
COEFFICIENTS OF ALGEBRAIC FUNCTIONS:

FORMULAE AND ASYMPTOTICS

CYRIL BANDERIER AND MICHAEL DRMOTA

Abstract. This paper studies the coefficients of algebraic functions. First, we recall the too-less-known fact

that these coefficients fn always a closed form. Then, we study their asymptotics, known to be of the type
fn ∼ CAnnα. When the function is a power series associated to a context-free grammar, we solve a folklore

conjecture: the appearing critical exponents α belong to a subset of dyadic numbers, and we initiate the study

the set of possible values for A. We extend what Philippe Flajolet called the Drmota–Lalley–Woods theorem
(which is assuring α = −3/2 as soon as a ”dependency graph” associated to the algebraic system defining

the function is strongly connected): We fully characterize the possible singular behaviors in the non-strongly

connected case. As a corollary, it shows that certain lattice paths and planar maps can not be generated by a
context-free grammar (i.e., their generating function is not N-algebraic). We give examples of Gaussian limit

laws (beyond the case of the Drmota–Lalley–Woods theorem), and examples of non Gaussian limit laws. We
then extend our work to systems involving non-polynomial entire functions (non-strongly connected systems,

fixed points of entire function with positive coefficients). We end by discussing few algorithmic aspects.

Résumé. Cet article a pour héros les coefficients des fonctions algébriques. Après avoir rappelé le fait trop peu
connu que ces coefficients fn admettent toujours une forme close, nous étudions leur asymptotique fn ∼ CAnnα.

Lorsque la fonction algébrique est la série génératrice d’une grammaire non-contextuelle, nous résolvons une
vieille conjecture du folklore : les exposants critiques α sont restreints à un sous-ensemble des nombres dyadiques,

et nous amorçons l’étude de l’ensemble des valeurs possibles pour A. Nous étendons ce que Philippe Flajolet

appelait le théorème de Drmota–Lalley–Woods (qui affirme que α = −3/2 dès lors qu’un ”graphe de dépendance”
associé au système algébrique est fortement connexe) : nous caractérisons complètement les exposants critiques

dans le cas non fortement connexe. Un corolaire immédiat est que certaines marches et cartes planaires ne

peuvent pas être engendrées par une grammaire non-contextuelle non ambigüe (i. e., leur série génératrice n’est
pas N-algébrique). Nous donnons un critère pour l’obtention d’une loi limite gaussienne (cas non couvert par le

théorème de Drmota–Lalley–Woods), et des exemples de lois non gaussiennes. Nous étendons nos résultats aux

systèmes d’équations de degré infini (systèmes non fortement connexes impliquant des points fixes de fonctions
entières à coefficients positifs). Nous terminons par la discussion de quelques aspects algorithmiques.

1. Introduction

The theory of context-free grammars and its relationship with combinatorics was initiated by the article of
Noam Chomsky and Marcel-Paul Schützenberger in 1963 [27], where it is shown that the generating function
of number of words generated by a non ambiguous context-free grammar is algebraic.

Since then, there has been much use of context-free grammars in combinatorics, several chapters of the
Flajolet & Sedgewick book ”Analytic Combinatorics” [47] are dedicated to what they called the ”symbolic
method” (which is in large parts isomorphic to the Joyal theory of species [53, 13], and when restricted to
context-free grammar, it is sometimes called the ”DVS methodology”, for Delest–Viennot–Schützenberger, as
the Bordeaux combinatorics school indeed made a deep use of it, e.g. for enumeration of polyominoes [34], lattice
paths [42]). They also allow to enumerate trees [49, 63], avoiding-pattern permutations [57, 62, 2]. some type of
planar maps/triangulations/Apollonian networks [15] non crossing configurations, dissections of polygons [45]
(a result going back to Euler in 1763, one of the founding problems of analytic combinatorics!). Links between
asymptotics of algebraic functions and (inherent) ambiguity of context-free languages was studied in [55, 44],
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and for prefix of infinite words in [3]. Growth rates are studied in [24, 25], in link with asymptotics of random
walks [80, 26, 50, 58, 59]. Application in bio-informatics or patterns in RNA are given in [67, 79, 36, 29]. Its
key rôle for uniform random generation is illustrated by [43, 33, 23, 37]. More links with monadic second-order
logic, tiling problems and vector addition systems appears in [65, 81].

Many algebraic functions also pop ups in combinatorics [19]. Quite often, they come as ”diagonal” of rational
functions [10, 12], or as solution of functional equations (solvable by the kernel method and its variants [20, 6]),
and the interplay with their asymptotics is crucial for analysis of lattice paths [7], walks with an infinite set of
jumps [4, 11] (which are thus not coded by a grammar on a finite alphabet), or planar maps [8].

Plan of this article:

• In Section 2, we give few definitions, mostly illustrating the link between context-free grammars, solu-
tions of positive algebraic systems and N-algebraic functions.

• In Section 3, we survey some closure properties of algebraic functions and give a closed form for their
coefficients.

• Section 4, we state and prove our main theorem on the possible asymptotics of algebraic functions
(associated to a context-free grammar with positive weights).

• Section 5, we prove that the associated limit laws are Gaussian for a broad variety of cases.
• We end with a conclusion pinpointing some extensions (algorithmic considerations, extension to infinite

systems, or systems involving entire functions).

2. Definitions: N-algebraic functions, context-free grammars and pushdown automata

For the notions of automata, pushdown automata, context-free grammars, we refer to the first three chapters
of [78] (by Perrin on finite automata, by Berstel and Boasson on context-free languages, by Salomaa [71] on
formal languages and power series) or to the more recent survey [66] in [40]. Another excellent compendium on
the subject is the handbook of formal languages [70] and the Lothaire trilogy [61].

