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The “Binary Search Tree Equation”

&' (u) = —izcb <3>2

« «

a>0, u>0

o
Laplace transform: $(u) :/o W(y)e  “Ydy:

yW(y/a) = [ W(@)W(y —w)dw

(/) = [ WD - D) di = EWEUIWEA - U)

Additive version: w(z) = W(e?), vy =loga, X1 = log #, Xo = log 117

w(z —7) = Ew(z - X1) w(z — Xo)]




The “Binary Search Tree Equation”

Trivial Solutions
1
o &(u) =— (for all a > 0), V(y) =1
u

o O(u) = 1—j—u (for a =1), W(y) =e Y

Non-trivial solution

1/4
o O(u) = Ltu e_u1/4 (for a = 16), W(y) = e~ Y/4
U




The “Binary Search Tree Equation”

First attempt for a solution

d(u) = ) cpu”
n>1
o~ 2 n
Cn_l_l:_n—l—l chcn ks co=P(0)=1

This provides a (unique) and entire solution for |a > 1.

Remark. (c = 4.31107... and ¢ = 0.3733... satisfy clog (%) =1)

e ac(0,el/]=(0 126 1] ¢(u)~% (1 — o0)

an[el/cl, o) = [14.56..., 00): Cb(u)rv% (u — 0)



The “Binary Search Tree Equation”

Out of Range: e.g. a =10: ®(u) ¢ 1/u
(no Laplace transform of a (tail) distribution function W(y))
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Motivation 1: Branching Random Walk

Random point measure

Z = dx, + 0x,

For example: X1 =1og(1/U), X, =log(1/(1—-U)).
Branching Random Walk: Sequence Z; of random point measures:

® /o= 0p.

e Zi41 is induced by Z; by adding independent copies of Z to all
points of Z,.



Motivation 1: Branching Random Walk
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Motivation 1: Branching Random Walk
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Motivation 1: Branching Random Walk
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Motivation 1: Branching Random Walk

L;. ... Position of the leftmost point (after k steps)
wi(x) =P{L; > x}

R;. ... Position of the rightmost point (after k£ steps)
wi(z) = P{Ly < z}

wi41(z) = E [wi(z — X1) wi(z — X2)]

Wi41(z) = E [wg(z — X1) Wp(z — X2)]

Travelling wave: wi(z) = w(x — kv):

w(z —7) = Ew(z - X1) w(z - Xo)]




Motivation 1: Branching Random Walk

Special case: X1 =1og(1/U), X, =log(1/(1—-U))

e Iteration

©.@)
Y (u) ::/O wi(logy)e Y dy

Yy (1) = Yi(w)?

e Travelling wave: wi(z) = w(x — kv), a =€

d(u) = /Ooow(log y)e “Ydy

d'(u) = —oz_2d>(u/oz)2




Motivation 2: Binary Search Trees

Vertex labelled binary tree:



Motivation 2: Binary Search Trees

Storing Data:

4,6,3,51,8,2,7



Motivation 2: Binary Search Trees

Storing Data:

6,3518,2,7
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Motivation 2: Binary Search Trees

Storing Data:

3518,2,7
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Motivation 2: Binary Search Trees

Storing Data:

518,2,7
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Motivation 2: Binary Search Trees

Storing Data:
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Motivation 2: Binary Search Trees

Storing Data:

8,2,7
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Motivation 2: Binary Search Trees

Storing Data:

2,7

VAN



Motivation 2: Binary Search Trees

Storing Data:
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VAN



Motivation 2: Binary Search Trees

Storing Data:



Motivation 2: Binary Search Trees

Probabilistic Model.

Every permutation of {1,2,...,n} is equally likely.
— probability distribution on binary trees of size n
—— every parameter on trees is a random variable
Notation

H, ... height of trees (of size n)



Motivation 2: Binary Search Trees

Observation: Subtrees of the root are also binary search trees,
the splitting probabilities are X

n

P(H,pr <k+1} =" Y P{Huy <k} -P{Hn, <K}

ni1+no=n




Motivation 2: Binary Search Trees

Generating Functions:

yp(z) = Y P{Hn < k} - 2"
n>0

Vi1 (2) = yp(2)?

with initial conditions y1(x) = 1, y(0) = 1.



Motivation 2: Binary Search Trees

Generating Functions:

Special solution of the recurrence y,’€+1(x) = y.(x)2:

yp(z) = oD (" (1 — 2))

where ®/(u) = —a 2d(u/a)?.

Analogue of the travelling wave solution in BRW's.



Motivation 2: Binary Search Trees

Profile of Binary Search Trees

X,k --- number of nodes at level k£ (in a BST with n vertices)

Y

Xp(z,u) = > P{X, =14} "t
n>0

a%Xk+1(fE, w) = Xp(z,u)?.




