Singularities for Systems of Functional Equations

Michael Drmota

Institute of Discrete Mathematics and Geometry Vienna University of Technology A 1040 Wien, Austria michael.drmota@tuwien.ac.at www.dmg.tuwien.ac.at/drmota/

Contents

- 1. Boolean Functions and AND/OR-Trees
- 2. Generating Functions
- 3. Systems of Functional Equations
- 4. General Depencency Graphs
- 5. Infinite Systems

Boolean formula. $F = (x_1 \land \overline{x}_2) \lor (x_1 \lor (\overline{x}_1 \land x_2))$ Boolean function. $f = x_1 \lor x_2$

 $B_m \dots$ binary trees with m internal nodes: $b_m = |B_m| = \frac{1}{m} {\binom{2m}{m}}$

 $T_m \dots$ **Boolean AND/OR-formulas** with *n* literals (+ their negations)

$$t_m = |T_m| = b_m 2^m (2n)^{m+1} = \frac{2n}{m+1} (4n)^m {\binom{2m}{m}}.$$

 $f \dots$ Boolean function in x_1, \dots, x_m

$$P_m(f) = \frac{\#\{F \in T_m : F \text{ represents } f\}}{t_m}$$

$$P(f) = \lim_{m \to \infty} P_m(f)$$

Binary Trees

Generating Function. $b(z) = \sum_{m \ge 0} b_m z^m$

$$b(z) = 1 + z \, b(z)^2$$

$$b(z) = \frac{1 - \sqrt{1 - 4z}}{2z} = 2 - 2\sqrt{1 - 4z} + \cdots$$

$$b_m = [z^m]b(z) = \frac{1}{m} {\binom{2m}{m}} \sim \frac{4^m}{\sqrt{\pi} m^{3/2}}$$

Binary Trees

Generating Function. $t(z) = \sum_{m \ge 0} t_m z^m$

$$t(z) = 2n + 2z t(z)^2$$

$$t(z) = \frac{1 - \sqrt{1 - 16nz}}{4z} = 4n - 4n\sqrt{1 - 16nz} + \cdots$$

$$t_m = [z^m]t(z) = 2^m (2n)^{m+1} \frac{1}{m} {\binom{2m}{m}} \sim 2n \frac{(16n)^m}{\sqrt{\pi} m^{3/2}}$$

Lemma

f ... Boolean function in x_1, \ldots, x_n

$$t_m(f) = \#\{F \in T_m : F \text{ represents } f\}, \quad t_f(z) = \sum_{m \ge 0} t_m(f) z^n$$

Suppose that $t_f(z)$ has radius of convergence 1/(16n) and a local expansion in terms of $\sqrt{1-16nz}$ of the form

$$t_f(z) = \alpha_f - \beta_f \sqrt{1 - 16nz} + \cdots$$

[+ some technical conditions] then

$$P(f) = \lim_{m \to \infty} \frac{t_m(f)}{t_m} = \frac{\beta_f}{4n}.$$

Lemma [Chauvin+Flajolet+Gardy+Gittenberger]

f ... Boolean function in x_1, \ldots, x_n

$$t_f(z) = \mathbf{1}_{[f \text{ literal}]} + z \sum_{g,h:g \lor h=f} t_g(z) t_h(z) + z \sum_{g,h:g \land h=f} t_g(z) t_h(z)$$

Remark. This is a system of 2^{2^n} equations.

