
THE BINARY SEARCH TREE EQUATION

Michael Drmota ∗

Inst. of DiscreteMathematics andGeometry

Vienna University of Technology, A 1040 Wien, Austria

michael.drmota@tuwien.ac.at

www.dmg.tuwien.ac.at/drmota/

Partly joint work with Brigitte Chauvin (Université de Versailles)

∗ supported by the Austrian Science Founcation FWF, Project S9604

Workshop on Branching Random Walks and Searching in Trees

BIRS Banff, February 1–5, 2010

Outline of the Talk

• The “Binary Search Tree Equation”

• 3 Motivations

• Left/Right-most Particle in Branching Random Walks

• Height of Binary Search Trees

• Profile of Binary Search Trees

• Intersection Property

The “Binary Search Tree Equation”

Φ′(u) = −
1

α2
Φ
(

u

α

)2

α > 0, u > 0

Laplace transform: Φ(u) =
∫ ∞
0

Ψ(y)e−uy dy:

y Ψ(y/α) =
∫ y

0
Ψ(w)Ψ(y − w) dw

Ψ(y/α) =
∫ 1

0
Ψ(yt)Ψ(y(1− t)) dt = E [Ψ(yU)Ψ(y(1− U))]

Additive version: w(x) = Ψ(ex), γ = logα, X1 = log 1
U , X2 = log 1

1−U :

w(x− γ) = E [w(x−X1)w(x−X2)]

The “Binary Search Tree Equation”

Trivial Solutions

• Φ(u) =
1

u
(for all α > 0), Ψ(y) = 1

• Φ(u) =
1

1 + u
(for α = 1), Ψ(y) = e−y

Non-trivial solution

• Φ(u) =
1 + u1/4

u
e−u1/4

(for α = 16), Ψ(y) = e−y/4

The “Binary Search Tree Equation”

First attempt for a solution

Φ(u) =
∑
n≥1

cnun

cn+1 = −
α−n−2

n + 1

n∑
k=0

ckcn−k, c0 = Φ(0) = 1

This provides a (unique) and entire solution for α > 1 .

Remark. (c = 4.31107 . . . and c′ = 0.3733 . . . satisfy c log
(
2e
c

)
= 1)

• α ∈ (0, e1/c] = (0, 1.26 . . .]: Φ(u) ∼
1

u
(u →∞)

• α ∈ [e1/c′, ∞) = [14.56 . . . , ∞): Φ(u) ∼
1

u
(u → 0)

The “Binary Search Tree Equation”

Out of Range: e.g. α = 10: Φ(u) 6∼ 1/u

(no Laplace transform of a (tail) distribution function Ψ(y))

–2

–1.5

–1

–0.5

0

0.5

1

100 200 300 400 500 600
x

Motivation 1: Branching Random Walk

Random point measure

Z = δX1
+ δX2

For example: X1 = log(1/U), X2 = log(1/(1− U)).

Branching Random Walk: Sequence Zk of random point measures:

• Z0 = δ0.

• Zk+1 is induced by Zk by adding independent copies of Z to all

points of Zk.

Motivation 1: Branching Random Walk

0 k = 0
..

..

.

Motivation 1: Branching Random Walk

0 k = 0
..

..

.
. .

k = 1

Motivation 1: Branching Random Walk

0 k = 0
..

..

.
. .

k = 1

k = 2
. .. .

Motivation 1: Branching Random Walk

0 k = 0
..

..

.
. .

k = 1

k = 2
. .. .

k = 3
.

Motivation 1: Branching Random Walk

Lk ... Position of the leftmost point (after k steps)

wk(x) = P{Lk > x}

Rk ... Position of the rightmost point (after k steps)

wk(x) = P{Lk ≤ x}

wk+1(x) = E [wk(x−X1)wk(x−X2)]

wk+1(x) = E [wk(x−X1)wk(x−X2)]

Travelling wave: wk(x) = w(x− kγ):

w(x− γ) = E [w(x−X1)w(x−X2)]

Motivation 1: Branching Random Walk

Special case: X1 = log(1/U), X2 = log(1/(1− U))

• Iteration

Yk(u) :=
∫ ∞
0

wk(log y)e−uy dy

Y ′
k+1(u) = Yk(u)2

• Travelling wave: wk(x) = w(x− kγ), α = eγ

Φ(u) =
∫ ∞
0

w(log y)e−uy dy

Φ′(u) = −α−2Φ(u/α)2

Motivation 2: Binary Search Trees

Vertex labelled binary tree:

1

2

3

4

5

6

7

. .

. .

