On a mixed Littlewood conjecture in Diophantine approximation

Yann Buceaup®, Michael DRmoTa & Bernard de MATHAN

Abstract. In a recent paper, de Mathan and Teulié asked whether
liminf, .4+~ q - |lga|| - |¢|p = O holds for every badly approximable real
number « and every prime number p. We establish that if the sequence
of partial quotients of a real number « satisfies a simple, combinatorial
condition, then their conjecture is true for the pair (a,p) with p an
arbitrary prime.

1. Introduction

A famous open problem in simultaneous Diophantine approximation is the Littlewood
conjecture [9]. It claims that, for every given pair (a, 3) of real numbers, we have

liminf ¢ - |lqaf - [|gB]| = 0, (1)
q——+00

where || - || denotes the distance to the nearest integer. The first significant contribution
on this question goes back to Cassels and Swinnerton-Dyer [3] who showed that (1) holds
when « and 3 belong to the same cubic field. Further explicit examples of pairs («, 3)
of real numbers satisfying (1) have been given in [10,1]. Despite some recent remarkable
progress [13,5] the Littlewood conjecture remains an open problem.

Recently, de Mathan and Teulié [12] proposed a ‘mixed Littlewood conjecture’ that
can be stated as follows. Let D = (di)rez be a sequence of integers greater than or equal
to 2. Set ey = 1 and, for any n > 1,

€En = II dk
0

<k<n

For q € Z, set
wp(q) =sup{n e N:q € e,Z}
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and
lqlp = 1/€ewp(q) = inf{l/e, : ¢ € e, Z}.

When D is the constant sequence equal to p, where p is a prime number, then |- |p is
the usual p-adic value | - |,, normalized by |p|, = p~!. In analogy with the Littlewood

conjecture, de Mathan and Teulié asked whether
liminf ¢ - [lge| - [glp =0 (2)
q——+00

holds for every real number a. They proved that (2) holds for every quadratic irrationality
a when the sequence D is bounded.

In the present paper, we are focusing on the particular case when D is the constant
sequence equal to a prime number. Thus, we investigate the following conjecture.

Mixed Littlewood Conjecture. For every real number o and every prime number p,
we have

lim inf g - “Iql, = 0. 3
lim inf ¢ - [lgat]| - gl (3)

Obviously, the above conjecture holds if « is rational or has unbounded partial quo-
tients. Thus, we only consider the case when « is an element of the set Bad of badly
approximable numbers, where

Bad = {a € R: inf ¢- ||qa| > 0}.
q=>1

We are concerned with the following question:

Problem 1. Is there any a in Bad, which is irrational and not quadratic, such that,
for any prime number p, the pair («, p) satisfies (3)7

As briefly outlined on page 231 of [12], the answer to Problem 1 is positive when
« lies in a subset of Bad with Hausdorff dimension 1; see also [6] for a stronger result.
Nevertheless, these approaches do not provide any new explicit examples of pairs («, p)
satisfying (3) with a in Bad. The purpose of the present note is precisely to construct
explicitly uncountably many real numbers « in Bad such that the pair («, p) satisfies (3)
for any prime number p.

We further extend the problem posed by de Mathan and Teulié, by considering an
‘inhomogeneous mixed Littlewood conjecture’. We ask whether

liminf ¢- [[gal| - |g —yl, =0 4
lim inf ¢ - [lgoll - lg — yl, (4)

holds for any real number «, any prime number p and any y in Z,, the ring of p-adic
integers. It turns out that our methods allow us to establish (4) for a wide class of real
numbers « in Bad.

Our proofs heavily depend on p-adic analysis, and our key tool is the p-adic logarithm
function. It is not clear to us whether our Theorem 1 has a real analogue, or an analogue
for formal power series over a finite field.



2. Results

Our main result shows that (3) holds for any real number o whose sequence of partial
quotients is, in some sense, quasi-periodic.

Theorem 1. Let o be in Bad and write
a = [ag;ay,as, .. .|

Let T' > 1 be an integer and by,...,br be positive integers. If there exist two sequences
(mg)k>1 and (hi)r>1 of positive integers with (hy)r>1 being unbounded and

Ay +j+nT = bj, forevery j=1,...,T and every n=0,...,h; — 1,

then we have
liminf ¢ - [lgo| - lg - ylp = 0. (5)

for every prime number p and every y € Z,. If, furthermore, there exists a constant C
such that
myg < Chk, for k > 1, (6)

then we have
lim inf ¢ -log g - [lgall - lg — yl, < +o0, (7)

for every prime number p and every y € Z,.