An S-algebraic function is a function y1(z) solution of a system1:

(1)


y1 = P1(z, y1, . . . , yd)
...

yd = Pd(z, y1, . . . , yd)

where each polynomial Pi has coefficients in any set S (in this article, we consider S = N, Z, R+, or C). We
restrict (with no loss of generality) to systems satisfying: each Pi is involving at least one yj , the coefficient of
yi in Pi is not 1, and there is at least one Pi(z, 0, . . . , 0) for which the coefficient of z is not 0. Such systems are
called ”proper” (or ”well defined” or ”well founded” or ”well posed”), and correspond to context-free grammars
for which one has no ”infinite chain rules” (no epsilon production, no monic production). On the set of power
series, d(F (z), G(z)) := 2−val(F(z)−G(z)) is an ultrametric distance, this distance extends to vectors of functions,
and allows to apply the Banach fixed-point theorem: it implies existence and uniqueness of a solution of the
system as a d-tuple of power series (y1, . . . , yd) (and they are analytic functions in 0, as we already know that
they are algebraic by nature). A current mistake is to forget that there exist situations for which the system (1)
can admit several solutions as power series for y1 (nota bene: there is no contradiction with our previous claim,
which is considering tuples). By elimination theory (resultant or Gröbner bases), S-algebraic functions are
algebraic functions.

We give now few trivial/folklore results: N-algebraic functions correspond to generating function of context-
free grammar (this is often called the Chomsky–Schützenberger theorem), or, equivalently, pushdown automata
(via e.g. a Greibach normal form). Z-algebraic functions have no natural simple combinatorial structures
associated to them, but they are the difference of two N-algebraic functions (as can be seen by introducing
new unknowns splitting in two the previous ones, and writing the system involving positive coefficients on one

1In this article, we will often summarize the system (1) via the convenient short notation y = P(z,y), where bold fonts are
used for vectors.
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side, and negative coefficients on the other side). They also play an important rôle as any algebraic generating
with integer coefficients can be considered as a Z-algebraic function: this is a priori no evident, as an algebraic
function is not defined by an equation of the type y1 = P (z, y1, . . . ) but by a more general type of equation,
namely P (z, y(z)) = 0 for P a polynomial ∈ Z[z, y].

An N-rational function is a function solution of a system (1) where each polynomial Pi has coefficients in N
and total degree 1. Such functions correspond to generating functions of regular expressions or, equivalently,
automata (a result often attributed to Kleene [56]).

3. Closed form for coefficient of algebraic function

A first natural question is how can we compute the n-th coefficient fn of an algebraic power series? The
fastest way is relying on the theory of D-finite functions. A function F (z) is D-finite if it satisfies a differential
equation with coefficients which are polynomials in z; equivalently, its coefficients fn satisfy a linear recurrence
with coefficients which are polynomials in n. They are numerous algorithms to deal with this important class
of functions, which includes a lot of special functions from physics, number theory and also combinatorics [75].
In combinatorics, Comtet [31, 32] popularized the fact that algebraic functions are D-finite. It is amusing that
this is in fact an old theorem rediscovered many times, by Tannery [77], Cockle and Harley [30, 51] in their
method for solving quintic equations via 4F3 hypergeometric functions. Last but not least, this theorem can
also be found in an unpublished manuscript of Abel [1, p. 287]!

The world of D-finite functions offers numerous closure properties, let us mention some of them related to
algebraic functions (due respectively to Harris & Sibuya [52], Singer [73] for the two next ones, Jungen [54],
Denef and Lipshitz [35], Furstenberg [48], Schwarz [72] and Beukers & Heckman [14]):

• f and 1/f are simultaneously D-finite if and only if f ′/f is algebraic.
• f and exp(

∫
f) are simultaneously D-finite if and only if f ′/f is algebraic.

• Let g be algebraic of genus ≥ 1, then f and g(f) are simultaneously D-finite if and only if f is algebraic.
• The Hadamard product of a rational and an algebraic function is algebraic.
• Each algebraic function is the diagonal of a bivariate rational function.
• In finite fields, Hadamard products of algebraic functions are algebraic.
• The set of generalized hypergeometric functions nFn−1 which are algebraic is well identified.

The linear recurrence satisfied by fn allows to compute in linear time all the coefficients f0, . . . , fn, more
precisely, it is proved in [16] that there exists an algorithm of complexity O(nd2 ln d), where d is the degree
of the function. If one just wants the n-th coefficient fn, it is possible to get it in O(

√
n) operations [28].

Many of these features (and few others related to random generation and context-free grammars, and corre-
sponding asymptotics) are implemented in the ”Algolib” library, a Maple package developed by Flajolet, Salvy,
Zimmermann, Chyzak, Mishna, Mezzarobba, . . . (see http://algo.inria.fr/libraries/).

A less known fact (however mentioned in VII.34 p. 495 in [47]) is that these coefficients admit a closed form
expression as a finite linear combination of weighted multinomial numbers. The multinomial number is the
number of ways to divide m objects into d groups, of cardinality m1, . . . ,md (with m1 + · · ·+md = m):

[u1
m1 . . . ud

md ](u1 + · · ·+ ud)
m =

(
m

m1, . . . ,mk

)
=

m!

m1! . . .md!
.

More precisely, one has the following theorem:

Theorem 1 (The Flajolet–Soria formula for coefficients of algebraic function). Let P (z, y) be a bivariate
polynomial such that P (0, 0) = 0, P ′y(0, 0) = 0 and P (z, 0) 6= 0. Consider the algebraic function implicitly
defined by f(z) = P (z, f(z)). Then, the Taylor coefficients of f(z) are given by the following finite sum

(2) fn =
∑
m≥1

1

m
[znym−1]Pm(z, y).
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Accordingly, applying the multinomial theorem on P (z, y) =
∑
aiz

biyci leads to

(3) fn =
∑
m≥1

1

m

∑
m1+···+md=m

b1m1+···+bdmd=n
c1m1+···+cdmd=m−1

(
m

m1, . . . ,md

)
a1
m1 . . . ad

md .

The proof considers y = P (z, y) as the perturbation at u = 1 of the equation y = uP (z, y), and then applying
the Lagrange inversion formula (considering u as the main variable, and z as a fixed parameter) leads to the
theorem.

