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Abstract. In this paper systems of functional equations in infinitely many variables arising in
combinatorial enumeration problems are studied. We prove sufficient conditions under which
the combinatorial random variables encoded in the generating functions of the system tend to
an infinite dimensional Gaussian limiting distribution.

1. Introduction

Systems of functional equations for generating functions appear in many combinatorial enumer-
ation problems, for example in tree enumeration problems or in the enumeration of planar graphs
(and related problems), see [1, 8, 15]. Usually, these enumeration techniques can be extended to
take several parameters into account: the number of vertices, the number of edges, the number of
vertices of a given degree, et cetera.

One of the simplest examples is that of rooted plane trees, which are defined as rooted trees,
where each node has an arbitrary number of successors with a natural left-to-right-order. Let yn
be the number of rooted plane trees with n vertices. By splitting up at the root one obtains a
recursive description (see Figure 1) which translates into corresponding relations for the counting
generating function y(x) =

∑

n≥1 ynx
n:

y(x) = x+ xy(x) + xy(x)2 + xy(x)3 + · · · = x

1− y(x)
.

This leads to

(1) y(x) =
1−

√
1− 4x

2

and to

yn =
1

n

(

2n− 2

n− 1

)

.

Now let k = (k0, k1, k2, . . .) be a sequence of non-negative integers and yn,k the number of rooted
plane trees with n vertices such that kj vertices have exactly j successors (that is, the out-degree
equals j) for all j ≥ 0. Then the formal generating function y(x,u) =

∑

n,k yn,kx
nuk, where

u = (u0, u1, u2, . . .) and uk = uk0

0 uk1

1 uk2

2 · · · , satisfies the equation

(2) y(x,u) = xu0 + xu1y(x,u) + xu2y(x,u)
2 + xu3y(x,u)

3 + · · · = F (x, y(x,u),u).

If ‖u‖∞ is bounded then this can be considered as an analytic equation for y(x,u), and y(x,u)
encodes the distribution of the number of vertices of given out-degree. More precisely, suppose
that all rooted plane trees of size n are equally likely. Then the number of vertices with out-degree

j becomes a random variable X
(j)
n . If we now consider the infinite dimensional random vector

Xn = (X
(0)
n , X

(1)
n , X

(2)
n , . . .) then we have in this uniform random model

EuXn =
1

yn
[xn] y(x,u),
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= + + + ...+

Figure 1. Recursive structure of a rooted plane tree

where [xn] y(x,u) denotes the coefficient of xn in the series expansion of y(x,u). Let ℓ be a linear

functional of the form ℓ ·Xn =
∑

j≥0 sjX
(j)
n , then we also have

E eitℓ·Xn =
1

yn
[xn] y(x, eits0 , eits1 , . . .).

This also means that the asymptotic behavior of the characteristic function of ℓ · Xn, which
determines the limiting distribution, can be derived from the asymptotic behavior of [xn] y(x,u).

In this way one can prove by standard methods that X
(j)
n and also all finite dimensional random

vectors (X
(0)
n , X

(1)
n , . . . , X

(K)
n ) satisfy a (finite dimensional) central limit theorem. Nevertheless,

it is not obvious that the infinite random vector Xn has Gaussian limiting distribution as well.
(For a definition of infinite dimensional Gaussian distributions see Section 2.) In Theorem 3 we
will give a sufficient condition for such a property when the generating function y(x,u) satisfies a
single functional equation y(x,u) = F (x, y(x,u),u).

In more refined enumeration problems it will be necessary to replace the (single) equation for
y(x,u) by a finite or infinite system of equations y = F(x,y,u); see Section 4. More precisely,
this means that we have to split up our enumeration problem into finitely or infinitely many
subproblems that are interrelated. If yi denotes the generating function of the i-th subproblem
then this means that yi(x,u) = Fi(x,y(x,u),u) for a certain function Fi. After having solved this
system of equations the generating function y(x,u) for the original problem can be computed with
the help of the generating functions yi, that is y(x,u) = G(x,y(x,u),u) for a properly chosen
function G. (For example, we will show in Section 4 that such a procedure applies for the degree

distribution Xn = (X
(j)
n )j≥1 in series-parallel graphs.)

In this case we are faced with two different problems. First of all a system of equations is more
difficult to solve than a single equation, in particular in the infinite dimensional case. However,
this can be handled by assuming compactness of the Jacobian of the system, see Theorem 1.
Furthermore, it turns out that the problem on the infinite dimensional Gaussian distribution
is considerably more involved than in the single equation case. Nevertheless, we prove that all
bounded functionals ℓ ·Xn have a Gaussian limiting distribution and we give sufficient conditions
under which the combinatorial random variables encoded in the generating functions tend to an
infinite dimensional Gaussian limiting distribution. (For example, for series-parallel graphs we
obtain an infinite dimensional Gaussian limiting distribution for Xn.)

The structure of the paper is as follows. In Section 2 we collect some facts from functional
analysis that are needed to formulate our main results that are stated in Section 3. Then we
present some applications in Section 4. In Section 5 the proofs of our results will be found.

Finally we would like to mention that this paper is a continuation of the work of [7], [13], and
[24].

2. Preliminaries

Before we state the main result, we recall some definitions from the field of functional analysis
in order to be able to specify the basic setting. Let B1 and B2 be Banach spaces. We denote by
L(B1, B2) the set of bounded linear operators from B1 to B2. If U is the open unit ball in B1, then
an operator T : B1 → B2 is compact, if the closure of T (U) is compact in B2 (or, equivalently,
if every bounded sequence (xn)n≥0 in B1 contains a subsequence (xni

)i≥0 such that (Txni
)i≥0
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converges in B2). If A is a bounded operator from B to B, then r(A) denotes the spectral radius
of A defined by r(A) = supλ∈σ(A) |λ|, where σ(A) is the spectrum of A.

A function F : B1 → B2 is called Fréchet differentiable at x0 if there exists a bounded linear
operator (∂F/∂x)(x0) : B1 → B2 such that

F (x0 + h) = F (x0) +
∂F

∂x
(x0)h+ ω(x0, h) and ω(x0, h) = o(‖h‖), (h → 0).(3)

The operator ∂F/∂x is called the Fréchet derivative of F . If the Banach spaces are complex vector
spaces and (3) holds for all h, then F is said to be analytic in x0. F is analytic in D ⊆ B1, if it
is analytic for all x0 ∈ D. Analyticity is equivalent to the fact that for all x0 ∈ D there exist an
s > 0 and continuous symmetric n-linear forms An(x0) such that

∑

n≥1 ‖An(x0)‖ sn < ∞ and

F (x0 + h) = F (x0) +
∑

n≥1

An(x0)

n!
(hn)

in a neighborhood of x0 (including the set {x0+h : ‖h‖ ≤ s}). (The “coefficients” An are equal to
the (iteratively defined) n-th Fréchet derivatives of F ). See for example [6, Section 7.7 and 15.1]
and [30, Chapters 4 and 8] for analytic functions in Banach spaces.

Next, we want to recall some facts concerning probability theory on Banach spaces. For a
detailed survey see [3] or [23]. Suppose that X is a random variable from a probability space
(Ω,F ,P) (here, Ω denotes a set with σ-algebra F and probability measure P) to a separable
Banach space B (equipped with the Borel σ-algebra). Let P be the law (the distribution) of X
(that is, P = PX−1). Since we assumed B to be separable, we have that the scalar valued random
variables ℓ∗(X) for continuous functionals ℓ∗ determine the distribution of X (see [23, Section
2.1]).