It is worth rephrasing the assumption of Theorem 1 by using the terminology from
combinatorics on words. Let oo = [ag; a1, as,...| be in Bad and view its sequence of partial
quotients as the infinite word a = agajas ... on the alphabet A = {1,..., M}, where M
is an upper bound for the a;’s. Theorem 1 asserts that, if there exists a finite, non-empty
word B on the alphabet A such that, for every & > 1, the concatenation of k copies of
B occurs in the word a, then (5) holds for every prime number p and every y in Z,.
Consequently, Theorem 1 provides an uncountable, explicit class of badly approximable
real numbers for which the mixed Littlewood conjecture, and even the inhomogeneous
mixed Littlewood conjecture, is true.

We further mention that, if the real number o satisfies the assumption of Theorem
1 with sequences (my)r>1 and (hg)r>1 such that (6) holds, then « is either a quadratic
irrationality, or a transcendental number. This follows from Theorem 3.2 of [2].

We display an immediate consequence of the proof of Theorem 1.

Theorem 2. Let o be a quadratic real number. Let p be a prime number. For any y in
Z,,, there exist a positive constant c(ca, p,y), depending only on «, p and y, and arbitrarily
large positive integers q with
lgall < (e, p,y)/a
and
g —ylp < cla,p,y)/logg. (8)
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In particular, we have
liminf ¢-logq- |l - |g — ylp, < +o0. (7)
g—+0o0

The case y = 0 was already established in Théoréme 2.1 from [12]. Notice that their
result actually covers the more general case of a bounded sequence D of positive integers.
In view of [11], we cannot replace log ¢ in (8) by (log¢)* with X very large.

Theorem 2 also holds for an arbitrary bounded sequence D when y is an integer.

Using some of the ideas occurring in the proof of Theorem 1, we get another uncount-
able, explicit class of badly approximable real numbers for which the mixed Littlewood
conjecture, and even the inhomogeneous mixed Littlewood conjecture, is true.

Theorem 3. Let a = [ag; a1, as,...] be in Bad. If for every integer h > 1 there exists an
integer T' such that

@j+nr = aj, foreveryj=1,...,T and everyn =0,...,h,
then, for any prime number p and any integer y we have
lim inf ¢ - [lger]| - lg — ylp < +o0.
More generally, Theorem 3 holds for an arbitrary (bounded) sequence D. Its analogue

in the function fields case can also easily be established.

Using arguments from [13], we get that (4) holds for ‘many’ real numbers a with
bounded partial quotients.

Theorem 4. The set of real numbers o with bounded partial quotients for which
liminf ¢ [[ga - ¢ —yl, = 0,
q—+00

for every prime number p and for every y in Z, has Hausdorff dimension 1.

A stronger result holds when y = 0. Namely, Einsiedler and Kleinbock [6] established
that the set of a for which (3) does not hold has Hausdorff dimension 0. Presumably, their
approach could be modified to get an analogous result for (4), but this is not clear to us.

In view of Theorem 1, we would like to address the following problem.
Problem 2. Let € be a positive real number. Find a real number « in Bad, a prime

number p, and a rational integer y such that

liminf ¢'*¢ - ||ga| - |¢ — yl, < +oo. (9)
q——+00

It follows from the p-adic analogue of the Schmidt Subspace Theorem, established by
Schlickewei [15], that any real number « satisfying (9) must be transcendental. Apparently,
our construction does not allow us to tackle Problem 2. Nevertheless, by using the Folding
Lemma recalled in Section 6, it is possible to give a positive answer to Problem 2.
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Theorem 5. For any prime number p, there exists a real number o in Bad such that

liminf ¢° - gl - |g|, < 1.
g—-+o0

Since (9) cannot hold with € > 1 and « in Bad, Theorem 5 is best possible.
We end this section by a third question.

Problem 3. Given « in Bad, is there a prime number p such that (3) holds for the
pair («,p)?

Apparently, there is no contribution towards Problem 3, which seems to be quite
difficult.