This Flajolet–Soria formula was first published in the habilitation thesis of Michèle Soria in 1990, and then
in 1998 in the proceedings of the Algorithms Seminar, it has also been found by Gessel (as published in 1999
in the exercise 5.39 p.148 of [75]), and it was finally also rediscovered in 2009 by Sokal [74].

4. Asymptotics for coefficients of algebraic function

The theory of Puiseux expansions or the theory of G-functions implies that the critical exponents are pure
rational numbers for pure algebraic functions. Pure algebraic means algebraic but not rational, pure rational
means rational but integer.

The following proposition shows that all rational numbers are reached:

Theorem 2. For any rational number a/b ( 6∈ N), there exists an algebraic power series with positive integer
coefficients which has exactly the critical exponent a/b.

Proof. First consider F (z) := 1−(1−a2z)1/a
z , where a is any positive or negative integer. Accordingly, its coeffi-

cients are given by fn =
(
1/a
n+1

)
a2n+1(−1)n. We are not aware of any trivial proof showing that these numbers fn

are integers. One possibility is to compare the p-adic valuation of (n+2)! via the De Polignac/Legendre’s formula
with the one of anΠn

k=0(ak+a− 1), as they satisfy fn+1 = a(an+a− 1)fn/(n+ 2). Another nicer way, because
it conveys more combinatorial insights is to use a link with a variant of Stirling numbers, as studied in [60]. To
get get our claim, it is easy to see that G(z) := ((zF − 1)b + 1) minus few of its first coefficients is also a power
series with positive integer coefficients and have the critical behavior a/b: G(z) ∼ 2a2− a(−a2)a/b(z− 1/a2)a/b

for z ∼ 1/a2. �

One may then wonder if there is something stronger. For example, is it the case that for any radius of
convergence, any critical exponent is possible? It happens not to be the case, as can be seen via a result of
Fatou: a power series with integer coefficients and radius of convergence 1 is either rational or transcendental (in
fact the transcendental case is necessarily involving a natural boundary, this was a conjecture of Pólya proved
by Carlson).

4.1. Well posed systems of functional equations. We will only consider positive well posed systems of
functional equations y = P(z,y) that have the property that they have (unique) power series solutions yj = fj(z)
with non-negative coefficients.

In particular this means that P has non-negative coefficients. Furthermore, if z = 0 there exists a (unique)
non-negative vector y0 = f(0) = (fj(0)) with y0 = P(0,y0) that should be obtained iteratively by the recurrence
y0,0 = 0 and y0,k+1 = P(0,y0,k) (for k ≥ 0). As the 1-dimensional example y = P (z, y) with P (z, y) = 1+z+y2

shows this need not be the case even if Py(0, 0) = 0 < 1.
If there is a non-negative vector y0 with y0 = P(0,y0) then is recommendable to set ỹ = y + y0 so that we

obtain a system for ỹ of the form ỹ = G(z, ỹ) with G(z, ỹ) = P(z, ỹ + y0) − y0. Since P has non-negative
coefficients, the same holds for G. Consequently it is no loss of generality to assume that we have a system
y = P(z,y) with P(0,0) = 0.

The second property that we should have is that we the the iteration f0(z) = 0, fk+1(z) = P(z, fk(z)) (for
k ≥ 0) should converge to the solution f(z). This can be seen either from the formal point of view or from the
analytic point of view (in the latter case we only require this property for sufficiently small z 6= 0). If we require
convergence in the formal sense (that is, for every n the n-coefficient of yk(z) should be constant for sufficiently
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large k) then we have to require that the Jacobian matrix Py(0,0) is nil-potent (compare with [68]). This is
certainly satisfied if P is of the form P(z,y) = zH(z,y), where the Jacobian is identically zero. Actually, if
the Jacobian is nil-potent of order k then we can replace the original equation by the k-th iterated equation
y = Pk(z,y), where the Jacobian is identically to zero. From the analytic point of view we just have to require
that the spectral radius r(Py(0,0) satisfies r(Py(0,0)) < 1. In this case the iteration is a contraction (if z is
sufficiently small). Finally we note that by construction the coefficients of fk(z) are non-negative. Hence, the
same holds for the limit f(z).

In order simplify the statement of Theorem 3 we also assume that none of the solution functions fj(z) are
identically to zero or just polynomials. For example, the system y1 = z+z2y22 , y2 = z+z2 has just a polynomial
solution. Actually it is easy to detect (even algorithmically) whether some of the functions fj(z) are polynomials
or not. And it is clear that in the case, where polynomial solutions appear we can eliminate them easily by
replacing them by their polynomial representation. Hence, without loss of generality we can assume that all
functions fj(z) are real power series.

In what follows, a system of positive system of equations will be called well posed if P(0,0) = 0, if the
Jacobian Py(0,0) has spectral radius is smaller than 1, and if all functions fj(z) are no polynomials.

4.2. Main result: dyadic critical exponents for N-algebraic function.

Theorem 3. Let y = P(z,y) be a well posed positive polynomial system of functional equations.
Then the solutions fj(z) have positive and finite radii of convergence ρj. Furthermore, the singular behavior

of fj(z) around ρj is either of algebraic type

(4) fj(z) = fj(ρj) + cj(1− z/ρj)2
−kj

+ c′j(1− z/ρj)2·2
−kj

+ · · · ,
where cj 6= 0 and where kj is a positive integer or of type

(5) fj(z) =
dj

(1− z/ρj)mj2
−kj

+
d′j

(1− z/ρj)(mj−1)2−kj
+ · · · ,

where dj 6= 0, mj are positive integers and kj are non-negative integers.

