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Boolean Functions and AND/OR-Trees

Boolean formula. F = (z1 AZT>) V (z1 V (T1 Ax92))
Boolean function. f =x1 Vx>

N

Xl




Boolean Functions and AND/OR-Trees

By, ... binary trees with m internal nodes: by, = |Bm| = %(%T)

Tm ... Boolean AND /OR-formulas with n literals (4 their negations)

2n 2m
- _ m m—+1 __ m

f ... Boolean function in z1,...,xzm

#{F € T : F represents f}

tm

Pn(f) =

P(f) = lim Pn(f)

m—oo



Binary Trees

Generating Function. b(z) = 3,50 bmz™

b(2) =14 2b(2)?

b(z) = 1- V22_4Z:2_2\/1_4Z_|_...

b =) = 0 )~ 2



Binary Trees

Generating Function. t(z) = 3, >0tmz™

t(z) = 2n + 22t(2)?

l1—+1—16nz

= 4n —4nv/1 — 16nz + - --
4z

t(z) =

tm = [2"]t(2) = 2m(2”)m+1%(2¢7: )~ 2"\(/1%622



Boolean Functions and AND/OR-Trees

Lemma

f ... Boolean function in zq,...,xn

tm(f) = #{F € T : F represents f}, tp(z) = > tm(f)2"
m>0

Suppose that t¢(z) has radius of convergence 1/(16n) and a local
expansion in terms of v/1 — 16nz of the form

te(z) = ap— BrV1—16nz+ -

[+ some technical conditions] then

P(f) = lim tmf) _ Or

m—00 t.,,  4n|




Boolean Functions and AND/OR-Trees

Lemma [Chauvin4Flajolet+Gardy+Gittenberger]

f ... Boolean function in zq,...,xn

tr(z) = Lif litera T 2

2.

g,h:gvVh=f

tg(2)tp(2) + 2

2.

g,highh=Ff

tg(2)tp(2)

Remark. This is a system of 22" equations.




Boolean Functions and AND/OR-Trees

Example. n = 1. True, False, 1, Tq
trrue(2) = 22tz tz, + 22ty (2)8(2)
trrue(2) = 22ta itz + 22t parse(2)t(2)
toy (2) = 14 22t2,(2)? + 22tey (2)trrue(2) + 22t (DDt pase(2)
tz, (2) = 14 22tz (2)? + 22tz () tre(2) + 22tz (2)tparse(2)
[t(2) abbreviates t(2) = trrye(2) + traise(2) + tzy (2) + tz,(2)]

This system can be solved explicitly. For example, one gets:

te: (2) = —é ( + VI 16z /241624 2vV1 16z)

=2(v/3-1)4+2(1/V3-1)vV1—-16z+---




Boolean Functions and AND/OR-Trees

Example. n = 1. True, False, 1, Tq

1
P(T = P(False) = —— = 0.28867513...
(True) = P(False) = -~

V3-1

P(z1) = P(z1) = >3

= 0.21132486...




A Single Functional Equation

Theorem (Bender, Canfield, Meir & Moon)

Suppose that y(z) satisfies |y(z) = P(z,y(z))|, where d(z,y) has a
power series expansion at (0,0) with non-negative coefficients,

bey(zay) 7_& Or and CDZ(Zay) 7_& 0

Let zg > 0, yo > 0O (inside the region of convergence) satisfy the system
of equations:

yo = P(20,y0), 1= Py(20,v0) |

Then there exists analytic function g(z)andh(z) such that locally

y(z) = g(2) — h(z),/1 — —

~

where g(zg) = yo and h(zg) # O.



A Single Functional Equation

Example. y(z) = 1+ 2y(2)2, |®(z,y) = 1 + 297 |.

2
yo = 1+ 20vy5, 1 = 2z0y0

1

20 = 4 yo = 2

g(20) =2, h(zg) =2

y(z) =2 —-2v1—4z+--.




A Single Functional Equation

The case ®yy(z,y) = 0.

1 =®y(29,0) — 1—Py(2,0)=K(=)(1—-2/29)

d(z,0)
K(2)(1 - z/20)

y(z) =

— Polar singularity



A Single Functional Equation

Idea of the Proof.

Set F(z,y) = ®(z,y) —y. Then we have

F(20,y0) =0
Fy(20,90) =0
F>(20,y0) # 0
Fyy(ZO>yO) 7 0.

Weierstrass preparation theorem implies that there exist analytic func-
tions H(z,y), p(2), q(2) with H(z0,y0) # 0, p(20) = q(20) = 0 and

F(z,y) = H(zy)((y — v0)* + p(2) (¥ — vo) + a(2)).