The random variablesXn, n ∈ N (with possibly different probability spaces) are said to converge
weakly to some B-valued random variable X (defined on some probability space and with law P )
if the corresponding laws Pn converge weakly to P , i.e., if we have (as n goes to infinity)

∫

B

f dPn →
∫

B

f dP

for every bounded continuous real function f . In what follows we denote this by Xn
w−→ X. We

call a set Π of probability measures tight if for each ε > 0 there exists a compact set K = Kε

such that P (K) > 1 − ε for every P ∈ Π. Let B∗ be the dual space of B (the set of continuous
functionals from B to C). By Prohorov’s theorem1 we have that Xn weakly converges to X if and
only if ℓ∗(Xn) weakly converges to ℓ∗(X) for all ℓ∗ ∈ B∗ and the family of probability measures
{Pn : n ∈ N} is tight. Since for scalar valued random variables the weak convergence is completely
determined by the convergence of the corresponding characteristic functions, one has to check

(i) tightness of the set {Pn : n ∈ N}
and

(ii) there exists an X such that E
[

eitℓ
∗(Xn)

]

→ E
[

eitℓ
∗(X)

]

for all ℓ∗ ∈ B∗,

in order to show Xn
w−→ X. We call a random variable X Gaussian if ℓ∗(X) is a Gaussian variable

(in the extended sense that X ≡ 0 is also normally distributed) for all ℓ∗ ∈ B∗. If it exists, we
denote by EX the (unique) element y ∈ B such that

ℓ∗(y) = E(ℓ∗(X))

for all ℓ∗ ∈ B∗. Gaussian variables are called centered, if EX = 0.

In what follows, we mainly deal with the Banach space ℓp = ℓp(N) (1 ≤ p < ∞) of all complex
valued sequences (tn)n∈N satisfying ‖(tn)‖pp :=

∑∞
n=1 |tn|p < ∞. (The space ℓ∞ = ℓ∞(N) is the

space of all bounded complex sequences (zn) with norm ‖(zn)‖∞ = supn≥1 |zn| < ∞.) In this
case, the Fréchet derivative is also called Jacobian operator (in analogy to the finite dimensional

1Prohorov’s theorem says that in a separable and complete metric space a set of probability measures is tight if
and only if it is relatively compact; see [3, Chapter I, Section 5].
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case). We call a function F : C × ℓp → ℓp positive (in U × V ), if there exist nonnegative real
numbers aij,k such that for all k ≥ 1 and for all (x,y) ∈ U × V ,

Fk(x,y) =
∑

i,j

aij,kx
iyj,

where j ∈ NN, only finitely many components are nonzero, and yj = yj11 yj22 yj33 · · · .
In our main theorem we have to assume that ∂F/∂y is irreducible. In order to be able to define

this property, we recall some basic notion from functional analysis on ℓp spaces. Any bounded
linear operator on an ℓp space (1 ≤ p < ∞) is uniquely determined by an infinite dimensional
matrix (aij)1≤i,j<∞ via the functional

(Ax)i =

∞
∑

k=1

aikxk,

where x = (xk)1≤k<∞ is written with respect to the canonical standard bases in ℓp. We call the
matrix (aij)1≤i,j<∞ the matrix representation of A (and write A = (aij)1≤i,j<∞ or just A = (aij)).
An operator A is called positive, if all entries of the matrix representation of A are nonnegative.
A positive operator A = (aij) is said to be irreducible, if for every pair (i, j) there exists an integer

n = n(i, j) > 0, such that a
(n)
ij > 0, where

An =
(

a
(n)
ij

)

1≤i,j<∞
.

If u and v are real vectors or matrices, u ≥ v means that all entries of u are greater than or
equal to the corresponding entries of v. Thus, an operator A is positive if (aij) ≥ 0. Similarly, a
vector x is called positive (or also nonnegative) if x ≥ 0. We call x strictly positive, if all entries
xi of x satisfy xi > 0. Moreover, if u is a vector with entries ui, then |u| denotes the vector with
entries |ui| (a corresponding definition is used for matrices).

The dual space of ℓp, 1 < p < ∞ is isomorphic to ℓq, where 1/p+ 1/q = 1. Note, that the dual
space of ℓ1 is ℓ∞. If p is fixed, we use throughout this work the letter q for the real number which
satisfies 1/p+1/q = 1 if p > 1 and q = ∞ if p = 1. If x ∈ ℓp and ℓ ∈ ℓq ∼= (ℓp)′, we denote by ℓ(x)
the functional ℓ evaluated at x. Analogous to the finite dimensional case, we also use the notation
ℓ · x and ℓ

Tx instead of ℓ(x).
If 1 < p < ∞, the adjoint operator of an operator A (denoted by A∗) is acting on ℓp′ ∼= ℓq.

The operator A∗ can be associated with the matrix (aji)1≤i,j<∞ acting on ℓq (which we do in the
sequel without explicitly saying so). If x is an eigenvector of A we also call it right eigenvector of
A and if y is an eigenvector of A∗ we call it left eigenvector of A.

The study of operators (or matrices) in ℓ∞ is different. In fact, the space ℓ∞ is not separable
and there is no one-to-one correspondence between operators and matrices. (Actually, there exist
nontrivial compact operators, such that the corresponding “matrix representation” is the zero
matrix.) Nevertheless, if we have a matrix (aij)1≤i,j<∞, we define an operator A on ℓ∞ via

(Ax)i =

∞
∑

k=1

aikxk,

if the summation is well-defined for all i ≥ 1 and for all x ∈ ℓ∞. In the case that A = (aij)1≤i,j<∞
is an operator from ℓ1 to ℓ1, we get that the dual operator from ℓ∞ to ℓ∞ is given by (aji)1≤i,j<∞
(as in the ℓp-case for p > 1).

Throughout, we denote by Ip the identity on ℓp (with matrix representation (δij)1≤i,j<∞, where
δij denotes Kronecker’s delta function).

3. Main Theorems

In Section 3.1 we state some theorems for infinite systems of functional equations of the form
y = F(x,y,v) where the function F is defined on some subset of C× ℓp × ℓr and the range of F
is a subset of ℓp, where 1 ≤ p < ∞ and 1 ≤ r ≤ ∞ . The same result (with obvious modifications
of the proof) holds true if one replaces one (or both) of the spaces ℓp and ℓr by finite dimensional
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spaces Rm and Rn. In the case that both spaces are replaced by finite dimensional ones, the
statement was proven in [7]; compare also with Lalley [21] and Woods [29]. In Section 3.2 we state
sufficient conditions under which the combinatorial random variables encoded in the generating
functions of the system tend to an infinite dimensional Gaussian limiting distribution.

3.1. Systems of functional equations. Our first result is a generalization of a result of [24],
where only one counting variable was considered. It determines the kind of singularity of the
solution of a positive irreducible and infinite system of equations. Note that it is more convenient
to write u in the form u = ev, that is, uj = evj . The reason is that in the functional analytic
context of our results it is natural to work in a neighborhood of v = 0 instead of a neighborhood
of u = 1. Anyway, in the applications we will use again u since this is more natural for counting
problems.