3. Proof of Theorem 1

— Preliminaries to the proof.
Let (gn)n>—1 be the sequence of the denominators of the convergents of a. These
numbers satisfy the recurrence relation

n = GpQn—1 + qn—2

with ¢g =1 and ¢_; = 0. For n > 0, set

[ .
Qn_(Qn—l)

We can write

where P, is the matrix
For j=1,...,T, set

and M = My ...M;. Replacing if necessary by,...,br by by,...,b7,by,...,br, we may
replace T by 27, and thus we can suppose detM = 1. The matrix M is diagonalizable
and its eigenvalues are quadratic units w > 1 and 1/w. We have Nq(,)/qw = 1. Set a =
Trq(w)/qw- Then a > 2 is a positive integer, and w is a root of the polynomial X?2—aX+1.
We have Qumy4nT = M Qi (n—1)r for every 1 <n < hy, hence Qmy1nr = M"Qm,,. The
Cayley—Hamilton theorem implies that, for 2 < n < hy, we have

ka—i—nT = Mszk+(n72)T - (G,M - I)ka+(n72)T - ank+(n71)T - ka+(n72)T-
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Hence the sequence (gm,+nT)n>0 satisfies

Amp+nT = Wmy+(n—1)T — dmp+(n—2)T (10)

when 2 <n < hg.
Note that we have Qm,414n7 = M'Qpyt14m—1)r for 0 < n < hg, where M’ =

MMy ... My = MlMMfl. Hence, M’ has the same characteristic polynomial as M, and
the sequence (g, +1+nT)n>0 also satisfies the recurrence

dmp+1+nT = AQmp4+14+(n—1)T — 9mp+1+(n—2)T (10)

when 2 <n < h;. Consequently, we may replace my by my + 1. Since g,,, and ¢, +1 are
coprime, we can, without any loss of generality, suppose that p does not divide g, .
We have

Gmp+nT = Apw"™ + Brw ™", (11)
for 0 < n < hy, where A and By are given by (11) with n =0 and n = 1:

Widmp+T — dm
A, = k k 12
F w?—1 (12)
and
o dm +T — WQm
Bk——w kw2_1 k. (13)

We also denote by w a zero of the polynomial X? —aX + 1 in the algebraic closure of Q,.
We still denote by | - |, the p-adic value extended to this field. As w is a unit, we have
|w|p, = 1. The formulee (12) and (13) hold in Q,. Since w and w™! are conjugate numbers
in Q(w), and so are Ay and By, we can change Ay into By, by changing the embedding of
w in Qp(w) — it is convenient that this embedding depend upon k. We thus can suppose
that [Aglp > |Brlp (i-e., [@me+r — Wmilp < [Wdmp+1 — @mylp)- Since we suppose that
| A + Bilp = |gm, |p = 1, we then have 1 < |4, |, < 1/|w? — 1],.
The field Q,(w) is complete. The ball

G={zecQpw):|z—1], < p_l/(p_l)}

is a subgroup of finite index in the multiplicative group {z € Q,(w) : |z|, = 1}. Hence,
replacing again T' by (T, therefore w by w’, where ¢ is a suitable positive integer, we may
also suppose that |w — 1|, < p~ /(=1

In the sequel, we shall make use of the p-adic logarithm function, which is defined on
the multiplicative group { € Qp(w) : |z — 1|, < 1} in Qp(w) by

4o

logz =Y (-1)" '(z—1)"/n.

n=1

We have
log zy = log = + log v,
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for z,y in {v € Qp(w) : |z — 1|, < 1}, and, for every z,y in G,
[logz(p = [z — 1],
and

e
-1
y

x
log—| = = [z —ylp.

p

|logz —logyl|, =

p

The constants implied in the symbols < and =< occurring below will only depend upon
bi,...,br and on p.

The proofs in the cases y = 0 and y # 0 are rather different. First, we deal with the
case y = 0, which is slightly more difficult.

— An auxiliary result for the case y = 0.

Keep the above notations and set either

€k = ‘w2 - 1‘17 : |qu+T - wqu|p

or
€k = p_1/2 ) |W2 — Up  |@me+T — WGmy |ps
in such a way that e, < 1 is an integral power of p.

Lemma 1. There exist integers x) and yy, with |yk|, = 1, such that

Tk Gy + YkGma+T]p < €k (14)
and 12
max{|zx |, [yel} < /% (15)
Furthermore, we have
|k, + Yrmi+7lp < |0 = 1p [2x + yrowlp < (max{|a], lyel}) 7> (16)

In course of the proof of Lemma 1, we need the following version of Liouville’s Lemma.

Lemma 2. For any integers X and Y, not both zero, we have
X +Ywl, > (max{|X], [V]})7>.