The following example show that all the cases mentionned in Theorem 3 are indeed appearing:

Example 1. The system of equations y1 = z(y2+y21), y2 = z(y3+y22), y3 = z(1+y23) has the following (explicit)
solution

f1(z) =
1− (1− 2z)1/8

√
2z
√

2z
√

1 + 2z +
√

1− 2z + (1− 2z)3/4

2z

f2(z) =
1− (1− 2z)1/4

√
2z
√

1 + 2z +
√

1− 2z

2z

f3(z) =
1−
√

1− 4z2

2z

Here f1(z) has dominant singularity (1 − 2z)1/8 and it is clear that this example can be generalized: indeed,

consider the system yi = z(yi+1 + y2i ) for i = 1, . . . ,m− 1, and yk = z(1 + y2k), it leads to behavior (1− 2z)2
−k

for each k ≥ 1. Now, taking the system of equations y = z(ym0 + y), y0 = z(1 + 2y0y1) leads to a behavior

(1 − 2z)−m2−k

for each m ≥ 1 and k ≥ 0. See also [76] for another explicit combinatorial structure (a familly
of colored tree related to a critical composition) exhibiting all these critical exponents.

Example 2. Similarly, many families of planar maps can not be generated by a non ambiguous context-free
grammar, because of their critical exponent −5/2 [8].

The tables of lattice paths in the quarter plane [21] and their asymptotics (see e.g. the table page 13 of [17]
where some of the connection constants are guessed, but all the critical exponents are proved, and this is enough
for our point) allow to prove that many sets of jumps are giving a non algebraic generating function, as they
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lead to a critical exponent which is a negative integer. For many of the remaining asymptotics compatible with
algebraicity, it is possible to use Ogden’s pumping lemma for context-free languages, to prove that these walks
can be not generated by a context-free grammar. One very neat exemple are Gessel walks (their algebraicity
were a nice suprise [18]), where the hypergeometric formula for their coefficients leads to an asymptotic in 4/n2/3

not compatible with N-algebraicity.2

The critical exponents −3/4,−1/4, 1/4 which appear for walks on the slit plane [22] and other lattice paths
questions [18] is compatible with N-algebraicity, this for sure by no way a proof that are indeed N-algebraic
(typically, they are not), and to get a constructive method to solve this question (input: a polynomial equation,
output: a context-free specification, whenever it exists) is a challenging task.

4.3. Auxiliary Results. A main ingredient of the proof of Theorem 3 is the analysis of the dependency graph
GP of the system yj = Pj(z, y1, . . . , yK), 1 ≤ j ≤ K. The vertex set is {1, . . . ,K} and there is a directed
edge from i to j if Pj depends on yi. (See subsection 4.4 for an example.) If the dependency graph is strongly
connected then we are in very special case of Theorem 3 and here the result is already known (see [38]).
Informally this means that there is no sub-system that can be solved before the whole system.

Actually there are two different situations.

Lemma 1. Let y = A(z)y + B(z) a positive affine and well posed system of equations, where the dependency
graph is strongly connected. Then the functions fj(z) have a joint polar singularity ρ or order one as the
dominant singularity:

fj(z) =
cj(z)

1− z/ρ
,

where cj(z) is non-zero and analytic at z = ρ.

Lemma 2. Let y = P(z,y) a positive and well posed polynomial system of equations that is not affine and
where the dependency graph is strongly connected. Then the functions fj(z) have a joint square-root singularity
ρ as the dominant singularity, that is, they can be locally represented as

fj(z) = gj(z)− hj(z)
√

1− z

ρ
,

where gj(z) and hj(z) are non-zero and analytic at z = ρ.

In the proof of Theorem 3 we will use in fact extended version of Lemma 1 and 2, where we introduce additional
(polynomial) parameters, that is, we consider systems of functional equations of the form y = P(z,y,u), where
P is now a polynomial in z,y,u with non-negative coefficients and where the dependency graph (with respect
to y) is strongly connected. We also assume that u is strictly positive such that the spectral radius of the
Jacobian Py(0,0,u) is smaller than 1. Hence, we can consider the solution that we denote by f(z,u).

If we are in the affine setting (y = A(z,u)y + B(z,u)) it follows that f(z,u) has a polar singularity:

(6) fj(z,u) =
cj(z,u)

1− z/ρ(u)
,

where the functions ρ(u) and cj(z,u) are non-zero and analytic (see Lemma 3). Please observe that we have to
distinguish two cases. If A(z,u) = A(z) does not depend on u then ρ(u) = ρ is constant and the dependence
from u just comes from B(z,u). Of course, if A(z,u) depends on u then ρ(u) is not constant. More precisely
it depends exactly on those parameters that appear in A(z,u).

Similarly in the non-affine setting we obtain representations of the form

(7) fj(z,u) = gj(z,u)− hj(z,u)

√
1− z

ρ(u)
,

2The fact that critical exponents involving 1/3 were not possible was an informal conjecture in the communauty for years. We
thank Philippe Flajolet, Mireille Bousquet-Mélou and Gilles Schaeffer, who encouraged us to work on this question.
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Figure 1. Dependency graph GP and reduced dependency graph G̃P

where the functions ρ(u), gj(z,u), and hj(z,u) are non-zero and analytic. In this case ρ(u) is always non-
constant and depends on all parameters (see Lemma 3).

Actually we have to be careful with the property that ρ(u) is analytic. By inspecting the proofs of Lemma 1
and 2 it immediately follows that ρ(u) exists but analyticity is not immediate. For notational convenience we
will denote by D0 the set of positive real vectors u, for which r(Py(0,0,u)) < 1.

Lemma 3. The function ρ(u) that appears in the representations (6) and (7) is analytic in a proper complex
neighborhood of D0. Moreover, if u ∈ D0 is real and increasing then ρ(u) tends to 0 when u approaches the
boundary of D0.

4.4. Proof of our Theorem 3 on dyadic critical exponents. We fix some notation. Let GP denote the

dependency graph of the system and G̃P the reduced dependency graph. Its vertices are the strongly connected
components C1, . . . CL of GP. For example, for the system y1 = P1(z, y1, y2, y5), y2 = P2(z, y2, y3, y5), y3 =
P3(z, y3, y4), y4 = P4(z, y3, y4), y5 = P5(z, y5, y6), y6 = P6(z, y5, y6). we get the dependency graph GP that is
depicted in Figure 1. We can also reduce the dependency graph to its components. Let y1, . . . ,yL denote
the system of vector functions corresponding to the components C1, . . . CL and let u1, . . . ,uL denote the input
vectors related to these components. In the above example we have C1 = {1}, C2 = {2}, C3 = {3, 4},
C4 = {5, 6}, y1 = y1, y2 = y2, y3 = (y3, y4), y4 = (y5, y6), and u1 = (y2, y5), u2 = (y3, y5), u3 = ∅, u4 = ∅.