A Single Functional Equation

F(z,y) =0 <<= (y—v0)*+p(2)(y—vo)+q(z) =0.

Consequently

s yh 2
W) = wo-TD 4 P20,y
= g(z) —h(2),/1 - =|
<20
where we write
p(2)?

- —a(x) = K(2)(z = 20)

which is again granted by the Weierstrass preparation theorem and we
set

g(z) = ypg — ]L) and h(z) = \/—K(z)zo.



A Single Functional Equation

Variation of the Theorem. u denotes an additional parameter.

Suppose that y(z; u) satisfies

y(z,u) = P(z,y(z,u), u)

, where ®(z,y; u)

has a power series expansion at (0,0) with non-negative coefficients,
bey(zay; U) 7'_é O, and CDZ(Zayv U) # O

Let zg(u) > 0, yo(u) > 0 (inside the region of convergence) satisfy the

system of equations:

yo(u) = P(zo(u),yo(u)),

1 = ®y(z0(uw)yo(u)) |-

Then there exists analytic function ¢g(z;u), h(z;u) such that locally

y(zu) = g(z;u) — h(z u>¢1 _

<

zo(u)

where ¢g(zg;u) = yo(u) and h(zg(u)) #= O.

)



Systems of functional equations

Positive System.

Suppose, that several generating functions y1(z),...,yr(z) satisfy a
system of equations

yj(z2) = Pi(z,y1(2),...,ur(2))

where ®,(z,y1,...,yr) has as a power series expansion at (0,0) in
v1,...,yr. If these coefficients are non-negative coefficients (for all
j) then we call it positive system.




Systems of functional equations

Dependency Graph.

y1 = P1(2, 91,92, ¥s)
y2 = P2(2, 92, Y3, Ys)
y3 = P3(2,y3,y4)

Y4 = Pa(z,y3)

ys = Ps5(z,y6)

ye = Ps(z,ys,Ys6)




Systems of functional equations

Example

y1 = z(e2 +y1)
yo = z(1 4+ 2yoy3)
y3 = 2(1 + y3)

O s

y1(z) = —_exp (\/1 422>

y2(2) = \/1 o

1— /1 — 422
2z

y3(2) =



Systems of functional equations

Dependency graph: G = (V, E)

V ... vertex set ={y1,y2,...,Yr}
E ... (directed) edge set:

(yi,y;) € E :<= y;(2) depends on y;(z)
<= &, depends on y;

¥

J £ 0.

—
Oy;

Stongly connected dependency graphs.

8<Dj _ _
irreducible

Jy;
<= NnO subsystem can be solved

Gg is strongly connected <= ®y 1= (

before the whole system



Systems of functional equations

A digraph G is strongly connected if each pair of vertices (vq,vo) is
connected by a (directed) path.

A positive matrix A = (a; ), i.e. a;; > 0, is irreducible if for every
pair of indiced (i1,io) there exists an integer m such that agﬁ)Q > 0,

where A™ = (a,gz.?’)).

A digraph G is strongly connected if and only if its adjacency matrix
A(G) is irreducible.



Systems of functional equations

Perron-Frobenius theory.

Every positive irreducibe matrix A = (az-,j) has a real positive eigen-
value r(A) with the property that all other eigenvalues have modulus
< r(A). Furthermore, r(A) is a simple eigenvalue.

If B < A, that is b;; < a;; for all pairs (7,7) but A # B, then
r(B) <r(A)|

In particular if B is a submatrix of A, then we also have |r(B) < r(A) |




Systems of functional equations

Theorem [D., Lalley, Woods]

Suppose that y = ®(z,y) is a positive and non-linear system.
Suppose further, that the dependency graph of the system
y = ®(z,y) is strongly connected.

Let 20 > 0, yo = (¥0.0,---,¥Yr,0) > O (inside the region of convergence)
satisfy the system of equations: (& = (Pq,...,Pr))

yo = ®(20,y0), O =det(I— ®y(20,y0))

such that all eigenvalues of ®y(zg,y0) have modulus < 1.

Then there exists analytic function g;(z),h;(z) 7 0 such that locally

yi(z) = g;(z) —hj(2),/1— % .