Proof. We have
INQw)/Q(X + Yw)| < max{|X|,[Y]}?

and
INqw)/@(X +Yw)lp = [(X + Yw)(X +Y/w)|p < |X + Ywl,.

As Nq()/qQ(X + Yw) is a non zero integer, we get
INQ)/Q(X +Yw)| - [(Nqu)/q(X +Yw)|, = 1.
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It then follows that |X + Yw|, max{|X|,|Y|}? > 1, as claimed. O

Proof of Lemma 1. Let s be a positive integer. By the pigeonhole principle, there exist
integers xj s and yj s, not both zero, such that

|xk,Ska + yk,stk+T|p S gkp_s (17)

and
} <l Pl (18)

maX{|~rk,s ; |yk,s

First, we prove that there exists a non-negative integer S, depending only on w, such that,
it s > S, then y; s cannot be divisible by p°. Indeed, let o be a positive integer, with
0 < o < s, such that y; s is divisible by p?. Then, z s as well is divisible by p?. Indeed,
we have |yk,Ska—|—T|P < p~7 and |x/€,squ + yk,squ+T|p < p~7, hence |xk.,squ|p <p°.
Since we have assumed that |gm, |, = 1, we get |k |, < p~7. Setting x;’s =p %z, and
Yr.s =P “Yk,s, we deduce from (17) that we have

o+ yp AT <y pmete (19)
mpg D
and from (18) that
—1/2 _
max{|af, .|, vk o|} < 5 p2 (20)
Hence, writing
/ / o ; Qm+T / _ Gmu+T 91
xk,s + yk,sw - xk,s + yk,s + yk,s w 3 ( )
qu qu
and noticing that (19) implies that
r Qmp+T

< ‘ka—l-T — W(Qm,, |p7
p

I
mk,s + yk,s

my
we get
|$;€,s + yllg,sw|p < |@mp+1 — Wiy lp <K k-

Then by (20)
| s + Y sl max{|al, |, Jyp o1} < p° 727

If 0 = s, we thus get

}2 S p—S

|x;€,s + y;c,sw|p ma‘x{|x;€,s ) |yl/€,s

and it follows from Lemma 2 that we must have s < 1, i.e.,, s < S, where § > 0 is an
integral constant, depending only upon w. Thus, if s > S, then y; s cannot be divisible
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by p®. Take s = S + 1. If we define ¢ by |y, s|p, = p~7, we then have 0 < s. We define
T =p x5, and yp = p~7Yg,s, S0 that

Yklp = 1. (22)
By (19) and (20), as s = S + 1, we have
|Zk@mi + YGmp+7lp < €k (14)
and
max{|zk|, |yr|} < 8,:1/2. (15)

To conclude, let us show that the pair of integers (xj,yr) which we have constructed
satisfies (16). Indeed, as e < |¢m,+7 — W, |p, We deduce from (22), (14) and (21) that

Accordingly, conditions (14) and (15) lead to Lemma 1. O

— Completion of the proof for the case y = 0.
For any k > 1, let ;. and y; be the integers given by Lemma 1. For any n > 0, set
Qk,n = TkGmp+nT T Yedmy+(n+1)T- (23)

Our aim is to prove that there exists an integer n(k) at most equal to hy — 1 such that

Qkn(k) 7 0, and
Igfl Qknt)] * 1@k p * |Qr iyl = 0.

First, we note that, for every 0 < n < hj, we have

|Ql€,n

< maX{|mk|v |yk|} dm+nT

and
|Qk.nerl| < max(|zkl, [ykl)/dmy+n-

We thus get
Q- 1Qr el < max{ |z, [yul}>. (24)

Further, with Ay and By being defined as in (12) and (13), we can write
Qrn = Crw" + Dypw ™"

where
Cr = Ap(zp + ypw)
and
Dy, = Bi(z + ypw ™).
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Since |Ag|p, > 1, we deduce from Lemma 1 that
Ch + Ditlp = [@kGmy + Ysmy+7lp < [0 = Lp - |25 + gpwlp < |w? — 1], - [l
Hence, we have |Cy + Di|, < |Ck|p, and thus |Cy|, = |Dg|p. We then get
14 Di/Chlp < |w? =1, <p /@D, (25)

Write
Qk,n = Ckw_"(Dk/C’k + wQ").