Finally, for each component C` we define the set D` of real vectors u` for which the spectral radius of the
Jacobian of `-th subsystem evaluated at z = 0, y` = 0 is smaller than 1.

The first step we for each strongly connected component C` we solve the corresponding subsystem in the
variables z and u` and obtain solutions f(z,u`), 1 ≤ ` ≤ L. In our example these are the functions f1(z,u1) =
f1(z, y2, y5), f2(z,u2) = f2(z, y3, y5), f3(z,u3) = (f3(z), f4(z)), f4(z,u4) = (f5(z), f6(z)).

Since the dependency graph G̃P is acyclic there are components C`1 , . . . , C`m with no input, that is, they
corresponding functions f`1(z), . . . , f`m(z) can be computed without any further information. By Lemma 1 and
2 they either have a polar singularity or a square-root singularity, that is, they are are precisely of the types
that are stated in Theorem 3.

Now we proceed inductively. We consider a strongly connected component C` with the function f`(z,u`)
and assume that all the functions fj(z) that are contained in u` are already known and and that their leading
singularities of the two types stated in Theorem 3.

By the discussion following Lemma 1 and 2 it follows that functions contained in f`(z,u`) have either a
common polar singularity or a common square-root singularity ρ(u`).

We distinguish between three cases:

(1) First let us assume that f`(z,u`) comes from an affine system and, thus, has a polar singularity. Since all
functions contained in f`(z,u`) have the same form we just consider one of these functions and denote
it by f(z,uj):

(8) f(z,u`) =
c(z,u`)

1− z/ρ(u`)
.
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If ρ(u`) = ρ′ is constant then the only dependence from u` comes from the numerator c(z,u`). Since this
solution comes from an affine system, c(z,u`) is just a linear combination of the polynomials of B(z,u`)
with coefficient functions that depend only on z (this follows from the expansion of (I−A(z))−1B(z,u`)).
Furthermore, since f(z,u`) is (in principle) a power series in z and uj with non-negative coefficients
the coefficients of this polynomial (if z is some positive real number) have to be non-negative, too.

When we substitute u` by the the functions fj(z) that correspond to uj then we obtain the functions
f(z) that correspond to the component C`. We have to consider the following cases:

(1.1) The dominating singularities ρj of the functions fj(z) are larger than ρ′: In this case the resulting
dominating singularity ρ` is ρ′ and we just get a polar singularity for f(z).

(1.2) At least one of the dominating singularities ρj of the functions fj(z) is smaller than ρ′:
Let ρ′′ denote the smallest of these singularities. If all of the functions fj(z) with ρj = ρ′′ have
a singular behavior of the form (4) then we just make a local expansion and of c(z,u`) at the
corresponding points fj(ρ

′′) (for uj) and observe again an expansion of this form. Note the largest
appearing kj reappears in the expansion of f(z).
Second, if at least one of the functions fj(z) with ρj = ρ′′ is of type (5) then we use the property
that c(z,u`) is just a polynomial in uj (with non-negative coefficients). It is clear that the leading
singular behavior comes from these functions, actually they have to be multiplied and added.
However, since functions of the type (5) are closed under multiplication and addition this gives
again a function of type (5). Note that the appearing coefficient functions that depend just on z
have to expanded at ρ′′, too, and do not disturb the overall structure.

(1.3) The smallest dominating singularities ρj of the functions fj(z) equals ρ′:
Here we can argue similarly to the previous case. If all of the functions fj(z) with ρj = ρ′ have a

singular behavior of the form (4) then we perform a local expansion in the numerator. Let k̃ be the

largest kj that appears. Then we interpret the polar singularity (1 − z/ρ′)−1 as (1 − z/ρ′)−m2−k̃

with m = 2k̃ and obtain a singular expansion of the form (5).
If at least one of the functions fj(z) with ρj = ρ′ is of type (5) then we use the polynomial structure
of the numerator as above and obtain an expansion of the form (5). By combining this with the
factor (1− z/ρ′)−1 we finally obtain an expansion of the form (5) for f(z), too.

(2) Second let us (again) assume that f`(z,u`) comes from an affine system (and has a polar singularity) of
the form (8), however, we now assume that ρ(u`) is not constant but depends on some of the uj (not
necessarily on all of them).

In this case we study first the behavior of the denominator when uj is substituted by the corresponding
functions fj(z). For the sake of simplicity we will work with the difference ρ(uj) − z. Of course this
is equivalent to the discussion of the denominator 1 − z/ρ(uj), since the factor ρ(uj) can be also put
to the numerator. Finally let J ′` denote the set of indices of functions uj for which the function ρ(u`)
really depends on.

Let ρ′ denote the smallest radius of convergence of the functions fj(z), j ∈ J ′`. Then we consider the
difference δ(z) = ρ((fj(z))j∈J′`)− z. We have to consider the following cases for the denominator:

(2.1) δ(ρ′′) = 0 for some ρ′′ < ρ′ such that (fj(ρ
′′))j∈J′` ∈ D`:

First we note that δ(z) has at most one positive zero since ρ((fj(z))j∈J′`) is decreasing and z is

increasing. Furthermore the derivative satisfies δ′(ρ′′) > 0. Consequently we have a simple zero ρ′′

in the denominator.
(2.2) We have δ(ρ′) = 0 such that (fj(ρ

′))j∈J′` ∈ D`:

In this case all functions fj(z), j ∈ J ′`, with ρj = ρ′ have to be of type (4). Consequently δ(z)
behaves like

c(1− z/ρ′)2
−k̃

+ . . . ,

where c > 0 and k̃ is the largest appearing kj (among those functions fj(z) with ρj = ρ′).
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(2.3) We have δ(ρ′) > 0 such that (fj(ρ
′))j∈J′` ∈ D`:

In this case all functions fj(z), j ∈ J ′`, with ρj = ρ′ have to be (again) of type (4). Consequently
δ(z) behaves like

c0 − c1(1− z/ρ′)2
−k̃

+ . . . ,

where c0 > 0 and c1 > 0 and k̃ is the largest appearing kj (among those functions fj(z) with
ρj = ρ′). Hence, 1/δ(z) is of type (4).