8

Motivation 2: Binary Search Trees

Storing Data:

1 234 56 7
. .

. .

8 ,,,,,,,

Motivation 2: Binary Search Trees

Storing Data:

1 23
4

56 7
. .

. .

8 ,,,,,,

Motivation 2: Binary Search Trees

Storing Data:

1 23
4

5

6

7
. .

. .

8 ,,,,,

Motivation 2: Binary Search Trees

Storing Data:

1 2

3

4
5

6

7
. .

. .

8 ,,,,

Motivation 2: Binary Search Trees

Storing Data:

1 2

3

4

5

6

7
. .

. .

8 ,,,

Motivation 2: Binary Search Trees

Storing Data:

1

2

3

4

5

6

7
. .

. .

8 ,,

Motivation 2: Binary Search Trees

Storing Data:

1

2

3

4

5

6

7
. .

. .

8

,

Motivation 2: Binary Search Trees

Storing Data:

1

2

3

4

5

6

7
. .

. .

8

Motivation 2: Binary Search Trees

Storing Data:

1

2

3

4

5

6

7

. .

. .

8

Motivation 2: Binary Search Trees

Probabilistic Model:

Every permutation of {1,2, . . . , n} is equally likely.

−→ probability distribution on binary trees of size n

−→ every parameter on trees is a random variable

Notation

Hn ... height of trees (of size n)

Motivation 2: Binary Search Trees

Observation: Subtrees of the root are also binary search trees,

the splitting probabilities are 1
n.

P{Hn+1 ≤ k + 1} =
1

n

∑
n1+n2=n

P{Hn1 ≤ k} · P{Hn2 ≤ k}

. .

. .

nn1 2

Motivation 2: Binary Search Trees

Generating Functions:

yk(x) =
∑
n≥0

P{Hn ≤ k} · xn

y′k+1(x) = yk(x)
2

with initial conditions y1(x) = 1, yk(0) = 1.

Motivation 2: Binary Search Trees

Generating Functions:

Special solution of the recurrence y′k+1(x) = yk(x)
2:

yk(x) = αkΦ(αk(1− x))

where Φ′(u) = −α−2Φ(u/α)2.

Analogue of the travelling wave solution in BRW’s.

Motivation 2: Binary Search Trees

Profile of Binary Search Trees

Xn,k ... number of nodes at level k (in a BST with n vertices)

Xk(x, u) =
∑
n≥0

P{Xn,k = `}xnu`:

∂

∂x
Xk+1(x, u) = Xk(x, u)2.

Motivation 3:
Stochastic Fixed Point Equations

Y ≡ V1Y (1) + V2Y (2)

Y (1), Y (2) copies of Y , ((V1, V2), Y
(1), Y (2)) independent.

G(x) = E e−xY

G(x) = E [G(xV1)G(xV2)]

Motivation 3:
Stochastic Fixed Point Equations

Special case: z > 0, z 6= 1
2

Y ≡ zU2z−1Y (1) + z(1− U)2z−1Y (2)

G(x) = E e−xY

G(x) = E
[
G(xzU2z−1)G(xz(1− U)2z−1)

]

Ψ(y) = G(y2z−1) = E
(
e−y2z−1Y

)

Ψ
(
y/z

1
2z−1

)
= E [Ψ(yU)Ψ(y(1− U))]

α = α(z) = z
1

2z−1

Motivation 3:
Stochastic Fixed Point Equations

Behaviour of α(z) = z
1

2z−1:

20

40

60

80

100

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

x

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8 10 12 14 16 18 20

x

0 < z <
1

2

1

2
< z < ∞

α(z) ≥ e1/c′ = 14.56 . . . 0 ≤ α(z) ≤ e1/c = 1.26 . . .

Motivation 3:
Stochastic Fixed Point Equations

Existence of solutions: [Biggins + Kyprianou, Liu]

G(x) = E

∏
j

G(xVj)



v(γ) = log

E

∑
j

V
γ
j

 , v(0) > 0, v(1± ε) < ∞

• v(1) = 0, v′(1) = 0:
1−G(x)

−x logx
→ c1 (x → 0)

• v(1) = 0, v′(1) < 0:
1−G(x)

x
→ c2 (x → 0)

Motivation 3:
Stochastic Fixed Point Equations

Special case: V1 = zU2z−1, V2 = z(1− U)2z−1

v(γ) = log
2zγ

(2z − 1)γ + 1

v(1) = 0, v′(1) = log z +
1

2z
− 1

v′(1) ≤ 0 ⇐⇒
c′

2
≤ z ≤

c

2

–0.6

–0.4

–0.2

0

0.2

0.4

0.5 1 1.5 2 2.5 3
z

Motivation 3:
Stochastic Fixed Point Equations

Ψ(y/α) = E [Ψ(yU)Ψ(y(1− U))]

Case 1. 0 < α ≤ e1/c = 1.26 . . ., 2αβ = β + 1

1−Ψ(y) ∼ c1yβ (y → 0) for 0 < α < e1/c

1−Ψ(y) ∼ c1yc−1 log y (y → 0) for α = e1/c

Ψ(u) is monotonely decreasing (tail distribution function).