Theorem 1. Let 1 ≤ p < ∞, 1 ≤ r ≤ ∞ and F : C × ℓp × ℓr → ℓp, (x,y,v) 7→ F(x,y,v) be a
function satisfying:

(1) there exist open balls B ∈ C, U ∈ ℓp and V ∈ ℓr such that (0,0,0) ∈ B × U × V and F is
analytic in B × U × V ,

(2) the function (x,y) 7→ F(x,y,0) is a positive function,
(3) F(0,y,v) = 0 for all y ∈ U and v ∈ V ,
(4) F(x,0,v) 6≡ 0 in B for all v ∈ V ,
(5) ∂F

∂y (x,y,0) = A(x,y) + α(x,y) Ip for all (x,y) ∈ B × U , where α is an analytic function

and there exists an integer n such that An is compact,
(6) A(x,y) is irreducible for strictly positive (x,y) and α(x,y) has nonnegative Taylor coeffi-

cients.

Let y = y(x,v) be the unique solution of the functional equation

y = F(x,y,v)(4)

with y(0,v) = 0. Assume that for v = 0 the solution has a finite radius of convergence x0 > 0
such that y0 := y(x0,0) exists and (x0,y0) ∈ B × U .

Then there exists ε > 0 such that y(x,v) admits a representation of the form

y(x,v) = g(x,v) − h(x,v)

√

1− x

x0(v)
(5)

for v in a neighborhood of 0, |x− x0(v)| < ε and arg(x − x0(v)) 6= 0, where g(x,v), h(x,v) and
x0(v) are analytic functions with hi(x0(0),0) > 0 for all i ≥ 1.

Moreover, if there exist two integers n1 and n2 that are relatively prime such that [xn1 ]y1(x,0) >
0 and [xn2 ]y1(x,0) > 0, then x0(v) is the only singularity of y(x,v) on the circle |x| = x0(v) and
there exist constants 0 < δ < π/2 and η > 0 such that y(x,v) is analytic in a region of the form

∆ := {x : |x| < x0(0) + η, | arg(x/x0(v) − 1)| > δ}.
Remark 1. As we will show in the proof of Theorem 1, the point (x0,y0) satisfies the equations

y0 = F(x0,y0,0),

r

(

∂F

∂y
(x0,y0,0)

)

= 1.

The main reason for this property is the fact that we have assumed that (x0,y0) lies in the
domain of analyticity of F. For a detailed study in the finite dimensional case of such so called
critical points see [2]. Note furthermore, that the existence of a point (x0,y0) satisfying the above
equations implies that F is a nonlinear function in y.

Remark 2. Condition (3) of Theorem 1, that is F(0,y,v) = 0,, is not really necessary. It is

sufficient to assume that F(0,0,v) = 0 and that r
(

∂F
∂y (0,0,0)

)

< 1. In both cases the implicit

function theorem implies that the equation (4) has an analytic solution y(x,v) with y(0,v) = 0

(if v is sufficiently close to 0).
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As mentioned in the introduction, we are often faced with a slightly different situation: Indeed,
many combinatorial enumeration problems are described by a generating function of the form

(6) y(x,v) = G(x,y(x,v),v) =

∞
∑

n=0

∑

m∈ℓp

cn,mem·vxn =

∞
∑

n=0

∑

m∈ℓp

cn,mumxn,

where cn,m denotes the number of objects of size n and characteristicm and the auxiliary function
y(x,v) is the solution of a finite or infinite system of equations y = F(x,y,v).

Corollary 1. Let y = y(x,v) be the unique solution of the functional equation (4) and assume
that all assumptions of Theorem 1 are satisfied. Suppose that G : (C, ℓp, ℓr) → C is an analytic
function such that (x0(0),y(x0(0),0),0) is contained in the interior of the region of convergence
and that

∂G

∂y
(x0(0),y(x0(0),0),0) 6= 0.

Then there exists δ, ε > 0 such that G(x,y(x,v),v) has a representation of the form

G(x,y(x,v),v) = ḡ(x,v) − h̄(x,v)

√

1− x

x0(v)
(7)

for |x−x0(v)| ≤ ε and arg(x−x0(0)) 6= 0 and for v in a neighborhood of 0. The functions ḡ(x,v),
h̄(x,v) and x0(v) are analytic in this domain and h̄(x0(0),0) 6= 0. Moreover, G(x,y(x,v),v) is
analytic for v in a neighborhood of 0 and |x− x0(v)| ≥ ε but |x| ≤ |x0(v)| + η and we have

[xn]G(x,y(x,v),v) =
h̄(x0(v),v)

2
√
π

x0(v)
−nn−3/2

(

1 +O

(

1

n

))

uniformly for v in a neighborhood of 0.

3.2. Central limit theorems. Consider a set of combinatorial objects with a given size associ-
ated to them and assume a uniform distribution on the set of objects of size n. Moreover, let χ
denote an ℓp-valued characteristic of these objects which induces an ℓp-valued random variable Xn

defined on some probability space (Ω,F ,P) (1 ≤ p < ∞). Assume furthermore that the generating
function associated to the numbers cn,m of combinatorial objects of size n having characteristic
m is of the form (6). In this setting we have

P{Xn = m} =
cn,m

∑

k∈ℓp cn,k

and if we write

y(x,v) = G(x,y(x,v),v) =

∞
∑

n=0

cn(v)x
n,

then

E
[

eitℓ·Xn
]

=
cn(itℓ)

cn(0)
(8)

for all ℓ ∈ ℓq.
Our second result shows that in the case where y(x,v) satisfies a functional equation y =

F(x,y,v) with y(0,v) = 0 and such that the assumptions of Theorem 1 are fulfilled all bounded
functionals of Xn satisfy a central limit theorem.

Theorem 2. Let 1 ≤ p < ∞ and suppose that Xn is a sequence of ℓp-valued random variables
defined by (8). Furthermore, let ℓ ∈ ℓq. Then we have ℓ · EXn = µℓn+O(1) with µℓ = −∂x0

∂v (0) ·
ℓ/x0 and

ℓ ·
(

Xn − EXn√
n

)

weakly converges for n to infinity to a centered real Gaussian variable with variance σ2
ℓ
= ℓ

TBℓ,
where B ∈ L(ℓq, ℓp) is given by the matrix

1

x2
0

(

∂x0

∂vi
(0) · ∂x0

∂vj
(0)T

)

1≤i,j<∞
− 1

x0

(

∂2x0

∂vi∂vj
(0)

)

1≤i,j<∞
.
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Corollary 2. Let 1 ≤ p < ∞ and suppose that Xn is a sequence of ℓp-valued random variables
defined by (8) such that the set of laws of (Xn − EXn)/

√
n, n ≥ 1 is tight. Then there exists a

centered Gaussian random variable X such that

Xn − EXn√
n

w−→ X,

where X is uniquely determined by the operator B ∈ L(ℓq, ℓp) stated in Theorem 2.

Remark 3. There are some natural situation where our results cannot be applied. For example if
we have

y(x,v) = xe
∑

j≥0
vj +

xy(x,v)

1− y(x,v)

then all random variables X
(j)
n (j ≥ 0) count the number of leaves in rooted plane trees and the

sequence (Xn − EXn)/
√
n is tight in ℓ∞ but not contained in some ℓp with p < ∞.

Tightness is usually a rather difficult matter. Grenander [17, Theorem 6.2.3] states a sufficient
condition for tightness in ℓ2 which is sometimes easy to check: the corresponding laws of (Xn −
EXn)/

√
n are tight if

(9) lim
N→∞

sup
n≥1

E





∑

j>N

(X
(j)
n − EX

(j)
n )2

n



 = 0,

where Xn = (X
(j)
n )j≥0. Based on this fact, we provide a sufficient condition in terms of the

functional equation itself. However, even in the case of a single equation we have to check several
non-trivial assumptions. It is far from being obvious how these properties might generalize to the
general case.