Systems of functional equations

Example.

trrue(2) = 22tz bz, + 22ty (2)t(2)
trrue(2) = 22ta tz; + 22t paee(2)t(2)
te,(2) = 14 22t0;(2)? + 22ty (2)trrue(2) + 22te, (2)tparse ()
tz, (2) = 1+ 22tz (2)° + 22tz (Dtrrue(2) + 22tz (2)tparse(2)
[t(2) abbreviates t(2) = tprue(2) + traise(2) + tag (2)]



Systems of functional equations

Linear Systems.

y(z) = I — ®y(2,0)) '®(2,0) |

If ®yv(20,0) is irreducible, has eigenvalue 1 and all other eigenvalues
have modulus < 1 then

det(I — ®y(2,0)) = (1 — 2/20) K(2)

and consequently all functions y;(z) have a polar singularity of order
1 at z = 2.

Conclusion. In a positive irreducible system we have either a common
polar singularity or a squareroot singularity.



Systems of functional equations

Idea of the proof (reduction to a single equation)

Yy — (yla'”ay’r) — (y17y>r (I): (Cbla"'aq)?“) — (¢17$)
. = ®1(y1,Y,2),

— & 2 Y1 1 IS A
Y :2) y =®1,7,2)

T he second system has dominant eigenvalue <1
—> vy =7(z,[y1]) is analytic

Insertion of this analytic solution into the first equation:

y1 = P1((y1,¥(2,91),2) = G(y1, 2)

leads to single equation.



Systems of functional equations

EXxistence of limiting probabilities for Boolean functions.
[Chauvin+Flajolet4+Gardy+Gittenberger]

The system

tr(z) = Li¢ iteral] + 2 Yoo gDt () 2 Y te(2)ty(2)
g,h:gVh=f g,h:gh\h=f

has a strongly connected dependency graph. The common radius of
convergence is zg = 1/(16n). Consequently we have

tr(2) =ozf—ﬁf\/1— 16nz + - --
and the limiting probabilities P(f) = B;/(4n) exist.



General Depencency Graphs

Dependency Graph and Reduced Dependency Graph

y1 = P1(2, 91,2, Ys) y1 = P1(2, 91,92, (¥s,96))

y2 = P2(z,92,93, Ys) y2 = Pa(z,y2, (y3,y4), (ys,Y6))
ys = P3(z,93,y4) (y3,ya) = (P3,P4)(2,y3,ya)

ya = P4(z,y3)

ys = Ps(2,y6) (y5,y6) = (Ps, P6)(2,ys, y6)

Y6 = Ps(2,ys, Ys)

56




General Depencency Graphs

T heorem

Suppose that y = ®(z,y) is a positive and non-linear system of entire
functions such that there is a unique solution (y1(z),...,yr(z)) that is
analytic at z = 0.

Then all functions y;(z) have non-negative coefficients and a finite
radius of convergence p;.

(A) If

(for all 7) then for every j there exists an integer

k; > 1 such that locally

k. L -
yj(2) = ao; +a1;(1 —2/p)V?7 +az;(1 - 2/p))?/?" + .|




General Depencency Graphs

Theorem (cont.)

(B) If we just have the condition that for all pairs (4,5) with %iy)j =0
8P
Y Yk,

there exists k£ with # 0| then for every 53 we either have

k- k.
yi(2) = ag;+a1;(1—z/p)? " Hani(1—2/p)%% 7 +...

for an integer kj > 1 or

GJ_]_,' —k-
y](2)= J _kj—l—ao’j—l—al’j(l—z/pj)z j—l—

for an integer k; > 0.



General Depencency Graphs

(Counter-)Example.

o I3 =2(1 —I-yg)

y1 = z(e’2 +y1)
yo = z(1 + 2yoy3)
y3 = 2(1 +y3)

y1(z) = T, &P <m>

y2(2) = N
1—+/1—422

y3(2) = 5>

satisfies (A)

o (P, P3) = (2(1+2yoy3),2(1+y3)) ... satisfies (B)
o (P1,Ps, P3) = (2(e%2+4+vq),..,..) does not satisfy (B)



General Depencency Graphs

Two equations for case (A)

y1 = P1(2,91,92)
yo = Po(z,y2)

= y2(2) = ga(2) — ha(2)y/1 — 2/p2,

y1(2,92) = 91(2,y2) — h1(z,92)/1 — 2/p(y2)

—> y1(2) = y1(2,y2(2))
= g1(2,92(2)) — h1(z,y2(2))\/1 — 2/p(y2(2))
= g1(z,y2(2)) — h1(z, yz(Z))p(yz(Z))_l/z\/p(yz(Z)) — 2