Case 2. e1/c′ ≤ α < ∞, 2αβ = β + 1

1−Ψ(y) ∼ c1yβ (y →∞) for e1/c′ < α < ∞

1−Ψ(y) ∼ c1yc′−1 log y (y →∞) for α = e1/c′

Ψ(u) is monotonely increasing (distribution function).

Motivation 3:
Stochastic Fixed Point Equations

Notation

• α = e1/c = 1.26 . . . (or z = c/2):

Ψc(y), wc(x) = Ψc(e
x)

• α = e1/c′ = 14.56 . . . (or z = c′/2):

Ψc′(y), wc′(x) = Ψc′(e
x)

Left/Right-most Point in BRW’s

Theorem [Chauvin + D.]

Zk ... BRW with Z0 = δ0 and increments X1 = log(1/U), X2 =
log(1/(1− U)).

Lk, Rk ... position of the left/right-most particle (after k steps)
m1(k), m2(k) ... median of the distributions of Lk, Rk, resp.

P{Lk > x} = wc(x−m1(k)) + o(1)

P{Rk ≤ x} = wc′(x−m2(k)) + o(1)

m1(k) =
1

c
k + Θ(log k) m2(k) =

1

c′
k + Θ(log k) (k →∞),

P{|Lk −m1(k)| > x} ≤ Ce−ηx, P{|Rk −m2(k)| > x} ≤ Ce−ηx.

Left/Right-most Point in BRW’s

Extensions

m ≥ 2, (V1, . . . , Vm) r.v.’s with V1 + · · ·+ Vm = 1 and density

f(x1, . . . , xm) =
(m(t + 1)− 1)!

(t!)m
(x1x2 · · ·xm)t

on the simplex x1 + · · ·+ xm = 1, 0 ≤ xj ≤ 1
(t ≥ 0 is a integer parameter.)

Zk BRW with increments Xj = log(1/Vj) (1 ≤ j ≤ m).

Then there exist functions w1(x) and w2(x) such that

P{Lk > x} = w1(x−m1(k)) + o(1)

P{Rk ≤ x} = w2(x−m2(k)) + o(1)

with medians

m1(k) = k log ρ1+Θ(log k), m2(k) = k log ρ2+Θ(log k) (k →∞).

Height of Binary Search Trees

y′k+1(x) = yk(x)
2, y1(x) = 1, yk(0) = 1.

Theorem

Hn ... height of binary search trees with n nodes.

P{Hn ≤ k} = Ψc(n/yk(1)) + o(1)

log yk(1) =
k

c
+

3c

2(c− 1)
log k + O(1)

E Hn = max{k ≥ 0 : yk(1) ≤ n}+O(1) = c logn−
3c

2(c− 1)
log logn+O(1)

P{|Hn − E Hn| > y} = O(e−ηy)

Remark. The function Ψc′(y) describes the distribution of the satu-
ration level (up to this level the tree is a complete binary trees).

Height of Binary Search Trees

Extensions

• m-ary search trees (also fringe-balanced versions)

• recursive trees

• plane oriented recursive trees

• m-ary recursive trees

• ...

Height of Binary Search Trees

History

• VarHn = O(1) ??? [Robson 1979] (Robson’s conjecture)

• E Hn ∼ c logn [Devroye 1986]

• E Hn = c logn + O(log logn) [Devroye+Reed 1995]

• E Hn = c logn− 3c
2(c−1) log logn + O(1) [Reed 2003]

• VarHn = O(1) [Reed 2003] [D. 2003]

Height of Binary Search Trees

More on the variance VarHn:

V (x) :=
∑
k≥0

(2k + 1)

(
1−Ψc

(
x

yk(1)

))
−

∑
k≥0

(
1−Ψc

(
x

yk(1)

))2

V (e1/cx) = V (x) + o(1) (x →∞).

VarHn = V (n) + o(1) (n →∞)

max
n≥n1

|VarHn − v0| ≤ 10−3

v0 = c
∫ ∞
0

(E(u) + E(ue−1/c))Ψc(u)
du

u
= 2.085687 . . .