Theorem 3. Suppose that y(x,v) is the unique solution of a single functional equation y =
F (x, y,v), where F : B×U ×V → C is a positive analytic function on B×U ×V ⊆ C2 × ℓ2 such
that there exist positive real (x0, y0) ∈ B × U with y0 = F (x0, y0,0) and 1 = Fy(x0, y0,0) such
that Fx(x0, y0,0) 6= 0 and Fyy(x0, y0,0) 6= 0. Furthermore assume that the corresponding random

variables X
(j)
n have the property that X

(j)
n = 0 if j > cn for some constant c > 0 and that the

following conditions are satisfied:
∑

j≥0

Fvj < ∞,
∑

j≥0

F 2
yvj < ∞,

∑

j≥0

Fvjvj < ∞,

Fxvj = o(1), Fxvjvj = o(1), Fyyvj = o(1), Fyyvjvj = o(1),

Fxxvj = O(1), Fxyvj = O(1), Fxyyvj = O(1), Fyyyvj = O(1), (j → ∞)

where all derivatives are evaluated at (x0, y0,0).
Then the the set of laws of (Xn − EXn)/

√
n, n ≥ 1 is tight and has a Gaussian limit.

Remark 4. The drawback of Theorem 3 is that it only applies for a single equation. It is certainly
possible to formulate proper tightness conditions for finite systems, however, it seems that there
is no simple statement that refers just to the derivatives of F; in the infinite case there is probably
no direct approach. Nevertheless, what one really has to check is condition (9), that is, one has to
obtain proper asymptotic information on the variances. (In the case of one equation the conditions
stated in Theorem 3 are sufficient to check (9).) Actually there are usually different approaches to
obtain asymptotic information on the variances. In Section 4.3 we will present an example, where
the defining system of equations is infinite and where it is possible to check tightness directly with
the help (9).

Finally, we mention the (simpler) case when the function F is linear in y (as noted in Remark 1,
we considered until now only the nonlinear case). We just state and prove the following result from
which one can deduce corresponding asymptotic expansions of the coefficients and limit theorems.
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Theorem 4. Let 1 ≤ p < ∞, 1 ≤ r ≤ ∞ and F : C × ℓp × ℓr → ℓp, (x,y,v) 7→ F(x,y,v) be an
affine function in y, i.e. F(x,y,v) = L(x,v)y + b(x,v), satisfying the assumptions (1)–(6) of
Theorem 1. Let y = y(x,v) be the solution of the functional equation

y = L(x,v)y + b(x,v)

with y(0,v) = 0. Assume that there exists a positive number x0 > 0 in the domain of analyticity
of L(x,v) such that

r
(

L(x0,0)
)

= 1.

Then there exists ε > 0 such that y(x,v) admits a representation of the form

y(x,v) =
1

1− x
x0(v)

f(x,v)(10)

for v in a neighborhood of 0, |x− x0(v)| < ε and arg(x−x0(v)) 6= 0, where f(x,v) and x0(v) are
analytic functions with fi(x0(0),0) 6= 0 for all i ≥ 1.

4. Applications

In this section we present some applications. The first few examples lead to a single functional
equation for a generating function in an infinite number of variables. At the end of this section
we present two examples where we obtain an infinite system of equations where the unknown
generating functions have again infinitely many variables.

4.1. Rooted Trees.

4.1.1. Rooted Plane Trees. As in the Introduction we consider rooted plane trees, where we count
the size as well as the numbers of vertices with out-degree j ≥ 0 simultaneously for all j. The
problem of the degree distribution in trees was already studies by Robinson and Schwenk [27] (one
particular j) and later extended in [12] (finitely many j’s), [16, 25] (non-constant j) and [5] (more
general patterns). Compare also with the discussion in [8, Ch. 3].

The problem we consider here was studied by Pittel [26] who showed, using a different approach,
the convergence of the finite-dimensional projections, but without tightness.

Proposition 1. Fix some 1 ≤ p < ∞ and let X
(j)
n denote the number of vertices of degree j in

a random rooted tree of size n. Then for every functional ℓ ∈ ℓq the random variable ℓ · Xn is
asymptotically normally distributed with asymptotic mean

(11) µℓ =
∑

i≥0

2−i−1ℓi

and asymptotic variance σℓ = ℓ
TBℓ with B = (Bij)i,j≥0 where

(12) Bij =
1

2i+j+2
− (i− 1)(j − 1)

2i+j+3
+

δij
2i+1

.

Furthermore, the sequence (Xn − EXn)/
√
n (considered as a sequence in ℓ2) is tight and, thus,

there exists a centered Gaussian random variable X with
Xn − EXn√

n

w−→ X.

Proof. We rewrite (2) as

y(x,v) = x
∑

i≥0

eviy(x,v)i =: F (x, y(x,v),v).

Obviously, F (x, y,v) is analytic at (0, 0,0), it has only nonnegative coefficients. Moreover, we
observe easily that F (0, y,v) ≡ 0 and F (x, 0,v) = x 6≡ 0. Furthermore, we have ∂F

∂y (x, y,0) =

x
∑

i≥1 iy
i−1. Thus the Jacobian is a one by one matrix with a nonzero entry and hence trivially

compact and irreducible. Solving the system F (x, y,0) = y, Fy(x, y,0) = 1 gives x0 = 1/4 and
y0 = 1/2, that is x0 = 1/4 is the radius of convergence and y0 = y(x0,0) = 1/2 is finite. Hence,
all the assumptions of Theorem 1 are satisfied.
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In order to complete the proof we have to show tightness. By differentiating the equation
F (x0(v), y(x0(v),v),v) = y(x0(v),v) with respect to vi we obtain ∂x0

∂vi
(0) = −2−i−3 yielding

(11). The variance can be expressed in terms of partial derivatives of F (x, y,v). This was already
done in [12] and yields (12).

Finally, note that F (x, y,0) = x
1−y and that the partial derivatives needed in Theorem 3,

evaluated at (x, y,0) are therefore

∑

j≥0

Fvj =
∑

j≥0

Fvjvj =
x

1− y
=

1

2
,
∑

j≥0

F 2
yvj =

x2
0(1 + y20)

(1 − y20)
3

=
5

27

Fxvj = Fxvjvj = 2−j = o(1), Fyyvj = Fyyvjvj = j(j − 1)2−j = o(1),

and the terms

Fxxvj = 0, Fxyvj = j2−j+1, Fxyyvj = j(j − 1)2−j+2, Fyyyvj = j(j − 1)(j − 2)2−j+1,

as j → ∞, are all bounded. Thus the assumptions of Theorem 3 are satisfied and consequently

the random vector Xn = (X
(j)
n )j≥0 satisfies a central limit theorem. �

4.1.2. Simply Generated Trees. Proposition 1 can be easily generalized to simply generated trees.
These are trees with generating function given by the functional equation y(x) = xφ(y(x)) where
φ(t) =

∑

i φit
i is a power series with nonnegative coefficients such that φ0 > 0 and the unique

positive solution y0 of φ(t) = tφ′(t) lies inside the radius of convergence of φ. Under aperiodicity
conditions y(x) has a unique singularity x0 in the circle of convergence where (x0, y0) is the solution
of the system

y = xφ(y), 1 = xφ′(y).

If we keep track of the nodes of degree j, simultaneously for all j ≥ 0, the we are faced with the
generating function y(x,v) given by the functional equation

(13) y(x,v) = F (x, y(x,v),v) := x
∑

i≥0

φie
viy(x,v)i.