Example. n = 1: True, False, x_1 , \overline{x}_1

$$\begin{split} t_{True}(z) &= 2zt_{x_1}t_{\overline{x}_1} + 2zt_{True}(z)t(z) \\ t_{True}(z) &= 2zt_{x_1}t_{\overline{x}_1} + 2zt_{False}(z)t(z) \\ t_{x_1}(z) &= 1 + 2zt_{x_1}(z)^2 + 2zt_{x_1}(z)t_{True}(z) + 2zt_{x_1}(z)t_{False}(z) \\ t_{\overline{x}_1}(z) &= 1 + 2zt_{\overline{x}_1}(z)^2 + 2zt_{\overline{x}_1}(z)t_{True}(z) + 2zt_{\overline{x}_1}(z)t_{False}(z) \\ \end{split}$$

$$[t(z) \text{ abbreviates } t(z) &= t_{True}(z) + t_{False}(z) + t_{x_1}(z) + t_{\overline{x}_1}(z)]$$

This system can be solved explicitly. For example, one gets:

$$t_{x_1}(z) = -\frac{1}{8z} \left(1 + \sqrt{1 - 16z} - \sqrt{2 + 16z + 2\sqrt{1 - 16z}} \right)$$
$$= 2(\sqrt{3} - 1) + 2(1/\sqrt{3} - 1)\sqrt{1 - 16z} + \cdots$$

Example. n = 1: True, False, x_1 , \overline{x}_1

$$P(True) = P(False) = \frac{1}{2\sqrt{3}} = 0.28867513...$$
$$P(x_1) = P(\overline{x}_1) = \frac{\sqrt{3} - 1}{2\sqrt{3}} = 0.21132486...$$

Theorem (Bender, Canfield, Meir & Moon)

Suppose that y(z) satisfies $y(z) = \Phi(z, y(z))$, where $\Phi(z, y)$ has a power series expansion at (0, 0) with non-negative coefficients, $\Phi_{yy}(z, y) \neq 0$, and $\Phi_z(z, y) \neq 0$

Let $z_0 > 0$, $y_0 > 0$ (inside the region of convergence) satisfy the system of equations:

$$y_0 = \Phi(z_0, y_0), \quad 1 = \Phi_y(z_0, y_0).$$

Then there exists analytic function g(z)andh(z) such that locally

$$y(z) = g(z) - h(z)\sqrt{1 - \frac{z}{z_0}},$$

where $g(z_0) = y_0$ and $h(z_0) \neq 0$.

Example.
$$y(z) = 1 + zy(z)^2$$
, $\Phi(z, y) = 1 + zy^2$.

$$y_0 = 1 + z_0 y_0^2, \quad 1 = 2z_0 y_0$$

 $z_0 = \frac{1}{4}, \quad y_0 = 2$

$$g(z_0) = 2, \quad h(z_0) = 2$$

 $y(z) = 2 - 2\sqrt{1 - 4z} + \cdots$

The case $\Phi_{yy}(z,y) = 0$.

$$y = \Phi(z,0) + \Phi_y(z,0)y$$
$$y(z) = \frac{\Phi(z,0)}{1 - \Phi_y(z,0)}$$

$$1 = \Phi_y(z_0, 0) \implies 1 - \Phi_y(z, 0) = K(z)(1 - z/z_0)$$

$$y(z) = \frac{\Phi(z,0)}{K(z)(1-z/z_0)}$$

 \implies Polar singularity

Idea of the Proof.

Set $F(z,y) = \Phi(z,y) - y$. Then we have

 $F(z_0, y_0) = 0$ $F_y(z_0, y_0) = 0$ $F_z(z_0, y_0) \neq 0$ $F_{yy}(z_0, y_0) \neq 0.$

Weierstrass preparation theorem implies that there exist analytic functions H(z,y), p(z), q(z) with $H(z_0,y_0) \neq 0$, $p(z_0) = q(z_0) = 0$ and

$$F(z,y) = H(z,y) \Big((y-y_0)^2 + p(z)(y-y_0) + q(z) \Big).$$

$$F(z,y) = 0 \quad \iff \quad (y-y_0)^2 + p(z)(y-y_0) + q(z) = 0.$$

Consequently

$$y(z) = y_0 - \frac{p(z)}{2} \pm \sqrt{\frac{p(z)^2}{4}} - q(z)$$
$$= \left[g(z) - h(z) \sqrt{1 - \frac{z}{z_0}} \right],$$

where we write

$$\frac{p(z)^2}{4} - q(z) = K(z)(z - z_0)$$

which is again granted by the Weierstrass preparation theorem and we set

$$g(z) = y_0 - \frac{p(z)}{2}$$
 and $h(z) = \sqrt{-K(z)z_0}$.