Note that there are no other cases. This follows from the fact that ρ(u`) → 0 if u` approaches the
boundary of D`. This means that if we trace the function z → δ(z) for z > 0 then we either meet a
singularity of δ(z) or we pass a zero of δ(z) before (fj(z))j∈J′`) leaves D`.

Finally we have to discuss the numerator (as in the above case). Note that there might occur uj with
j 6∈ J ′`, so that more functions fj(z) than in the denominator are involved. Nevertheless in all possible
cases we can combine the expansions of the numerator and and denominator and obtain for f(z) either
type (4) or type (5).

(3) Finally, let us assume that f`(z,u`) comes from a non-affine system and, thus, has a square-root singu-
larity. Again, since all functions contained in f`(z,u`) have the same form we just consider one of these
functions and denote it by f(z,uj):

(9) f(z,u`) = g(z,u`)− h(z,u`)

√
1− z

ρ(u`)
.

In this case ρ(u`) depends on all components of u` which makes the analysis slightly more easy. As

above we will study the behavior of the square-root
√
ρ(u`)− z instead of

√
1− z/ρ(u`) since the

non-zero factor
√
ρ(u`) can be put to h(z,u`).

Let ρ′ denote the smallest radius of convergence of the functions fj(z) that correspond to u`. Here
we have to consider the following cases:

(3.1) δ(ρ′′) = 0 for some ρ′′ < ρ′ such that (fj(ρ
′′)) ∈ D`:

This means that ρ((fj(z))− z has a simple zero. By the Weierstrass preparation theorem we can,
thus, represent this function as

ρ((fj(z))− z = (ρ′′ − z)H(z),

where H(z) is non-zero and analytic at ρ′′. Consequently√
ρ((fj(z))− z =

√
ρ′′ − z

√
H(z)

and we observe that f(z) has a (simple) square-root singularity.
(3.2) We have δ(ρ′) = 0 such that (fj(ρ

′)) ∈ D`:
In this case all functions fj(z) with ρj = ρ′ have to be of type (4). Hence the square-root of δ(z)
behaves as √

c(1− z/ρ′)2−k̃ + . . . =
√
c(1− z/ρ′)2

−k̃−1

+ . . . ,

where the corresponding k equals the largest appearing kj plus 1. Thus, f(z) is of type (4).
(3.3) We have δ(ρ′) > 0 such that (fj(ρ

′))j∈J′` ∈ D`:

In this case all functions fj(z), with ρj = ρ′ have to be (again) of type (4). Consequently the
square-root of δ(z) behaves like√

c0 − c1(1− z/ρ′)2−k̃ + . . . =
√
c0

(
1− c1

2c0
(1− z/ρ′)2

−k̃

+ . . .

)
,

where c0 > 0 and c1 > 0 and k̃ is the largest appearing kj (among those functions fj(z) with
ρj = ρ′). Hence, f(z) is of type (4).

This completes the induction proof of Theorem 3.
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4.5. Periodicities. When we are interested in the asymptotic properties of the coefficients of a function f(z)
that is (part of the) solution of a positive system of algebraic equations we need the structure of all singularities
z with modulus |z| = ρ, where ρ denotes the radius of convergence.

We will call a function f(z) that is solution of a positive system of algebraic equations strongly aperiodic if
z = ρ is the only singularity on the cycle |z| = ρ and aperiodic if the coefficients have an asymptotic expansion
of the form [zn] f(z) ∼ cnαρ−n for some constants c > 0 (and a proper dyadic number α).

Similarly we call such a function f(z) strongly periodic with period m > 1 if the only singularities on
the cycle |z| = ρ are of the form z = ρe2πij/m, j = 0, 1, . . . ,m − 1. Finally we call a function f(z) periodic
with period m > 1 if f(z) can be represented as f(z) =

∑m
j=0 z

jfj(z
m) such that all functions fj(z) are either

polynomials or aperiodic function, where at least one of these functions is aperiodic.
Since algebraic functions have only algebraic singularities (and can be analytically continued to a region that

contains the circle of convergence), it follows from the transfer principles of Flajolet and Odlyzko [46] that every
strongly aperiodic function is aperiodic and every strongly periodic function (with period m) is periodic (with
period m).The main purpose of this section is to provide the following property.

Theorem 4. Every function f(z) that is solution of a well posed positive polynomial system of equations is
either strongly aperiodic or strongly periodic (with some period m > 1). Furthermore, the singularity z = ρ
dominates all other singularities on the cycle |z| = ρ in the periodic case.

In particular this implies the following asymptotic relations for the coefficients of solutions of positive poly-
nomial systems. We just have to apply the transfer principle of Flajolet and Odlyzko [46].

Theorem 5. Suppose that y = P(z,y) is positive polynomial system of equations that has solution f(z).
Furthermore let f(z) be given by

f(z) =
∑
n≥0

fnz
n = G(z, f(z)),

where G is a polynomial function with non-negative coefficients.
Then there exists an integer m ≥ 1 such that for all j = 0, 1, . . . ,m− 1 we either have fj+mn = 0 for almost

all n ≥ n0,j or

fj+mn ∼ cjnαjρ
−n/m
j (n→∞),

where cj > 0, ρj > 0, and αj is either of the form αj = −2−kj − 1 for some integer kj ≥ 1 or of the form
αj = mj/2

kj − 1 for some integers kj ≥ 0 and mj ≥ 1.