3 cases: (1) p(y2(p2)) > p2  (2) p(y2(p2)) = p2  (3) p(y2(p2)) < p2



General Depencency Graphs

Case (1). |p(y2(p2)) > p2

91(292(2)) = g1 (2.92(2) — ha()\/1 = 2/p2)
= 91(p2, 92(p2)) — 91,5(p2, 92(P2)Yh2(p2) /1 — 2/p2) + - -
h1(z,92(2)) = h1(p2,92(p2)) — h1,y(p2, 92(p2))h2(p2)\/1 — 2/p2 + -

p(y2(2)) — 2 = p(y2(p2)) — p2 — P (Y2(p2))ha(p2)y/1 — 2/p2 + - -

Vo(y2(2)) — 2 = \/p(yQ(pz)) — p2— P (W2(p2))ha(p)y/1 — 2/p2) + - -
— \/P(ZUQ(PQ)) — P2 — Cl\/l — z/p2 4+ ...

—  v1(2) = g91(2,y2(2)) — h1(z, yz(Z))p(yz(Z))_l/Q\/p(yz(Z)) — 2
o e1y/1—2/pat




General Depencency Graphs

Case (2). |p(y2(p2)) = p2

p(y2(2)) — 2 = p(y2(p2)) — p2 — P (W2(p2))h2(p2)\/1 — 2/p2) + -+
=yl —2/pa+-
Vo(y2(2)) — 2 = \/c’l\/l —2/p2) + - -
= \/g(l —2/p) Y+ (1 — 2/pa)3 -

= 41(2) = g1(2,92(2)) — h1(2,92(2))p(y2(2)) /2 /p(y2(2)) — =
=co+c1(1—2/p)Y* + o1 — 2/po+ -+




General Depencency Graphs

Case (3).

p(y2(p2)) < p2

There exists p1 < po with p(y>(p1)) = p1:

p(y2(2)) — 2 = p(y2(p1)) — p1 + P (y2(p1))yo(p1)(z — p1)
= o —2)

Vo(a(2)) — 2= \Jdiv/or — 2+

N P P

—  v1(2) = g91(2,y2(2)) — h1(z, yz(Z))p(yz(Z))_l/z\/p(yz(Z)) — 2
=co—cl\/1—z/p1—|—---

with p1 < po.

Remark.

It is important that

conditions (A) or (B).

lim p(u) = 0].

U—0

This is assured by



Infinite Systems

Infinite linear systems. y = A(2)y+b(z) = |y(z) = (I — A(2))  b(2)

Example.

y1 = 1+ zyo
yj = z(yj—1 + Yj4+1)

J
_J1_ 4.2

2z

N

|
- OO O
- O N O
- N O O

TN




Infinite Systems

Compact operator A(z). y = A(z2)y + b(z)

A(z) ... irreducible (and compact in a proper ¢P-space)
r(A(z)) ... spectral radius of A(z).

r(A(zg)) = 1 = resolvent (zI — A(zg))~! has a simple pole
— y(z) = (I— A(2))"'b(2) has a simple pole at z = zg.

This is the same situation as in the finite dimensional case



Infinite Systems

Theorem [Lalley, Morgenbesser]

Suppose that y = (y;);>1 = ®(z,y) is a positive, non-linear, infinite
and irreducibe system such that ®y(z,y) is compact.

Let 20 > 0, yo = (¥0,0,---,¥r,0) > O (inside the region of convergence)
satisfy the system of equations: (® = (Py,...,Pr))

yo = ®(20,¥0), r(®y(20,y0)) =1|

Then there exists analytic function g;(z),h;(z) # 0 such that locally

y;j(2) = gj(2) — hj(2),/1 - % .

with g;(20) = (yo); and h;(z0) # O.



Infinite Systems

A linear operator A is compact is the image of a bounded set is rela-
tive compact.

[Informally, an infinite matrix A is compact if it can be well approxi-
mated by finite dimensional matrices.]

An infinite matrix A = (a; ;) is irreducible if for every pair of indiced

(i1,7o) there exists an integer m such that a(m) > 0, where A™ =
11,12
(a1,

An infinite, irreducible, positive and compact matrix A = (a; ;) has

a dominant positive real eigenvalue |[r(A)| (the spectral radius) that
is iIsolated and simple.




Infinite Systems

Lemma

A= (a;;)ij>1 ... positive, irreducibe, compact
B = (a;41 j4+1)ij>1 [i.e., first column are row are deleted]

—> |r(B) <r(A)

Remark. With the help of this property the proof is precisely the same
as in the finite dimensional case. It is possible to reduce the infinite
system to a single equation.