Variation of the Theorem. *u* denotes an additional parameter.

Suppose that y(z; u) satisfies $y(z; u) = \Phi(z, y(z; u); u)$, where $\Phi(z, y; u)$ has a power series expansion at (0, 0) with non-negative coefficients, $\Phi_{yy}(z, y; u) \neq 0$, and $\Phi_z(z, y; u) \neq 0$

Let $z_0(u) > 0$, $y_0(u) > 0$ (inside the region of convergence) satisfy the system of equations:

$$y_0(u) = \Phi(z_0(u), y_0(u)), \quad 1 = \Phi_y(z_0(u)y_0(u)).$$

Then there exists analytic function g(z; u), h(z; u) such that locally

$$y(z;u) = g(z;u) - h(z;u)\sqrt{1 - \frac{z}{z_0(u)}}$$

where $g(z_0; u) = y_0(u)$ and $h(z_0(u)) \neq 0$.

Positive System.

Suppose, that several generating functions $y_1(z), \ldots, y_r(z)$ satisfy a system of equations

$$y_j(z) = \Phi_j(z, y_1(z), \ldots, y_r(z))$$

where $\Phi_j(z, y_1, \ldots, y_r)$ has as a power series expansion at (0, 0) in y_1, \ldots, y_r . If these coefficients are **non-negative coefficients** (for all j) then we call it **positive system**.

Dependency Graph.

$$y_{1} = \Phi_{1}(z, y_{1}, y_{2}, y_{5})$$

$$y_{2} = \Phi_{2}(z, y_{2}, y_{3}, y_{5})$$

$$y_{3} = \Phi_{3}(z, y_{3}, y_{4})$$

$$y_{4} = \Phi_{4}(z, y_{3})$$

$$y_{5} = \Phi_{5}(z, y_{6})$$

$$y_{6} = \Phi_{6}(z, y_{5}, y_{6})$$

Example

$$y_1 = z(e^{y_2} + y_1)$$

$$y_2 = z(1 + 2y_2y_3)$$

$$y_3 = z(1 + y_3^2)$$

$$y_1(z) = \frac{z}{1-z} \exp\left(\frac{z}{\sqrt{1-4z^2}}\right)$$
$$y_2(z) = \frac{z}{\sqrt{1-4z^2}}$$
$$y_3(z) = \frac{1-\sqrt{1-4z^2}}{2z}$$

Dependency graph: $G_{\Phi} = (V, E)$

 $V \dots$ vertex set = $\{y_1, y_2, \dots, y_r\}$ $E \dots$ (directed) edge set:

$$(y_i, y_j) \in E :\iff y_j(z)$$
 depends on $y_i(z)$
 $\iff \Phi_j$ depends on y_i
 $\iff \frac{\partial \Phi_j}{\partial y_i} \neq 0.$

Stongly connected dependency graphs.

 G_{Φ} is strongly connected $\iff \Phi_{\mathbf{y}} := \left(\frac{\partial \Phi_j}{\partial y_i}\right)$ irreducible \iff no subsystem can be solved before the whole system

A digraph G is **strongly connected** if each pair of vertices (v_1, v_2) is connected by a (directed) path.

A positive matrix $A = (a_{i,j})$, i.e. $a_{i,j} \ge 0$, is irreducible if for every pair of indiced (i_1, i_2) there exists an integer m such that $a_{i_1,i_2}^{(m)} > 0$, where $A^m = (a_{i,j}^{(m)})$.

A digraph G is strongly connected if and only if its adjacency matrix A(G) is irreducible.

Perron-Frobenius theory.

Every **positive irreducibe** matrix $A = (a_{i,j})$ has a real positive eigenvalue r(A) with the property that all other eigenvalues have modulus $\leq r(A)$. Furthermore, r(A) is a **simple eigenvalue**.