Proposition 2. Fix some 1 ≤ p < ∞ and let X
(j)
n denote the number of vertices of degree j in a

random simply generated tree of size n. Then for any functional ℓ ∈ ℓq the random variable ℓ ·Xn

is asymptotically normally distributed with asymptotic mean

µℓ =
∑

i≥0

φiy
i
0

φ(y0)
ℓi

and asymptotic variance σℓ = ℓ
TBℓ with B = (Bij)i,j≥0 where

Bij =− 1

x0φ(y0)
(Fx,jαi + Fx,iαj + Fxy(αiβj + αjβi) + Fy,iβj + Fy,jβi + Fyyβiβj) + δijx0φiy

i
0

where
Fx,k = φky

k
0 , Fxy = φ′(y0), Fy,k = kφkx0y

k−1
0 , Fyy = x0φ

′′(y0),

and

αk =
∂x0

∂vk
= −x0φky

k
0

φ(y0)
, βk = x0φky

k
0 +

1

φ′′(y0)

(

φ′(y0)φky
k
0

φ(y0)
− kφky

k−1
0

)

.

Furthermore, the sequence (Xn − EXn)/
√
n (considered as a sequence in ℓ2) is tight and, thus,

there exists a centered Gaussian random variable X with
Xn − EXn√

n

w−→ X.

Proof. Starting from the functional equation (13) we observe that

(14)
∂F

∂y
(x0(v), y(x0(v),v),v) = 1.

Similarly as in the proof of Proposition 1 we easily check that the conditions of Theorem 1 are
satisfied and then partial derivation of (13) and (14) leads to the result. �
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4.1.3. Other trees. Of course, other classes of trees can be treated in a similar way. For instance,
if we consider unlabeled trees, then the functional equation for the generating function is

y(x,v) = x+ x
∑

i≥1

eviZi(y(x,v), y(x
2,v(2)), . . . , y(xi,v(i))

where Zi(x1, x2, . . . , xi) denotes the cycle index of the symmetric group on i elements and v(k) =
(vk0 , v

k
1 , v

k
2 , . . . ). The calculations are then more involved but the assumptions of Theorem 1 can

be verified as well and we obtain again a normal limit. The expressions we get then for the mean
and the covariance matrix are quite lengthy and omitted here. They are essentially the infinite
dimensional counterparts of those in [12, Th. 2.1], where the joint distribution of the numbers of
nodes for finitely many degrees was computed.

4.2. Bipartite Planar Maps. Planar maps are connected graphs that are embedded on the
sphere. Rooted (and also pointed) maps can be counted by several techniques (for example by the
quadratic method et cetera). Recently, a bijection between rooted maps and so-called mobiles has
been established that makes the situation much more transparent, see [4]. We restrict ourselves
to the case of bipartite maps, that is, all faces have an even degree.

In particular let R(x, z,u) denote the generating function that solves the equation

R = xz + x
∑

j≥1

uj

(

2j − 1

j

)

Rj .

Then the generating function M(x, z,u) of bipartite maps, where x counts the number of edges,
z the number of vertices, and uj the number of faces of valency 2j for j ≥ 1, satisfies Mz = R.

Here we can also apply Theorem 3 (in this case x0 = 1/8 and R0 = 3/16). Furthermore,
since Eulerian maps are dual to bipartite maps we also get a central limit theorem for the degree
distribution of Eulerian maps. For the sake of shortness we omit the proof (that is almost the
same as that of Proposition 1).

Proposition 3. Fix some 1 ≤ p < ∞ and let X
(j)
n , j ≥ 1, denote the number of faces of valency

2j in a random bipartite map with n edges (or the number of vertices of degree 2j in a random
Eulerian map with n edges). Then for every functional ℓ ∈ ℓq the random variable ℓ · Xn is
asymptotically normally distributed with asymptotic mean

µℓ =
∑

i≥1

16

3
Fui

ℓi,

where Fui
=
(

2i−1
i

)

(3/16)i, and asymptotic variance σℓ = ℓ
TBℓ with B = (Bij)i,j≥1 where

Bii = −2816

81
F 2
ui

+
16

3
Fui

− 512

81
i2F 2

ui
+

1024

81
iF 2

ui
,

Bij = −5039

81
Fui

Fuj
− 512

81
ijFui

Fuj
+

512

81
(i + j)Fui

Fuj
(i 6= j).

Furthermore, the sequence (Xn − EXn)/
√
n (considered as a sequence in ℓ2) is tight and, thus,

there exists a centered Gaussian random variable X with

Xn − EXn√
n

w−→ X.

4.3. Subcritical Graphs. For k ≥ 0, a graph is k-connected if one needs to delete at least
k vertices to disconnect it. Obviously, a graph G is 1-connected if and only it is connected.
Furthermore, we can decompose every connected graph into 2-connected graphs by using the
block structure. A block of a graph G is a maximal 2-connected induced subgraph of G. We say
a vertex of G is incident to a block B of G if it belongs to B. The block structure of G yields
a bipartite tree with the vertex set consisting of two types of nodes, i.e. cut-vertices and blocks
of G, and the edge set describing the incidences between the cut-vertices and blocks of G. This
is precisely the decomposition of connected graphs into 2-connected graphs. This decomposition
leads to a unique recursive decomposition if we consider vertex-rooted graphs. The root-vertex
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v of a rooted graph G is incident to a set of blocks and to each non-root vertex on these blocks
is attached a rooted connected graph. In other words, a rooted connected graph rooted at v is
uniquely obtained as follows: take a set of rooted 2-connected graphs and merge them at their
rooted (distinguished but not labeled) vertices so that v is incident to these derived 2-connected
graphs, then replace each non-root vertex w in these blocks by a rooted connected graph rooted
at w (which is allowed to consist of a single vertex and in this case it has no effect).

A graph class is called block-stable if it contains the link-graph ℓ, which is a graph with one
edge together with its two end vertices, and satisfies the property that a graph G belongs to
the graph class if and only if all the blocks of G belong to this class. Block-stable classes in-
clude classes of graphs specified by a finite list of forbidden minors that are all 2-connected, for
instance, planar graphs (Forbid(K5,K3,3)), series-parallel graphs (Forbid(K4)), and outerplanar
graphs (Forbid(K4,K3,2)). For a block-stable vertex-labeled graph class, the recursive block de-
composition translates into equations for the corresponding exponential generating functions B(x)
for the 2-connected graphs and C(x) for the connected graphs (cf. [18, p.10,(1.3.3)]):

C′(x) = eB
′(xC′(x)).

Note that C′(x) is the generating function of rooted graphs, that is, one vertex is distinguished
(or rooted) but not labeled.

A graph class is called subcritical if the radius of convergence of B(x) is larger than η, where η is
defined by the equation ηB′′(η) = 1. Several well-known graph classes are subcritical, for example
series-parallel graphs or outerplanar graphs (see [9]). These graph classes are also planar graphs
and have various characterizations. For example, series-parallel graphs are precisely those graphs,
where the treewidth is at most 2, or there is a series-parallel extension of a tree or forest; and
outerplanar graphs are planar graphs with the property that there is a non-crossing embedding
into the plane, where all vertices are on the outer face. However, there are also important graph
classes (like the class of planar graphs) that are not subcritical.

It has been already proved in [9] that the number of vertices of degree j in subcritical graph
classes satisfies a central limit theorem. For fixed j it is sufficient to consider just a finite system of
equations so that one can apply the methods of [7] to obtain the central limit theorem. However,
if we want to consider all j ≥ 1 at once then we are forced to use an infinite system.

