensionalerSimplizialerKomplex.PNG

4. Bell-ahnliche Ungleichungen fur numerische Ereignisse

Einstein: Teilchen besitzen individuelle Eigenschaften, die ihr unterschiedliches Verhalten bei Messungen
steuern und dadurch einen quantenmechanischen Zufall vortduschen. Bell hat unter dieser Annahme
1964 bewiesen, dass fir verschrankte Teilchenpaare eine Ungleichung der Gestalt

|[P(a,b) - P(a,c)|< 1+ P(b,c)

(a,b,c Richtungen von Messungen) erflllt sein miusste. 1982 wurde an Hand eines Experiments gezeigt,
dass die Bellsche Ungleichung bisweilen verletzt wird und damit Einstein unrecht hatte.Es gibt eine
Reihe von Erweiterungen und Verallgemeinerungen dieser Ungleichung, insbesondere die folgende:

Sei S eine Menge von Zustanden eines physikalischen Systems und p(s) die Wahrscheinlichkeit des
Eintritts eines Ereignisses, wenn sich das System im Zustand seS befindet. Die Funktion p von S in [0,1]
heil3t ein numerisches Ereignis. Eine gegebene Menge von numerischen Ereignissen (entsprechende
Messungen) bildet hinsichtlich < von reellen Funktionen eine Halbordnung und korrelierte Elemente
davon geben Anlass zu Ungleichungen mit deren Hilfe man unterscheiden kann, ob es sich um ein
klassisches physikalisches Phdnomen handelt oder ein guantenmechanisches.

Aufgabe: Die angeflihrten Sachverhalte sind in der Seminararbeit darzustellen und zu bearbeiten,
einzelne Satze und ggf. auch Verfahren sind dartiber hinaus an Hand selbstgewahlter mathematischer
Beispiele (mit wenigen Elementen) zu erklaren.
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