If B < A, that is $b_{i,j} \leq a_{i,j}$ for all pairs (i,j) but $A \neq B$, then r(B) < r(A).

In particular if B is a **submatrix** of A, then we also have r(B) < r(A).

Theorem [D., Lalley, Woods]

Suppose that $y = \Phi(z, y)$ is a **positive** and **non-linear** system. Suppose further, that the **dependency graph** of the system $y = \Phi(z, y)$ is **strongly connected**.

Let $z_0 > 0$, $y_0 = (y_{0,0}, \dots, y_{r,0}) > 0$ (inside the region of convergence) satisfy the system of equations: $(\Phi = (\Phi_1, \dots, \Phi_r))$

$$y_0 = \Phi(z_0, y_0), \quad 0 = \det(I - \Phi_y(z_0, y_0))$$

such that all eigenvalues of $\Phi_y(z_0, y_0)$ have modulus ≤ 1 .

Then there exists analytic function $g_j(z), h_j(z) \neq 0$ such that locally

$$y_j(z) = g_j(z) - h_j(z) \sqrt{1 - \frac{z}{z_0}}$$

Example.

$$t_{True}(z) = 2zt_{x_1}t_{\overline{x}_1} + 2zt_{True}(z)t(z)$$

$$t_{True}(z) = 2zt_{x_1}t_{\overline{x}_1} + 2zt_{False}(z)t(z)$$

$$t_{x_1}(z) = 1 + 2zt_{x_1}(z)^2 + 2zt_{x_1}(z)t_{True}(z) + 2zt_{x_1}(z)t_{False}(z)$$

$$t_{\overline{x}_1}(z) = 1 + 2zt_{\overline{x}_1}(z)^2 + 2zt_{\overline{x}_1}(z)t_{True}(z) + 2zt_{\overline{x}_1}(z)t_{False}(z)$$

$$[t(z) \text{ abbreviates } t(z) = t_{True}(z) + t_{False}(z) + t_{x_1}(z)]$$

Linear Systems.

$$\mathbf{y} = \Phi(z,0) + \Phi_{\mathbf{y}}(z,0) \cdot \mathbf{y}$$

$$y(z) = (I - \Phi_y(z, 0))^{-1} \Phi(z, 0)$$

If $\Phi_y(z_0, 0)$ is **irreducible**, has eigenvalue 1 and all other eigenvalues have modulus ≤ 1 then

$$\det(\mathbf{I} - \Phi_{\mathbf{y}}(z, \mathbf{0})) = (1 - z/z_0)K(z)$$

and consequently all functions $y_j(z)$ have a **polar singularity** of order 1 at $z = z_0$.

Conclusion. In a positive irreducible system we have either a common polar singularity or a squareroot singularity.

Idea of the proof (reduction to a single equation)

$$\mathbf{y} = (y_1, \dots, y_r) = (y_1, \overline{\mathbf{y}}), \ \Phi = (\Phi_1, \dots, \Phi_r) = (\Phi_1, \overline{\Phi})$$
$$\mathbf{y} = \Phi(\mathbf{y}, z) \quad \Longleftrightarrow \quad \begin{array}{l} y_1 = \Phi_1(y_1, \overline{\mathbf{y}}, z), \\ \overline{\mathbf{y}} = \overline{\Phi}(y_1, \overline{\mathbf{y}}, z), \end{array}$$

The second system has dominant eigenvalue < 1 $\implies \overline{y} = \overline{y}(z, \overline{y_1})$ is **analytic**

Insertion of this analytic solution into the first equation:

$$y_1 = \Phi_1((y_1, \overline{\mathbf{y}}(z, y_1), z)) = G(y_1, z)$$

leads to single equation.