The proof of Theorem 4 runs along similar lines as the proof of Theorem 3, that is, we partition the dependency
graph into strongly connected components and solve the system step by step. The core of the problem is to
characterize the singularities on the cycle of convergence of a system of functions that correspond to a strongly
connected dependency graph. Actually the singularities are situated at ρe2πij/m for some integers j and m.

4.6. Possible radius of convergence of Q+ and N-algebraic functions. In this section we shortly discuss
the radius of convergence ρ that can appear in an algebraic system with positive rational coefficients. Pring-
sheim’s theorem and resultant theory [47] imply that ρ has to be a positive algebraic number, however, it is not
immediate whether all positive algebraic numbers actually appear.

Conjecture. Let RS be the set of possible radius of S-algebraic functions. Then RQ+
is the set of positive

algebraic numbers and RN is the set of positive algebraic numbers smaller than 1.

In what follows we present some properties of these algebraic numbers, as a first step towards a proof of the
above conjecture.

Theorem 6. The set RQ+ has the following properties.

(1) All positive roots of equations of the form p(z) = 1, where p(z) is a polynomial with non-negative rational
coefficients, are contained in RQ+

, in particular all rational numbers and all roots of rational numbers.
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(2) If ρ1 and ρ2 are radii of convergence of a Q+-rational and a Q+-algebraic function, and if at least one
of these functions is aperiodic, then ρ1ρ2 ∈ RQ+ .

(3) All positive quadratic irrational numbers are contained in RQ+ .

The proof of the first property is immediate. The proof of the second property relies on the fact that the
Hadamard product of a rational and an algebraic languages can be described with the help of a pushdown
automaton. Finally, the third property can be deduced from the second one. This theorem extends to RN (by
adding the constraint ρ ≤ 1).

5. Limit laws

5.1. The classical Drmota–Lalley-Woods theorem. In several applications in combinatorics, we are not
only interested in a univariate situation, where z is the counting variable but we are interested, too, in a second
parameter that we count with the help of another variable (say v). Hence we are led to consider systems of
equations of the form y = P(z,y, v). Of course, if we set v = 1, we come back to the original counting problem.
The next theorem shows that the limiting distribution of the additional parameter is always Gaussian if the
system is strongly connected (see [38]).

Theorem 7. Suppose that y = P(z,y, v) is a strongly connected and positive well posed entire or polynomial
system of equations that depends on v and has solution f(z, v) that exist in a neighborhood of v = 1. Furthermore
let f(z, v) be given by

f(z, v) =
∑
n≥0

fn(v)zn = G(z, f(z, v), v),

where G is an entire or polynomial function with non-negative coefficients that depends on y and suppose that
fn(v) 6= 0 for all n ≥ n0 (for some n0 ≥ 0).

Let Xn be a random variable which distribution is defined by

E[vXn ] =
fn(v)

fn(1)
.

Then Xn has a Gaussian limiting distribution. More precisely, we have E[Xn] = µn + O(1) and Var[Xn] =
σ2n+O(1) for constants µ > 0 and σ2 ≥ 0 and

1√
n

(Xn − E[Xn])→ N(0, σ2).

5.2. More Gaussian examples, beyond the Drmota–Lalley–Woods case. If the system of equations is
not strongly connected that we can still define a random variable Xn, however, it is not necessarily Gaussian
as we will see in the next section. Nevertheless, it is possible to state sufficient conditions, where a Gaussian
limiting distribution is present.

Theorem 8. Let y = P(z,y, v) be a system of equations as in Theorem 7 with the only difference that it is not
strongly connected. Furthermore we assume that the function f(x, 1) is strongly aperiodic.

For every strongly connected component C` of the dependency graphs GP let ρ` denote the radius of conver-
gence of those functions fj(z, 1) that correspond to C`.

If all ρ` are different then Xn (that is defined as in Theorem 7) has a Gaussian limiting distribution.

5.3. Non-Gaussian limit laws. This section illustrates the wide variety of distributions followed by a param-
eter in a non strongly-connected grammar.

Theorem 9 (Diversity of possible limit laws for context-free systems). Let Xn be the number of occurrences of
any given pattern (this pattern could be a given letter!) in a word of length n, generated by a grammar (or even
by a simpler model of Markov chain, with an alphabet of 2 letters, each letter having an integer weight). Then
Xn can follow ”any limit law”, in the sense that there exist some patterns and some grammars for which the
limit curve (for large n) of (k, Prob(Xn = k)) can, once rescaled, be arbitrary near from any càdlàg curve.
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Proof. This a consequence of the fact that one can get any piecewise-affine function, as proved in [5], and so
by the Weierstrass theorem, one gets any continuous (or càdlàg) distribution. Due to the (possible) periodic
behavior of the coefficients of the solution functions there is also a (possible) periodic behavior of the limiting
distribution, that is, for every fixed residue class modm we get different laws. Putting these finitely many limit
laws into one figure this leads to a multivalued curve, as illustrated below. �

Figure 2. This figures, taken from [5], gives the distribution of the letter ”b” in words of a
language generated by an ad-hoc regular expression of few lines. This distribution is converg-
ing towards a curve, ”NONGAUSSIAN”. Note that this curve is, at the limit, a curve of a
multivalued functional (as can be seen in the O, G, A, S, I letters), however we achieve it for
finite length words via a single valued function, by interlacing two sequences mod 2. This figure
illustrates the huge diversity of possible limit laws, even for the distribution of a single letter.

6. conclusion

Now that we have a better picture of the behavior of algebraic coefficients, several extensions are possible
and in the full version of this article, we will say more on

• Algorithmic aspects: In order to automatize the asymptotics, one has to follow the right branch of
the algebraic equations, this is doable by a disjunction of cases following the proof of our main theorem,
coupled with an inspection of the associated spectral radii, this leads to a more ”algebraic” approach
suitable for computer algebra, shortcutting some numerical methods like e.g. the Flajolet–Salvy ACA
(analytic continuation of algebraic) algorithm [47]. Giving an algorithm to decide in a constructive way
if a function is N-algebraic would be nice. (This is doable for N-rational functions). With respect to the
Pisot problem (i.e., deciding if one, or an infinite number of fn are zeroes), finding the best equivalent
for N-algebraic functions of the Skolem–Lerch–Mahler theorem for N-rational functions is also a nice
question. The binomial formula of Section 3 leads to many identities, it is not always easy to predict
when the nested sums can simplified, this has as also some links with diagonals of rational generating
functions.