Motivation 3:
Stochastic Fixed Point Equations

Yy =YD 415,y

Y1) v(2) copies of Y,  ((Vy,V5), Y1) Y(2)) independent.

G(z) =Ee @Y

G(z) = E[G(2V1) G(xV2)]




Motivation 3:
Stochastic Fixed Point Equations

Special case: z >0,z # 5

Y =02 1v(D) 4 (1 — )21y (@

G(z) =Ee ™Y

G(z) =E [G(szzz_l) G(xz(1 — U)Qz_l)}

W(y) = G(sz—l) —F (e_szly)

W (5571 ) = B ) Wyt - U))]

a=«a(z) = z2z-1



Motivation 3:

Stochastic Fixed Point Equations

1
Behaviour of a(z) = z2:-1;

a(z) > e/ =14.56. ..

1
O<z< —
2

1
— < z <
2

0 < al(z) <elle=126...



Motivation 3:
Stochastic Fixed Point Equations

Existence of solutions: [Biggins + Kyprianou, Liu]

G(z) =E HG(:I:V])
J
v(v) = log (IE ZV;Y ) , v(0)>0, v(lxe)<x
J
com =0, v(y=0 D o
—zlogx
1—-G(x)

e v(1) =0, v'(1) < O: " »co  (x — 0)




Motivation 3:
Stochastic Fixed Point Equations

Special case: Vi = 2U%*7 1 Vo = 2(1 — U)?#1
227
(22 —1)v+1

v(y) = log

?)(]_):O7 U’(l):|ogz+i_1
2z

<z<

N| O

/
V(1) <0 = %




Motivation 3:
Stochastic Fixed Point Equations

V(y/a) =E[V(yU)V(y(1-U))]

Case 1. 0<a<ellc=126.., 28 =8+1
1—\U(y)wclyﬁ (y — 0) for 0 < a < el/c
1 —W(y) Nclyc_llogy (y — 0) for a = ell/c

W (u) is monotonely decreasing (tail distribution function).

Case 2. ¢/ <a<oo, 208 =841
1—W(y) ~civ? (y— o) for el/d < a < o0
1—W(y) ~ clycl_l logy (y — o0) for a= el/d

W(u) is monotonely increasing (distribution function).



Motivation 3:
Stochastic Fixed Point Equations

Notation

e a=el/c=126... (or z=1c/2):

Ve(y), we(x) = Wc{ex)

e a=cl/Y=1456... (or z=/2):

V.(y), wa(x)=W.(e")



Left/Right-most Point in BRW'’s

Theorem [Chauvin 4+ D.]

Zp ... BRW with Zg = §g and increments X; = log(1/U), X»
log(1/(1 -U)).

Ly, Ry ... position of the left/right-most particle (after k steps)
m1(k), mo(k) ... median of the distributions of L;, Ry, resp.

P{Ly, > 2} = we(z — m1 (k) + o(1)

P{Ry < o} = w(z — ma(k)) + o(1)

mi(k) = "k+O(ogk)  ma(k) = k+O(ogh) (k- oo),

P{|Lx — mi1(k)| >z} < Ce™ ", P{|Ry — ma(k)| >z} < Ce™ .



Left/Right-most Point in BRW'’s

Extensions

m>2, (V1,..., Vi) r.v.’s with Vi +--- 4+ V,,, = 1 and density

(m(t+1)—-1)!
f(x1,...,zm) = iy (2175 2m)"

on the simplex 1 +---+xm =1, 0<z; <1
(t > 0 is a integer parameter.)

Z, BRW with increments X; = log(1/V;) (1 <j <m).

Then there exist functions wq(x) and w»(x) such that

P{Ly >z} = w1(x —m1(k)) + o(1)

P{Ry < z} = wo(x —mo(k)) + o(1)

with medians

m1(k) = klog p1+O(log k), mo(k) = klog po+O(log k)



Height of Binary Search Trees

Vi1 (@) = yp(2)?, y1(z) =1, y,(0) = 1.
T heorem

H,, ... height of binary search trees with n nodes.

P{Hn < k} = We(n/yp(1)) + o(1)

3c

2e_1) logk + O(1)

k
log ¥ (1) = - +

E Hy, =max{k>0:y.(1) <n}+0(1) = clog n—2( 3¢ 0 loglogn+0(1)
c—

P{|Hn — E Hn| >y} = O(e™"™)

Remark. The function W_(y) describes the distribution of the satu-
ration level (up to this level the tree is a complete binary trees).