Existence of limiting probabilities for Boolean functions. [Chauvin+Flajolet+Gardy+Gittenberger]

The system

$$t_f(z) = \mathbf{1}_{[f \text{ literal}]} + z \sum_{g,h:g \lor h=f} t_g(z)t_h(z) + z \sum_{g,h:g \land h=f} t_g(z)t_h(z)$$

has a strongly connected dependency graph. The common radius of convergence is $z_0 = 1/(16n)$. Consequently we have

$$t_f(z) = \alpha_f - \beta_f \sqrt{1 - 16nz} + \cdots$$

and the limiting probabilities $P(f) = \beta_f/(4n)$ exist.

Dependency Graph and Reduced Dependency Graph

$$y_{1} = \Phi_{1}(z, y_{1}, y_{2}, y_{5})$$

$$y_{2} = \Phi_{2}(z, y_{2}, y_{3}, y_{5})$$

$$y_{3} = \Phi_{3}(z, y_{3}, y_{4})$$

$$y_{4} = \Phi_{4}(z, y_{3})$$

$$y_{5} = \Phi_{5}(z, y_{6})$$

$$y_{6} = \Phi_{6}(z, y_{5}, y_{6})$$

$$y_1 = \Phi_1(z, y_1, y_2, (y_5, y_6))$$

$$y_2 = \Phi_2(z, y_2, (y_3, y_4), (y_5, y_6))$$

$$(y_3, y_4) = (\Phi_3, \Phi_4)(z, y_3, y_4)$$

$$(y_5, y_6) = (\Phi_5, \Phi_6)(z, y_5, y_6)$$

Theorem

Suppose that $y = \Phi(z, y)$ is a **positive** and **non-linear** system of entire functions such that there is a unique solution $(y_1(z), \ldots, y_r(z))$ that is analytic at z = 0.

Then all functions $y_j(z)$ have **non-negative coefficients** and a **finite** radius of convergence ρ_j .

(A) If $\boxed{\frac{\partial^2 \Phi_j}{\partial y_j^2} \neq 0}$ (for all j) then for every j there exists an integer $k_j \ge 1$ such that locally

$$y_j(z) = a_{0,j} + a_{1,j}(1 - z/\rho_j)^{1/2^{k_j}} + a_{2,j}(1 - z/\rho_j)^{2/2^{k_j}} + \dots$$

Theorem (cont.)

(B) If we just have the condition that for all pairs (i, j) with $\frac{\partial \Phi_j}{\partial y_i} \neq 0$ there exists k with $\left| \frac{\partial^2 \Phi_j}{\partial y_i y_k} \neq 0 \right|$ then for every j we either have

$$y_j(z) = a_{0,j} + a_{1,j}(1 - z/\rho_j)^{2^{-k_j}} + a_{2,j}(1 - z/\rho_j)^{2 \cdot 2^{-k_j}} + \dots$$

for an integer $k_j \ge 1$ or

$$y_j(z) = \frac{a_{-1,j}}{(1-z/\rho_j)^{2^{-k_j}}} + a_{0,j} + a_{1,j}(1-z/\rho_j)^{2^{-k_j}} + \dots$$

for an integer $k_j \geq 0$.

(Counter-)Example.

$$y_1 = z(e^{y_2} + y_1)$$

$$y_2 = z(1 + 2y_2y_3)$$

$$y_3 = z(1 + y_3^2)$$

$$y_{1}(z) = \frac{z}{1-z} \exp\left(\frac{z}{\sqrt{1-4z^{2}}}\right)$$
$$y_{2}(z) = \frac{z}{\sqrt{1-4z^{2}}}$$
$$y_{3}(z) = \frac{1-\sqrt{1-4z^{2}}}{2z}$$

- $\Phi_3 = z(1 + y_3^2) \dots$ satisfies (A)
- $(\Phi_2, \Phi_3) = (z(1+2y_2y_3), z(1+y_3^2)) \dots$ satisfies (B)
- $(\Phi_1, \Phi_2, \Phi_3) = (z(e^{y_2} + y_1), ..., ..)$ does not satisfy (B)