Suppose that B•
r (x, u1, u2, . . .) denotes the generating function of rooted 2-connected graphs,

where the root-vertex has degree r and the variables x and uj count the number of remaining
vertices and the (remaining) vertices of degree j, j ≥ 1. Similarly we define C•

j (x, u1, u2, . . .) for
connected graphs. Then the unique decomposition property implies that the generating functions
satisfy the relations

(15) C•
j (x,u) =

∑

l1+2l2+···jlj=j

j
∏

r=1

B•
r (x,W1,W2, . . .)

lr

lr!
,

where Wj abbreviates

Wj =
∑

i≥0

ui+jC
•
i (x,u)

with the convention C•
0 = 1 (see [9]). The generating function of interest is then

C•(x,u) =
∑

j≥0

C•
j (x,u).

This means that we are actually in the framework of Theorems 1 and 2, however, we have to check
in particular the compactness and tightness condition.

Proposition 4. Let G be a subcritical class of connected vertex labeled graphs. Then the system
of equations (15) satisfies all assumptions of Theorems 1 and 2 for p, q ≥ 1. In particular, if Xn,j

denotes the number of vertices of degree j in graphs of size n and if Xn = (Xn,1, Xn,2, . . .) denotes
the corresponding random sequence then for every functional ℓ ∈ ℓq the random variable

ℓ · Xn − EXn√
n
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converges weakly to a centered Gaussian random variable.
Furthermore, if G denotes the class of vertex labeled series-parallel or outerplanar graphs then

the sequence (Xn − EXn)/
√
n (considered as a sequence in ℓ2) is tight and, thus, there exists a

centered Gaussian random variable X with
Xn − EXn√

n

w−→ X.

Most of the conditions of Theorems 1 and 2 are easy to check. First, it is clear that for
u = 1 the system collaps to a single equation for the sum C′(x) =

∑

j≥0 C
•(x,1) which is

(of course) of the form C′(x) = eB
′(xC′(x)). The radius of convergence x0 of C′(x) is given by

the equation x0C
′(x0) = η. This follows from the fact that ηB′′(η) = 1 which is equivalent to

1 = eB
′(x0C

′(x0))B′′(x0C
′(x0))x0 and which is the condition that the solution function C′(x) gets

singular at x0. Furthermore, C′(x) has a square root singularity. Hence the functions

Cj(x,1) =
∑

l1+2l2+···jlj=j

j
∏

r=1

B•
r (xC

′(x),1)lr

lr!

have the same dominant singularity (which is of square root type).
The only condition that cannot be directly checked is the compactness condition of the Jacobian.

However, we can apply the following general property (that is satisfied in the present example).

Lemma 1. Let H(x, y, w) be a positive functions (as in Theorem 1 in the one dimensional setting)
and suppose that y(x) has a finite radius of convergence x0 (so that H(x, y, 1) is analytic at (x0, y0))
and satisfies the functional equation y(x) = H(x, y(x), 1). Furthermore consider the system of
equations

yj(x,u) = Fj(x,y(x,u),u)

with positive functions that satisfy all assumptions of Theorem 1 except possibly (5). (the com-
pactness of the Jacobian) and where Fi has the additional property that

Fi(x,y,1) = [wi]H



x,
∑

j

yj , w



 .

Then we have y(x) =
∑

i yi(x,1) so that all functions yi(x,1) have the same radius of convergence

as y(x) and the operator A = ∂F
∂y (x, y,1) is compact.

Proof. The relation y(x) =
∑

i yi(x,1) is obvious. Furthermore the assumptions imply that
∂Fi

∂yj
(x, y,1) = [wi]Hy

(

x,
∑

j yj , w
)

yj and, thus, A has rank one. �

In our case we have

H(x, y, w) = exp





∑

k≥0

B•
k(xy,1)w

k



 .

Consequently compactness of the Jacobian is granted.
Finally we have to check tightness. For the sake of shortness we will only work out the details

for series-parallel graphs. Outerplanar graphs can be then handled in a similar way. The idea is
to consider the variances

σ2
n,k = E

(

Xn,k − EXn,k√
n

)2

=
1

n
VarXn,k =

1

n

(

EX2
n,k − (EXn,k)

2
)

and to check condition (9).
In order to get access to the moments EXn,k and EX2

n,k we consider (again) the rooted version
of our graphs and denote by dn,k the probability that the root-vertex has degree k in graphs of
size n. Furthermore we denote by dn,k,k the probability that the root-vertex has degree k and a
uniformly at random chosen vertex (different from the root-vertex) has degree k, too, in graphs
of size n. Then we have (since we are dealing with vertex labeled graphs)

EXn,k = ndn,k and EX2
n,k = ndn,k + n(n− 1)dn,k,k.
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Consequently
σ2
n,k = dn,k − dn,k,k + n(dn,k,k − d2n,k).

In [11] it was already proved that dn,k = O(w−k
0 ) and dn,k,k = O(w−k

0 ) uniformly in n and k,
where w0 ≈ 3.482774 > 1. Thus we certainly obtain

lim
N→∞

sup
n≥1

∑

k≥N

|dn,k − dn,k,k| = 0.

Furthermore we have
lim
n→∞

∑

k≥C logn

n|dn,k,k − d2n,k| = 0

for a proper constant C > 0. Hence it suffices to show that

(16) lim
N→∞

sup
n≥1

∑

N≤k<C logn

n(dn,k,k − d2n,k) = 0

Actually it is known (see [11]) that, uniformly for k ≤ C logn, dn,k has a limit dk and dn,k,k the
limit d2k. However, in order to prove the limiting relation (16) we have to make this relation more
precise.

It was also shown in [11] that the generating function C•(x,w) that takes into account the
degree of the root-vertex, that is,

dn,k =
[xn−1wk]C•(x,w)

[xn−1]C•(x, 1)
,

is given by the equations

D(x,w) = (1 + w) exp

(

xD(x,w)D(x, 1)

1 + xD(x, 1)

)

− 1

B•(x,w) = x

(

D(x,w) − xD(x, 1)

1 + xD(x, 1)
D(x,w)

(

1 +
D(x,w)

2

))

C•(x,w) = eB
•(xC•(x,1),w)

and has a (singular) representation around x = ρ2 ≈ 0.11.021 and w = w0 ≈ 3.482774 of the form

C•(x,w) = G(x,X2, w) +H(x,X2, w) (1− y(x)w)
3/2

,(17)

where the functions G(x, v, w) and H(x, v, w) are analytic at (ρ2, 0, w0), X2 =
√

1− x/ρ2 and

y(x) =
1

w0(xC•(x, 1))
,

with

w0(x) =

(

1 +
1

xD(x, 1)

)

exp

(

− 1

1 + xD(x, 1)

)

− 1.

In particular, y(x) has a square root singularity of the form

y(x) = g(x)− h(x)X2,

where g and h are analytic at x = ρ2 which is inherited from the corresponding square root
singularity of C•(x, 1):

(18) C•(x, 1) = c(x)− d(x)X2.

Lemma 2. Let dk denote the limit limn→∞ dn,k and p(w) =
∑

k≥1 dk the generating function of

dk. Then p(w) is given by

p(w) = − 1

d(ρ2)

(

Gv(ρ2, 0, w) +Hv(ρ2, 0, w)(1− g(ρ2)w)
3/2 +

3

2
H(ρ2, 0, w)h(ρ2)

√

1− g(ρ2)w

)

.