Height of Binary Search Trees

Extensions
e m-ary search trees (also fringe-balanced versions)
® recursive trees
e plane oriented recursive trees

e m-ary recursive trees



Height of Binary Search Trees

History
e Var H, = O(1) 7?77 [Robson 1979] (Robson’s conjecture)
e EH, ~clogn [Devroye 1986]
e EH, =clogn+ O(loglogn) [Devroye+Reed 1995]
e EH, =clogn — % loglogn + O(1) [Reed 2003]

e Var H, = O(1) [Reed 2003] [D. 2003]



Height of Binary Search Trees

More on the variance Var H,:

V)= kzzzo(% T (1 -V (ykfl)» - (g:o (1 — Ve (’ykfl)»)z

Viel/e) = V(z) + o(1) (x — 00).

Var H, = V(n) 4+ o(1) (n — 00)

max |Var Hy, — vg| < 103
n>ni

Vo = C/OOO(E(U) + E(ue=Y))Wo(u) %’“ — 2.085687. ..

E(u) =Y (1 - Wc(ue_k/c)>.

k>0



Height of Binary Search Trees

Direct relation between BST’'s and BRW'’s [Devroye]

Uy \1-U"
O Oé

x ... vertex of (infinite) binary tree (at level k)
Ui,Up,...,Ug ... r.v.’s on the path from the root to =

e

OO

hn(x) = Ul - [U2|Un]] - |]
BSTy = {z : hn(z) > 1}



Profile of Binary Search Trees

Internal and external profile:

(4)
3) (8

» & ©®
o @

Including “free” places



Profile of Binary Search Trees

Internal and external profile:

1 ... “free” place



Profile of Binary Search Trees

Internal and external profile:

X,k ... number of internal vertices at level k

Y

Y, ... number of external vertices at level k

Y

_ k—1
Xng =) 2"V,
1>k




Profile of Binary Search Trees

A stochastic process of analytic functions

(M(z),z € B) stochastic process of analytic functions that is defined
by EM(z) =1 and the stochastic fixed point equation:

M(2) = 2027 1M () + 2(1 — )2 1@ ()

B ... domain in C with BNR = (%’,%) =:1



Profile of Binary Search Trees

Theorem [Chauvin4+D.+Jabbour, Chauvin+Klein4+Marckert+Rouault]

Y, ... number of external vertices at level k

)

Y
n,|2zlogn| ze€l| - (M(z),z€1).
(E Yn,nglog n| )

(almost surely!!)

X,k ... number of internal vertices at level k

X
n,[2z10g n] zel —>(M(z),z€fl).
EXn,LQzlognJ




Profile of Binary Search Trees

Extensions:
e m-ary search trees (also fringe balanced) [D.4Janson+Neininger]

e recursive trees, plane oriented recursive trees [Schopp]



Profile of Binary Search Trees

Profile polynomials

Wn(z) = Z Yn’kzk
k>0

Wn(Z) . .
M. — IS a martingale




Profile of Binary Search Trees

Expected profile
(2logn)k
k'nl(k/logn)

E Yn,k ~

L G'0-
)




Profile of Binary Search Trees

Fixed point equation

_ 2
Yo k41 = YL(Uv)zJ,k + YTS—)I—LUnJ,k

If the limit
Yn,LQzlog n|

> M(2)
EYn,LQZ log n |

exists then

M(2) = 202 2D () + 2(1 — )22 12 ().



Intersection Property

Point process:

Example: N =2, X1 =1log(1/V), Xo =log(1/(1—V)).

Transform T (for distributions functions):

J

N
(TG)(z) =E ( G(:c—Xj)) .
=1

Example: G(z) = F(e~?): F(z) = E(F(zV)F(z(1 —V))).



Intersection Property

Intersection property:

Suppose that F(x) and G(x) are continuous distribution func-
tions such that the difference F'(x) — G(x) has exactly one zero.
Then the difference (T F)(x) — (T G)(x) has at most one zero.



Intersection Property

Lemma.

Suppose that V is t-beta distributed and T is defined by
(TF)(x) =E(F(zV)F(x(1 -V))).

@)
Then the Laplace transforms ®(u) :/o F(x)e "™ dz satisfy an inter-
section property.

This property is the key property for the proof of the travelling wave
property for the left /right-most particle of BRW:'s and also for the
distribution of the height of binary search trees.

It is not clear whether this is also true on the level of distributions
functions?



Intersection Property

T heorem

Let Go(x) = 0 for x < 0 and Ggo(x) = 1 for x > 0 and set Gy = T Gy,
that is,

N
=1

Grpy1(z) = E (
J

If T satisfies the intersection property then there exists w(xz) such that
(uniformly for real x as k — o)

G(z) = w(z —m(k)) + o(1)

~

where m(k) is defined by Gp(m(k)) = 3.



More precisely, we have

m(k) = ke + o(k) |

for some constant ¢ > 0 and w(xz) satisfies

N
w(aj)zE(H w(a:—l—c—Xﬂ) :

=1




T hank You!