E(u) :=
∑
k≥0

(
1−Ψc(ue−k/c)

)
.

Height of Binary Search Trees

Direct relation between BST’s and BRW’s [Devroye]

U

. .

. .

1-U

U' 1-U' 1-U''U''

etc.

x ... vertex of (infinite) binary tree (at level k)

U1, U2, . . . , Uk ... r.v.’s on the path from the root to x

hn(x) = bUkb· · · bU2bU1ncc · · · cc

BSTn = {x : hn(x) ≥ 1}

Profile of Binary Search Trees

Internal and external profile:

1

2

3

4

5

6

7

. .

. .

8

Including “free” places

Profile of Binary Search Trees

Internal and external profile:

1

2

3

4

5

6

7

. .

. .

8

� ... “free” place

Profile of Binary Search Trees

Internal and external profile:

Xn,k ... number of internal vertices at level k

Yn,k ... number of external vertices at level k

Xn,k =
∑
j>k

2k−j Yn,j

Profile of Binary Search Trees

A stochastic process of analytic functions

(M(z), z ∈ B) stochastic process of analytic functions that is defined

by E M(z) = 1 and the stochastic fixed point equation:

M(z) ≡ zU2z−1M(1)(z) + z(1− U)2z−1M(2)(z)

B ... domain in C with B ∩ R = (c′
2 , c

2) =: I

Profile of Binary Search Trees

Theorem [Chauvin+D.+Jabbour, Chauvin+Klein+Marckert+Rouault]

Yn,k ... number of external vertices at level k Yn,b2z lognc
EYn,b2z lognc

, z ∈ I

→ (M(z), z ∈ I) .

(almost surely!!)

Xn,k ... number of internal vertices at level k Xn,b2z lognc
EXn,b2z lognc

, z ∈ I ′
→

(
M(z), z ∈ I ′

)
.

I ′ = (1
2, c

2)

Profile of Binary Search Trees

Extensions:

• m-ary search trees (also fringe balanced) [D.+Janson+Neininger]

• recursive trees, plane oriented recursive trees [Schopp]

Profile of Binary Search Trees

Profile polynomials

Wn(z) =
∑
k≥0

Yn,kzk

Mn(z) =
Wn(z)

E Wn(z)
is a martingale

Mn(z) → M(z)

Profile of Binary Search Trees

Expected profile

EYn,k ∼
(2 logn)k

k!nΓ(k/ logn)

1

1

x

0,50
4

-0,5-1

3
2

0

Profile of Binary Search Trees

Fixed point equation

Yn,k+1 ≡ Y
(1)
bUnc,k + Y

(2)
n−1−bUnc,k

If the limit
Yn,b2z lognc

E Yn,b2z lognc
→ M(z)

exists then

M(z) ≡ zU2z−1M(1)(z) + z(1− U)2z−1M(2)(z).

Intersection Property

Point process:

Z =
N∑

j=1

δXj
,

Example: N = 2, X1 = log(1/V), X2 = log(1/(1− V)).

Transform T (for distributions functions):

(TG)(x) = E

 N∏
j=1

G(x−Xj)

 .

Example: G(x) = F (e−x): F (x) = E(F (xV)F (x(1− V))).

Intersection Property

Intersection property:

Suppose that F (x) and G(x) are continuous distribution func-

tions such that the difference F (x)−G(x) has exactly one zero.

Then the difference (TF)(x)− (TG)(x) has at most one zero.

Intersection Property

Lemma.

Suppose that V is t-beta distributed and T is defined by

(TF)(x) = E(F (xV)F (x(1− V))).

Then the Laplace transforms Φ(u) =
∫ ∞
0

F (x)e−xu dx satisfy an inter-

section property.

This property is the key property for the proof of the travelling wave

property for the left/right-most particle of BRW’s and also for the

distribution of the height of binary search trees.

It is not clear whether this is also true on the level of distributions

functions?

Intersection Property

Theorem

Let G0(x) = 0 for x < 0 and G0(x) = 1 for x ≥ 0 and set Gk+1 = TGk,

that is,

Gk+1(x) = E

 N∏
j=1

Gk(x−Xj)

.

If T satisfies the intersection property then there exists w(x) such that

(uniformly for real x as k →∞)

Gk(x) = w(x−m(k)) + o(1) ,

where m(k) is defined by Gk(m(k)) = 1
2.

More precisely, we have

m(k) = kc + o(k) .

for some constant c > 0 and w(x) satisfies

w(x) = E

 N∏
j=1

w(x + c−Xj)

 .

Thank You!