Furthermore we have uniformly for k ≤ C logn (for every constant C > 0)

dn,k = dk +O

(

k1/2

n
w−k

0

)

.
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Proof. First we note that the square root singularity (18) of C•(x, 1) leads to

[xn−1]C•(x, 1) = cn−3/2ρ−n
2 +O

(

n−5/2ρ−n
2

)

for c = d(ρ2)/(2
√
π).

Next we expand C•(x,w) in terms of X2 and obtain

C•(x,w) = G(ρ2, 0, w) +Gv(ρ2, 0, w)X2 +Gvv(ρ2, 0, w)X
2
2 −Gx(ρ2, 0, w)ρ2X

2
2 +O(X3

2 )

+
(

H(ρ2, 0, w) +Hv(ρ2, 0, w)X2 +Hvv(ρ2, 0, w)X
2
2 −Hx(ρ2, 0, w)ρ2X

2
2 +O(X3

2 )
)

× (1− g(ρ2)w)
3/2

(

1 +
3

2

h(ρ2)w

1− g(ρ2)w
X2 +

3

2

g(ρ2)
′ρ2w

1− g(ρ2)w
X2

2

+
3

8

h(ρ2)
2w2

(1 − g(ρ2)w)2
X2

2 +O

(

X3
2

(1− g(ρ2)w)3

))

= G(ρ2, 0, w) +H(ρ2, 0, w)(1− g(ρ2)w)
3/2 + p1(w)X2 + p2(w)X

2
2 +O

(

X3
2

(1− g(ρ2)w)3/2

)

,

where

p1(w) = Gv(ρ2, 0, w) +Hv(ρ2, 0, w)(1 − g(ρ2)w)
3/2 +

3

2
H(ρ2, 0, w)h(ρ2)w

√

1− g(ρ2)w

and a proper function p2(w) (that we will not need explicitly). Note that this expansion is only
valid if the ratio X2/(1 − g(ρ2)w) is bounded. Since we assume that k ≤ C logn this will be
certainly satisfied when we calculate the asymptotic leading part of the (double) Cauchy integral
that computes the coefficient [xn−1wk]. In order to simplify the following calculations we will not
take care of this technical detail, since it is really easy to correct (for more details we refer the
reader to [11]).

The function G(ρ2, 0, w)+H(ρ2, 0, w)(1−g(ρ2)w)
3/2 depends only on w. Hence, the coefficient

[xn−1wk] gets zero for n ≥ 1. Similarly, the coefficient [xn−1wk]p2(x)X2 = 0 for n ≥ 2. The
corresponding coefficient of the error term is then bounded (with the help of the transfer method
by Flajolet and Odlyzko [14], where we again note that we should be slightly more precise at this
point) by

[xn−1wk]O

(

X3
2

(1 − g(ρ2)w)3/2

)

= O
(

n−5/2k1/2ρ−n
2 w−k

0

)

;

recall that w0 = 1/g(ρ2). Finally, the dominant term comes from

[xn−1wk]p1(w)X2 = −d(ρ2)

2
√
π
dkn

−3/2ρ−n
2 +O

(

n−5/2k−1/2ρ−n
2 w−k

0

)

;

recall that p1(w) = −d(ρ2)p(w). Summing up we finally obtain

dn,k =
[xn−1wk]C•(x,w)

[xn−1]C•(x, 1)
= dk +O

(

k1/2n−1w−k
0 + k−1/2n−1w−k

0

)

= dk +O
(

k1/2n−1w−k
0

)

,

which completes the proof of the lemma. �

Similarly, we can handle the probabilities dn,k,k. For this purpose we introduce the probabilities
dn,k,ℓ (that are defined in an obvious way) and the function C••(x,w, t) that takes into account
the degree of the root-vertex (with the help of w) and the degree of a randomly chosen vertex that
is different from the root-vertex (with the help of t). More precisely, we have

dn,k,ℓ =
[xn−2wktℓ]C••(x,w, t)

(n− 1)[xn−1]C•(x, 1)
.

In [11] it is shown that C••(x,w, t) has a (singular) representation locally around (ρ2, w0, w0) of
the form

C••(x,w, t)

=
1

X2

(

H̃1(x,X2, w, t) + H̃2(x,X2, w, t)W + H̃3(x,X2, w, t)T + H̃4(x,X2, w, t)W T
)

,
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where T =
√

1− y(x)w and H̃1, H̃2, H̃3, H̃4 are analytic at (ρ2, 0, w0, w0).
¿From this we obtain the following limiting relation.

Lemma 3. Let dk,ℓ denote the limit limn→∞ dn,k,ℓ and p(w, t) =
∑

k,ℓ≥1 dk,ℓ the corresponding

generating function. Then p(w, t) is given by

p(w, t) = p(w)p(t),

that is, dk,ℓ = dkdℓ. Furthermore we have uniformly for k, ℓ ≤ C logn (for every constant C > 0)

dn,k,ℓ = dk,ℓ +O

(

1

n

(

k1/2

ℓ
+

ℓ1/2

k

)

w−k−ℓ
0

)

.

Proof. We proceed similarly to the proof of Lemma 2. ¿From the local expansion

C••(x,w, t) =
1

X2

(

H̃1(ρ2, 0, w, t) + H̃1v(ρ2, 0, w, t)X2 +O(X2
2 )
)

+
1

X2

(

H̃2(ρ2, 0, w, t) + H̃2v(ρ2, 0, w, t)X2 +O(X2
2 )
)

×
√

1− g(ρ2)w

(

1 +
1

2

h(ρ2)w

1− g(ρ2)w
X2 +O

(

X2
2

(1− g(ρ2)w)2

))

+
1

X2

(

H̃3(ρ2, 0, w, t) + H̃3v(ρ2, 0, w, t)X2 +O(X2
2 )
)

×
√

1− g(ρ2)t

(

1 +
1

2

h(ρ2)t

1− g(ρ2)t
X2 +O

(

X2
2

(1 − g(ρ2)t)2

))

+
1

X2

(

H̃3(ρ2, 0, w, t) + H̃3v(ρ2, 0, w, t)X2 +O(X2
2 )
)

×
√

1− g(ρ2)w
√

1− g(ρ2)t

×
(

1 +
1

2

h(ρ2)w

1− g(ρ2)w
X2 +

1

2

h(ρ2)t

1− g(ρ2)t
X2 +O

(

X2
2

(1− g(ρ2)w)2

)

+O

(

X2
2

(1− g(ρ2)t)2

))

=
q1(w, t)

X2
+ q2(w, t) +O

(

X2

(1− g(ρ2)w)3/2

)

+O

(

X2

(1− g(ρ2)t)3/2

)

for proper functions q1(w, t) and q2(w, t). From this it follows that p(w, t) = 2q1(w, t)/d(ρ2).
Furthermore, it is proved in ([10]) that p(w, t) = p(w)p(t), that is, dk,ℓ = dkdℓ. Finally, by taking
the error terms into account (and by doing a similar analysis as in the proof of Lemma 2) we
obtain

dn,k,ℓ = dk,ℓ +O

(

1

n

(

k1/2

ℓ
+

ℓ1/2

k

)

w−k−ℓ
0

)

uniformly for k, ℓ ≤ C logn. �

By combining Lemma 2 and 3 we get

n(dn,k,k − d2k) = O
(

kw−2k
0

)

and consequently (16). Hence, tightness follows.