• Extension to entire functions system: Most parts of the analysis of positive polynomial systems
of equations also works for positive entire systems, however, one quickly gets ”any possible asymptotic
behavior” as illustrated by the system of equations y1 = z(ey2 + y1), y2 = z(1 + 2y2y3), y3 = z(1 + y23),

as it has the following explicit solution f1(z) = z
1−z exp

(
z√

1−4z2

)
, which exhibits a non-algebraic

behavior. However, adding the constraints
∂2Pj

∂y2j
6= 0 or if Pj is affine in yj leads to the same conclusion

as Theorem 3, with a smaller set of possible critical exponents (now, all mj = 1).
• Extension to infinite systems: If one considers systems having an infinite (but countable) number of

unknowns yi(z), it is proved in [64] that strongly connected systems also lead to a square-root behavior.
The fact that the limit law is Gaussian (as soon as a Jacobian operator associated to the system is
compact) is proved in [39]. When the conditions of strong connectivity or of compactness are dropped,
a huge diversity of behavior appears, but it is however possible to give interesting subclasses having a
regular behaviors.
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• Extension to attributed grammars: Attribute grammars were introduced by Knuth. Many inter-
esting parameters (like internal paths length in trees or area below lattice paths [9, 41, 69]) are well
captured by such grammars. They lead to statistics with a mean which is no more linear. For a large
class of strongly connected positive systems (with a Jacobian condition), it leads to the Airy function,
and it is expected that it is also the case for a class of functional equations with non positive coefficients.
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125.

38. Michael Drmota, Systems of functional equations, Random Structures Algorithms 10 (1997), no. 1-2, 103–124, Average-case
analysis of algorithms (Dagstuhl, 1995).

39. Michael Drmota, Bernhard Gittenberger, and Johannes F. Morgenbesser, Infinite systems of functional equations and gaussian

limiting distributions, 23rd International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis
of Algorithms (AofA’12), Discrete Math. Theor. Comput. Sci. Proc., AQ, Assoc. Discrete Math. Theor. Comput. Sci., Nancy,

2012, pp. 453–478.

40. Manfred Droste, Werner Kuich, and Heiko Vogler (eds.), Handbook of weighted automata, Monographs in Theoretical Computer
Science. An EATCS Series, Springer-Verlag, Berlin, 2009.

41. Philippe Duchon, q-grammars and wall polyominoes, Ann. Comb. 3 (1999), no. 2-4, 311–321, On combinatorics and statistical
mechanics.

42. , On the enumeration and generation of generalized Dyck words, Discrete Math. 225 (2000), no. 1-3, 121–135, Formal

power series and algebraic combinatorics (Toronto, ON, 1998).
43. Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaeffer, Boltzmann samplers for the random generation of

combinatorial structures, Combin. Probab. Comput. 13 (2004), no. 4-5, 577–625.

44. Philippe Flajolet, Analytic models and ambiguity of context-free languages, Theoret. Comput. Sci. 49 (1987), no. 2-3, 283–309,
Twelfth international colloquium on automata, languages and programming (Nafplion, 1985).

45. Philippe Flajolet and Marc Noy, Analytic combinatorics of non-crossing configurations, Discrete Math. 204 (1999), no. 1-3,

203–229.
46. Philippe Flajolet and Andrew Odlyzko, Singularity analysis of generating functions, SIAM J. Discrete Math. 3 (1990), no. 2,

216–240.
47. Philippe Flajolet and Robert Sedgewick, Analytic combinatorics, Cambridge University Press, Cambridge, 2009.

48. Harry Furstenberg, Algebraic functions over finite fields, J. Algebra 7 (1967), 271–277.

49. Ian P. Goulden and David M. Jackson, Combinatorial enumeration, Dover Publications Inc., Mineola, NY, 2004, With a
foreword by Gian-Carlo Rota, Reprint of the 1983 original.

50. R. Grigorchuk and P. de la Harpe, On problems related to growth, entropy, and spectrum in group theory, J. Dynam. Control

Systems 3 (1997), no. 1, 51–89.
51. Robert Harley, On the theory of the transcendental solution of algebraic equations, Quart. Journal of Pure and Applied Math

5 (1862), 337–361.
52. William A. Harris, Jr. and Yasutaka Sibuya, The reciprocals of solutions of linear ordinary differential equations, Adv. in

Math. 58 (1985), no. 2, 119–132.
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Berthé, With a preface by Berstel and Perrin.

62. Toufik Mansour and Mark Shattuck, Pattern avoiding partitions, sequence A054391 and the kernel method, Appl. Appl. Math.
6 (2011), no. 12, 397–411.

63. A. Meir and J. W. Moon, On the altitude of nodes in random trees, Canad. J. Math. 30 (1978), no. 5, 997–1015.

64. Johannes F. Morgenbesser, Square root singularities of infinite systems of functional equations, 21st International Meeting
on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA’10), Discrete Math. Theor.

Comput. Sci. Proc., AM, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2010, pp. 513–525.
65. David E. Muller and Paul E. Schupp, Context-free languages, groups, the theory of ends, second-order logic, tiling problems,

cellular automata, and vector addition systems, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 3, 331–334.

66. Ion Petre and Arto Salomaa, Chapter 7: Algebraic systems and pushdown automata, Handbook of weighted automata, Monogr.
Theoret. Comput. Sci. EATCS Ser., Springer, Berlin, 2009, pp. 257–289.

67. Pavel A. Pevzner and Michael S. Waterman, Open combinatorial problems in computational molecular biology, Third Israel

Symposium on the Theory of Computing and Systems (Tel Aviv, 1995), IEEE Comput. Soc. Press, Los Alamitos, CA, 1995,
pp. 158–173.
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