Two equations for case (A)

$$y_1 = \Phi_1(z, y_1, y_2)$$

 $y_2 = \Phi_2(z, y_2)$

$$\implies y_2(z) = g_2(z) - h_2(z)\sqrt{1 - z/\rho_2},$$

$$y_1(z, y_2) = g_1(z, y_2) - h_1(z, y_2)\sqrt{1 - z/\rho(y_2)},$$

$$\implies y_1(z) = y_1(z, y_2(z))$$

= $g_1(z, y_2(z)) - h_1(z, y_2(z))\sqrt{1 - z/\rho(y_2(z))}$
= $g_1(z, y_2(z)) - h_1(z, y_2(z))\rho(y_2(z))^{-1/2}\sqrt{\rho(y_2(z)) - z}$

3 cases: (1) $\rho(y_2(\rho_2)) > \rho_2$ (2) $\rho(y_2(\rho_2)) = \rho_2$ (3) $\rho(y_2(\rho_2)) < \rho_2$

Case (1). $|\rho(y_2(\rho_2)) > \rho_2|$ $g_1(z, y_2(z)) = g_1\left(z, g_2(z) - h_2(z)\sqrt{1 - z/\rho_2}\right)$ $= g_1(\rho_2, g_2(\rho_2)) - g_{1,y}(\rho_2, g_2(\rho_2))h_2(\rho_2)\sqrt{1 - z/\rho_2} + \cdots$ $h_1(z, y_2(z)) = h_1(\rho_2, g_2(\rho_2)) - h_{1,y}(\rho_2, g_2(\rho_2))h_2(\rho_2)\sqrt{1 - z/\rho_2 + \cdots}$ $\rho(y_2(z)) - z = \rho(y_2(\rho_2)) - \rho_2 - \rho'(y_2(\rho_2))h_2(\rho_2)\sqrt{1 - z/\rho_2 + \cdots}$ $\sqrt{\rho(y_2(z)) - z} = \sqrt{\rho(y_2(\rho_2)) - \rho_2 - \rho'(y_2(\rho_2))h_2(\rho_2)\sqrt{1 - z/\rho_2}} + \cdots$ $=\sqrt{\rho(y_2(\rho_2))} - \rho_2 - c_1\sqrt{1 - z/\rho_2} + \cdots$

$$\implies y_1(z) = g_1(z, y_2(z)) - h_1(z, y_2(z))\rho(y_2(z))^{-1/2}\sqrt{\rho(y_2(z))} - z$$
$$= c_0 - c_1\sqrt{1 - z/\rho_2} + \cdots$$

Case (2). $\rho(y_2(\rho_2)) = \rho_2$

$$\rho(y_2(z)) - z = \rho(y_2(\rho_2)) - \rho_2 - \rho'(y_2(\rho_2))h_2(\rho_2)\sqrt{1 - z/\rho_2}) + \cdots$$
$$= c'_1\sqrt{1 - z/\rho_2} + \cdots$$

$$\sqrt{\rho(y_2(z)) - z} = \sqrt{c'_1}\sqrt{1 - z/\rho_2} + \cdots$$
$$= \sqrt{c'_1}(1 - z/\rho_2)^{1/4} + c'_2(1 - z/\rho_2)^{3/4} + \cdots$$

$$\implies y_1(z) = g_1(z, y_2(z)) - h_1(z, y_2(z))\rho(y_2(z))^{-1/2}\sqrt{\rho(y_2(z)) - z}$$
$$= c_0 + c_1(1 - z/\rho_2)^{1/4} + c_2\sqrt{1 - z/\rho_2} + \cdots$$

Case (3). $\rho(y_2(\rho_2)) < \rho_2$

There exists $\rho_1 < \rho_2$ with $\rho(y_2(\rho_1)) = \rho_1$:

$$\rho(y_2(z)) - z = \rho(y_2(\rho_1)) - \rho_1 + \rho'(y_2(\rho_1))y'_2(\rho_1)(z - \rho_1)$$