Since we have |Ci|, < |7k + yrw|p, < (max{|zgl, |yx|}) ™2, we thus get

|Qr.nlp < (max{|zx], lyrl}) 2| Dr/Ck + W™,

and, by (24),
Q. - 1Qu,nlp - |Qknell < |Di/Ch + " p. (26)

Now, inequality (25) enables us to use the p-adic logarithm in the domain G' where the
equality |logz —logy|, = |z —y|, holds. As|Dy/Ck+w?"|, = |log (— Dy /Cy)—2nlogw|py,
we may also write (26) as

log(—D;./C
NQkmlp - Qrmall < M _n

|Qk.n 2logw

p

Now let us show that (log(—Dy/C%))/(2logw) lies in Q,. This is trivial if w € Q,. In the
case where w ¢ Q,, there exists a unique Qp-automorphism o of Q,(w), different from
the identity. We have o(w) = 1/w, and o is isometrical. We have o(logw) = log(o(w)) =
—logw, and o(—Dy/C)) = —C} /Dy, since o(Cy) = Djy. We thus have

o (log(—Dy./Cy)) = log(—C}./Dy,) = —log(—Dy /Ck).

Hence,

5 (108(=Dr/Ck) \ _ log(~Dx/Ck)
2logw 2logw

and the number log(—Dy/Cy)/(2logw) of Q,(w) lies in Q,. Further, this number lies in
Z,, since
| Jog(—Di/C)lp = |Di/Ck + 1] < jw? — 1], = [2logwlp,

by (25). If ti is a positive integer with

1 1

—hy, < p'* < Zhy,

% E<P" > 5 k
then there exists an integer n, with 0 < n < p'*, such that

log(—Dk/C’k)

— < ptk
2logw " b

p
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Replacing if necessary n by n + p'*, we may ensure that log(—Dy/Cy) # 2nlogw, hence,
Dy, /C + w?™ # 0. Taking either n(k) = n or n(k) = n + p*, we have thus constructed an
integer n(k) satisfying 0 < n(k) < hg, Qi nk) 7 0 and

_ 1
Qknt)| - |Qkn()|p - |Qrnmya] € p™ < o (27)

Since the sequence (hy)r>1 is unbounded, we have

Igfl Qknt)] * 1@k p * |Qr iyl = 0.

It remains for us to prove that the estimate (7) holds when (6) is satisfied. Note that as
the partial quotients of « are bounded, we have by (23):

10g ‘Qk,n(k)| < 1OgmaX{|xk|7 |y/€|} +my + n(k)a

hence,
log |Qk,n(k)| <K logmax{|ack|, |yk|} + my + hg.

Now, by (15) and Lemma 2, we have

maX{|$/€|v |yk|} < |QWk+T - wqu|;1/2 < Gmy, -

Thus, we get
log max{|zk|, |yr|} < mg

and
log |Qk n(xy| < mi + hi.

Accordingly, if (6) is satisfied, then we have log |Q} ,,(r)| < hx, and (7) follows from (27).

— The case y # 0.

We shall prove that for any non-zero y in Z,,, there exists an infinite set Q of positive
integers () satisfying

Q- [lQaf <1 (28)

and
liminf |Q —yl, = 0. 29
oiminf 16—yl (29)

Note that if (29) is true for y, then it is true for My, where M is any positive integer.
Indeed, we may replace @ by M@, while preserving (28). Then it is enough to prove (29)
when |y|, = 1. Actually we shall construct a set of positive integers @), with (28), such that
the p-adic topological closure of this set contains the unit circumference |y — 1|, = 1. For
this purpose, it is enough to construct a set of @, with (28), whose p-adic closure contains
the ball [y — 1|, < p~?, for some positive integer A. Indeed, replacing then the set of Q by
the u@Q, where u runs among the integers 0 < u < p* with |u|, = 1, the p-adic closure of
this set will contain the unit circumference |y — 1|, = 1.
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First, suppose that p # 2. We take the sequences (my)r>1 and (hg)r>1 as in the
statement of the theorem. The numbers Ay and By, are defined as in (12) and (13). Recall
that we suppose that |gm, |, = 1 and |Ag|, > |Bk|p, hence |Ag|, > 1. We note that we
may also suppose that |Ay — Bg|, > |w — 1|,. Indeed, we may replace ¢, either by
Gmp+T Or Gm,+or, while preserving the condition |gp,, |, = 1, since (10) ensures that if
@m, is not divisible by p, then either g, +7 Or @, 427 is not divisible by p. Now, if we
replace ¢, bY ¢n,+7 (r€sp. by ¢, +o7), then Ay is replaced by Arw (resp. by Azw?),
and By, is replaced by Brw ™! (resp. by Brw 2). If |Ay — Bgl, < |w — 1|, then we have
Ao — By = [Ar(w—w D)+ (Ax— Bw 1y = [Axlw—w Y]y > w2 1], — -1,
in virtue of the properties of the logarithm function, since |w — 1|, < p~/®=1) In the
same way, if |Ax — B|, < |w—1|,, then we have |Ajw? — Byw™2|, > |w—1|,. Accordingly,
by these changes, we may suppose that |g,, |, = 1 and