= $c''_1(\rho_1 - z) + \cdots$
 $\sqrt{\rho(y_2(z)) - z} = \sqrt{c''_1}\sqrt{\rho_1 - z} + \cdots$
= $\sqrt{c''_1\rho_1}\sqrt{1 - z/\rho_1} + \cdots$

$$\implies y_1(z) = g_1(z, y_2(z)) - h_1(z, y_2(z))\rho(y_2(z))^{-1/2}\sqrt{\rho(y_2(z))} - z$$
$$= c_0 - c_1\sqrt{1 - z/\rho_1} + \cdots$$

with $\rho_1 < \rho_2$.

Remark. It is important that $\lim_{u\to\infty} \rho(u) = 0$. This is assured by conditions (A) or (B).

Infinite linear systems. $y = A(z)y + b(z) \Longrightarrow |y(z) = (I - A(z))^{-1}b(z)|$

Example.

$$y_1 = 1 + zy_2$$

 $y_j = z(y_{j-1} + y_{j+1})$

$$\implies y_j(z) = \frac{1}{z} \left(\frac{1 - \sqrt{1 - 4z^2}}{2z} \right)^j$$

$$A = \begin{pmatrix} 0 & z & 0 & 0 & \cdots \\ z & 0 & z & 0 & \cdots \\ 0 & z & 0 & z & \\ 0 & 0 & z & \cdots & \ddots \\ \vdots & \vdots & \vdots & & \ddots \end{pmatrix}$$

Compact operator A(z). y = A(z)y + b(z)

A(z) ... irreducible (and compact in a proper ℓ^p -space) r(A(z)) ... spectral radius of A(z).

 $r(A(z_0)) = 1 \implies$ resolvent $(x\mathbf{I} - \mathbf{A}(\mathbf{z}_0))^{-1}$ has a simple pole $\implies \mathbf{y}(\mathbf{z}) = (\mathbf{I} - A(z))^{-1}\mathbf{b}(z)$ has a **simple pole** at $z = z_0$.

This is the same situation as in the finite dimensional case

Theorem [Lalley, Morgenbesser]

Suppose that $y = (y_j)_{j \ge 1} = \Phi(z, y)$ is a **positive**, **non-linear**, **infinite** and **irreducibe** system such that $\Phi_y(z, y)$ is **compact**.

Let $z_0 > 0$, $y_0 = (y_{0,0}, \dots, y_{r,0}) > 0$ (inside the region of convergence) satisfy the system of equations: $(\Phi = (\Phi_1, \dots, \Phi_r))$

$$y_0 = \Phi(z_0, y_0), \quad r(\Phi_y(z_0, y_0)) = 1$$

Then there exists analytic function $g_j(z), h_j(z) \neq 0$ such that locally

$$y_j(z) = g_j(z) - h_j(z) \sqrt{1 - \frac{z}{z_0}}$$

with $g_j(z_0) = (y_0)_j$ and $h_j(z_0) \neq 0$.

A linear operator A is **compact** is the image of a bounded set is relative compact.

[Informally, an infinite matrix A is compact if it can be well approximated by finite dimensional matrices.]

An infinite matrix $A = (a_{i,j})$ is **irreducible** if for every pair of indiced (i_1, i_2) there exists an integer m such that $a_{i_1,i_2}^{(m)} > 0$, where $A^m = (a_{i,j}^{(m)})$.

An infinite, irreducible, positive and compact matrix $A = (a_{i,j})$ has a dominant positive real eigenvalue r(A) (the spectral radius) that is isolated and simple.

Lemma

 $A = (a_{i,j})_{i,j \ge 1} \dots$ positive, irreducibe, compact $B = (a_{i+1,j+1})_{i,j \ge 1}$ [i.e., first column are row are deleted]

$$\implies \quad r(B) < r(A)$$

Remark. With the help of this property the proof is precisely the same as in the finite dimensional case. It is possible to reduce the infinite system to a single equation.