[ Ak = Bilp 2 [w — L. (30)
Let X\ be the positive integer such that
w— 1 =p M1,
AS |gm, |p = 1, there exists an integer Ly with 0 < Ly < p* and |Ly|, = 1, such that
Li(Ag + By) = 1 mod p. (31)

We shall prove that the p-adic closure of the set composed by the integers Lygm, +n1, for
k> 1and 0 < n < hg, contains the ball |y — 1|, < p~>*. Note that, L; being bounded, the
integers LyQm,+nT satisfy (28), and thus the result will be proved.

Set L Ar = A}, and LyBj, = Bj.. For 0 < n < hy, we have

L@y +n1 = ALw™ + Brw™"™.
Consider the map ¢ from the ball {x : |x — 1], < 1} of Q,(w) into Q,(w) such that
or(z) = Apz + Bra™ "t

Let y be a number of Q, with
ly—1p <p~ (32)
We shall find * € Q,(w) such that ¢x(z) = y. We must have A\ z? — yz + B, = 0.

Accordingly we take
y+y? —4A.B;,
x = . (33)
24

However we must make precise the meaning of the symbol y/-. We define the function /-
over the ball {z : [z — 1|, < p~!} in Q,, with values in the same ball, by the fact that
log/z = %logz (that is to say /z = exp logz, where expu = :::6 ZL—T
Therefore we have

for [ul, < p~).

Vz=1]p = [z = 1]p. (34)
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Now, by (31) and (32), we have
ly? — 4A4.B; — (4} = BL)?|p = ly* — (4 + BL)?[p < p (35)
and, by (30) and |A}, — By|2 > p !, we get

y* — 44} B},

g “kh_
(A} — Bp)?

<p L (36)
p

Moreover the number (y* —4A4) By)/(A} — B},)? lies in Q,, since in the case where w € Q,,
it is invariant under the above automorphism o. Inequality (36) allows us to define the
number /(y2 — 44} B;)/(A}, — B},)? in Q,, and we put in (33)

y? — 4A] B,
\/2/2 - 4A;€Bl,€ = (A;-c - BI/@) W

Then the number z is well defined in Q,(w). Further let us prove that

|z = 1p < | —1fp. (37)

y? — 4A] B, _1
(A, = By)?
we deduce from (34) that

4 — 1AL B — (4 — B,
Jy? —4ALB, — (AL~ BY)| = ,
| B~ (4= Bl 4, B,

and from (35), that

Indeed, writing

[\ — 44, B}, — (A4 - BY)| = |4} — Bil,-

)
p

pf)\

y2—4A’B’—(A’—B’) < £
Since |A} — Bj|, > p~*/2, it follows that
[\ Jo? = A4~ (4= B, < o
As |y — (A}, + Bj)|p < p~*, we thus get

‘y +/y? —4A]B; — 2A;€|p < p_’\/2

which leads to (37) since |A} |, > 1.
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log x
log w

- y? —4A, B;, _ y? — 4A] B,
(A}, — BL)? (A%, — Bp)?

since this number lies in Q,. Hence, as 0(A}, — B},) = B; — A}, we get 0(\/y? —4A, B}) =
y? — 4A] B;.. We thus have

(TR v VP 1A B

2] 28]

Lastly we prove that belongs to Q,. Indeed, in the case where w € Q,, we have

It follows immediatly that
o(x)=1/x (38)

log x

log w
log x
logw

given a positive integer N, there exists an integer n, with 0 < n < p", such that

and as w also satisfies (38), we conclude as above that

log x
| logw

belongs to Q,. Moreover, as

lp = |z — 1]p/|w — 1|, we conclude from (37) that belongs to Z,. Accordingly,

1
0gT <pN

— I

p

log w

ie., [logz —logw™|, < p~V|w —1|,, and thus |z —w"|, < pN|w —1|,. As |B;| <|A;] <
1/|w — 1|,, we thus get

[er(2) = pr(w™)]p < p~F.
Now @i (x) =y, and if 0 < n < hy, then ¢ (w™) = Ligm,+n7- Let us select k such that
hi, > p", we thus have found an integer n, with 0 < n < hy, such that

|Lkak+nT - y| S p_N- (39)

Accordingly, the p-adic closure of the set of Lyqy,, +n7, with £ > 1 and 0 < n < hj, contains
the ball |y — 1|, < p~ .

There are some minor changes when p = 2. First note that, using the logarithm
function over Qy for |z — 1| < 1/4, we get |22 — 1|o = 2|z — 1|5. The function /- is then
defined over the ball |z — 1|2 < 1/8 in Qq, and satisfies |\/z — 1|2 = 2|z — 1]2. Also note
that if |Ax — Bi|a < 1, then |Ag|e = |Bk|2 = 2, since |Ax + Bi|2 = 1. Reasoning as above,
we thus may suppose that

1
|Ak — Bk|2 Z 5 . |w — 1|2.
The number A is then determined by

1
2—A:1—6w—1|§

and Ly is determined by
LG, =1 mod oA
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and 0 < L;, < 2*. Then, the 2-adic closure of the set of integers Lyqm,+nT contains the
ball {y : |y — 1|2 < 27*}, and (39) holds.

In order to obtain (7), it is enough to note that log |Lkgm, +nr| < mk + n, and thus,
if condition (6) is satisfied, then

log |L/€ka—l—nT| < hk

We may choose the integer N above such that hy/p < p"¥ < hy, i.e.,
pN = hk7

and from (39), we get (7).

4. Proof of Theorem 3

— Proof of Theorem 3.

Let a be as in the statement of Theorem 3. Let p be a prime number. First,
notice that if w is any quadratic unit, then the index of the multiplicative group G = {z €
Q,(w) : |z — 1|, < p~/®=D} in the unit ball {z € Q,(w) : |z — 1|, = 1} is a divisor of
p?(p? — 1). Hence, we have |wp2(p2_1) -1, < p~ /(=1 Accordingly, in the statement of
Theorem 3, if we replace T by p?(p? — 1)T', we can suppose, as in the proof of Theorem
1, that the eigenvalues wp, 1/wy of the matrix M = My ... M; are quadratic units with
|wg2(p2—1) _ 1), < p VD,

Then, in order to prove Theorem 3 for y = 0 it is enough to consider @,, = ¢,,;_1 for
0 < n < h. This sequence satisfies (10), hence we can write

Qn = A(wp —wr")

since Qo = 0. We have
[Alp < 1/|w% —1p.

Hence, for 0 < s < log h/logp, we have

S
|w§”p — 1l -
<L P s
@rly = wi =1y

Taking s such that h/p < p® < h, we get

|Qps|p < 1/h.

This proves the result, in virtue of (28).
Let y be a non-zero integer. Consider @), = ygn,r = Ew]} + Fw;.", where

masc{| El, [Fl,} < 1/|w% — 1],.
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Since Qf, = y, we have as above

|W?Fps — 1], —
Qe —Ylp < — 35— =p %,
i d wi — 1,
which, again, proves the result by (28). O

— Remarks on the proofs.

Although Theorem 2 for y = 0 is a consequence of Theorem 1, and was already proved
in [12], we would like to note that in this case, the proof of (7) is very simple, and the
use of the p-adic logarithm function is actually not necessary. Indeed, the assumptions of
Theorem 1 are satisfied for some positive integer m, and we have a,;1n7 = b; for every

non-negative integer n and for any j = 1,...,7T. For any k > 1, we set my = m, and we
choose the integers xr = ¢+ and yr = —¢,,. Then, as in the proof of Theorem 1, we
consider integers Qn = ¢m1T@mtnT — ImGm+(n+1)7- LThese integers satisfy (28) since m is
now a fixed number. In this case, as Qg = 0, we have C;, = — Dy, that is to say that we

can write @, = C(w™ —w™"), with C # 0 since ¢+ — WG, # 0. Hence, we have Q,, # 0
for n > 0, and
Qnlp < |w2n — 1.

Then, we only have to check that
‘wzps —1p < ptlw® — 1.

This follows from an elementary induction by writing w??” = 1 + u,, and using Newton’s
formula. As log @, < n, we thus see that the integers Q)+ satisfy (28), with log |Qp:| < p°
and |Qps|p < p~°. This provides the estimation (7). The same holds when y # 0 is an
integer. Indeed, by the Bezout Theorem, ¢, and g,,+1 being coprime, we can take integers
2’ and gy’ such that 2'¢,, + ¥'¢m+1 = y (where m > 0 is chosen in a such way that
Am+j+nT = b; for every non-negative integer n and for any j = 1,...7). Since both the
sequences (¢m+nT)n>0 a0d (¢m+14+nT)n>0 satisfy (10), then for every non-negative integer
n we can write
&' Grant + V' @ms14nr = B0 + Fw™"

where E and F are numbers in Q,(w), with |E|, < 1/|w? — 1], and |F|, < 1/]w? — 1],.
The integers Q!, = &' GminT + Y Gms14nr satisfy (28). Since |w?” — 1|, < p~*|w? — 1],,
we see that for n = 2p°, we have [Q5,: — Qpl, < p~*, that is to say

|Q/2p3 - y|p S pis'
Further, it is easy to see that Theorem 2 and Theorem 3 remain valid when replacing in
(8) the p-adic absolute value | - |, by |- |p, if we take y € Z.
In the other parts of the proof, the role played by the p-adic logarithm function seems
deeper. For instance, it is easy to prove the analogue of Theorem 2 for formal power series
over a finite field, when y is a polynomial. But we do not know whether Theorem 1 has
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an analogue in this setting. The crucial point is the use of the p-adic logarithm function,
that we lose in the formal power series case.

5. Proof of Theorem 4

Let p be a prime number and y be an integer. Let p denote the Kaufman measure,
whose existence has been proved in [7]. The measure p is supported on the set Bad. For
any n > 1, set g, := p"™ + y. For any real number a we have

(90| - lgnall - 1gn = ylp = lgnl - lgnall - 10", < (14 [yl) [lgna]-
Thus, (4) holds as soon as « satisfies

inf [lgnall = 0. (40)

Using the exponential growth of the sequence (gn)n,>1 and a result of Davenport, Erdds,
and LeVeque [4], as explained in Section 4 of [13], we get that (40) holds for p-almost all
«. Hence, p-almost all « satisfy (4) for any prime p and any integer y. Arguing then as
in page 294 from [13], we obtain that the Hausdorff dimension of the set of real numbers
a in Bad for which (4) holds for any prime p and any integer y is equal to 1, as claimed.

6. Proof of Theorem 5

Our proof is very much inspired by [8]. It rests on the Folding Lemma, recalled below.

Lemma F. Ifp,/q, = [ao;a1,as,...,a,] with a, > 2, then
p —-1)"
q—n + % = lag;a1,a2,...,an_1,0n + 1,0, — 1 ap_1,...,a2,a1].
n n

Lemma F follows from Propositions 2 and 3 of [14].
Recall that [0;ayq,...,an,1,1] = [0;aq,...,an, 2] for any positive integers aq, ..., a,.
We display an immediate consequence of Lemma F.

Lemma 3. Ifa/m=1[0;1,1,as,...,an—1,an] with h > 4 and a;, > 2, then

ma + (—1)"

m2 = [Oa ]-7 1,@3, cey Qp—1,0p + ]_,Clh - 17ah717 . "a3:2]'

Lemma 3 is the main tool for the proof of Theorem 5. Let p be a prime number.
There are positive integers a and b, with 1 < a < p® and a coprime with p, such that the
continued fraction of a/p® reads

a
ﬁ - [Oa ]-a ]-70’33 . "ah*l’ah]’
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with A > 4 and a; > 2. Set
M = max{as,...,ap_1,ap + 1}.

By repeated applications of Lemma 3, we see that, for any j > 2, the continued fraction
of the rational number

_a (=DM 1 1
Qj _E+ P2 pb T 2
reads
0;1,1,...,2]

and has all its partial quotients bounded by M.
Set

_ a (—=1)" 1
a= lim a;=—+ — E —,
joteo ph o pP

By construction, all the partial quotients of o are less than or equal to M, hence « is in
Bad. Furthermore, it is easily checked that, for any j > 2, we have

P |l el <1277

This implies that
liminf ¢ - [|qal] - al, < L.
q—+00

as asserted.
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