4.4. Random Walks on Groups. Lalley [22] considered quasi-nearest neighbour walks on in-
finite free products of groups and proved a local limit theorem for the return probabilities by
translating the problem into an infinite system of functional equations. His approach was based
on what is known as Lyapunov-Schmidt reduction (see [30]) which is done by decomposing the
Banach space into a direct sum of a finite dimensional section and an infinite dimensional one.
In contrast, our approach is based on splitting the system into the first equation and the other
equations and exploiting some spectral properties of the remaining system, followed by a simple
substitution of the solution into the first one.

Lalley’s problem is as follows: he considers a sequence of finite groups Γ1,Γ2, . . . and the free
product Γ = Γ1 ∗Γ2 ∗ · · · defined as the set of all words in (

⋃

i(Γi \ {1}))∗ with the concatination,
followed by reduction, as the group operation. Reduction is done if the last letter of the first
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word and the first letter of the second word are in the same group Γi. Then the two letters
can be substituted by their product to shorten the word. This process is continued as long as
possible. The neutral element of this group is the empty word ε. A random walk on Γ is defined
by Sn = ξ1ξ2 · · · ξn where the steps ξi of the random walk are i.i.d and with common distribution

P{ξ1 = α} = piqα if α ∈ Γi \ {1} and P{ξ1 = ε} = p0

where all pi, i ∈ N and all qα are strictly positive and for all m ≥ 1 the set {n : P{Sn = ε} > 0}
is not contained in a proper subgroup.

Lalley proved the following theorem.

Proposition 5 (Lalley [22]). Let Sn be a quasi nearest neighbor random walk on the infinite free
product Γ = Γ1 ∗ Γ2 ∗ · · · as described above. Then there exist constants C > 0 and 1 < R < ∞
such that P{Sn = ε} ∼ CR−nn−3/2.

The proof is based on the generating functions for the first hitting times: Set τα = min{n ≥
0 : Sn = α} and

yα(x) =
∑

n≥1

P{τα = n}xn,

where we write yi;α(x) instead of yα(x) if α ∈ Γi. Lalley showed that these functions satisfy the
following system of functional equations.

yi;α(x) = x



piqα + p0yi;α(x) +
∑

γ∈Γi\{α}
piqγyi;γ−1α(x) +

∑

j 6=i

∑

γ∈Γi

pjqγyj;γ−1(x)yi;α(x)



 .

Furthermore, he showed that y(x) ∈ ℓ1 and that the Jacobian J (x) of this system is

(19) J (x) = K(x) + L(x) + G(x)− 1

xG(x)
I1,

where

G(x) =
∑

n≥1

P{Sn = ε}xn = 1

/



1− p0x−
∑

α6=ε

pαxyα−1(x)



 ,

K(x) = (K(i,α),(j,β)) with entries

K(i,α),(j,β) = pjqβ−1yi,α(x),

and L(x) = (L(i,α),(j,β)) is a block diagonal with nonzero entries only in the ((i, α), (i, α)) positions
and given by

L(i,α),(i,α) =

{

piqαβ−1 − piqβ−1yi,α(x) if β ∈ Γi \ {1, α},
pjqβ−1yi,α(x) − piqα−1yi,α(x) −

∑

γ∈Γi
piqγyi,γ−1(x) if α = β.

It is easy to check that assumptions (1)–(4) of Theorem 1 are satisfied. The shape (19) of the
Jacobian is precisely as required by assumption (5) where compactness of K(x) and L(x) is shown
in [22, Lemma 4.1]. The alternative representation of the entries of J (x) as sum of probabilities
with positive coefficients which is given in [22, Eq. (4.2)] shows irreducibility and [22, Eq. (4.3)]
proves the positivity condition contained in assumption (6) of Theorem 1.

Thus Theorem 1 shows that the functions yi,α(x) have a square-root type singularity and a
transfer lemma (see [14]) finally reproves Lalley’s result.

5. Proofs

5.1. Auxiliary results. In this section we prove some spectral properties of compact and positive
operators on ℓp spaces and we show that the spectral radius of the Jacobian operator of F (under
the assumptions stated in Theorem 1) is continuous.

Recall that the spectrum of a compact operator is a countable set with no accumulation point
different from zero. Moreover, each nonzero element from the spectrum is an eigenvalue with finite
multiplicity (see for example [19, Chapter III, § 6.7]). The following result is a generalization of
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the Perron-Frobenius theorem on nonnegative matrices and goes back to Krĕın and Rutman [20]
(see [30, Proposition 7.26]).

Lemma 4. Let T = (tij)1≤i,j<∞ be a compact positive operator on ℓp (where 1 ≤ p < ∞) and
assume that r(T ) > 0. Then r(T ) is an eigenvalue of T with nonnegative eigenvector x ∈ ℓp.
Moreover, r(T ) = r(T ∗) is an eigenvalue of T ∗ with nonnegative eigenvector y ∈ ℓq.

Lemma 5. Let A1 be a positive and irreducible operator on ℓp (where 1 ≤ p < ∞) such that An
1

is compact for some integer n ≥ 1. Furthermore let α ≥ 0 be a real number and set A = A1+α Ip.
Then we have r(A1) > 0 and r(A) = r(A1) + α is an eigenvalue of A with strictly positive right
eigenvector x ∈ ℓp and strictly positive left eigenvector y ∈ ℓq.

Proof. First we show that r(A1) > 0. Since A1 is irreducible, there exists an integer m such that

d = (Am
1 )11 > 0.

Then we have ‖Amn
1 ‖ ≥ dn for all n ≥ 1, where ‖·‖ denotes the operator norm that is induced

by the p-norm on ℓp (consider Am
1 e1, where e1 = (1, 0, 0, . . .)). Gelfand’s formula implies r(A) =

limn→∞ ‖An
1 ‖1/n ≥ d1/m. Since

σ(An
1 ) =

(

σ(A1)
)n
,

we have that r := r(A1) is equal to r(An
1 )

1/n. Lemma 4 implies that rn is an eigenvalue of An
1

and there exist vectors x̃ ∈ ℓp and ỹ ∈ ℓq such that

An
1 x̃ = rnx̃, and ỹAn

1 = rnỹ.

Thus we have that r is also in the spectrum of A1 and r(A) = r(A1) + α > 0. (Note, that
σ(A) = σ(A1) + α.) In the following we show that

x :=

n−1
∑

i=0

riAn−1−i
1 x̃

is a strictly positive right eigenvector of A1 to the eigenvalue r. It is easy to see that A1x = rx. We
clearly have that x is nonnegative and x 6= 0. Thus, there exists an index j such that xj > 0. Let
k ≥ 1. Since A1 is irreducible, there exists an integer m such that (Am

1 )kj > 0. Since Am
1 x = rmx,

we obtain

xk =
1

rm
(Am

1 x)k =
1

rm

∞
∑

ℓ=1

(Am
1 )kℓ xℓ >

1

rm
(Am

1 )kj xj > 0.

Furthermore, one can show the same way that y :=
∑n−1

i=0 riỹAn−1−i
1 is a strictly positive left

eigenvector of A1 to the eigenvalue r. �

Proposition 6. Let 1 ≤ p < ∞ and A = A1 + α Ip, C = C1 + γ Ip be operators on ℓp with
α ∈ R+, γ ∈ C and such that there exists an integer n such that An

1 and Cn
1 are compact.

Furthermore let A1 be positive and irreducible such that |C1| ≤ A1 and |γ| ≤ α but |C1|+|γ Ip | 6= A.
Then we have

r(C) < r(A).

Proof. Lemma 5 implies that r(A) ≥ r(A1) > 0. If r(C1) = 0, we have r(C) = |γ| and
r(A) = r(A1) + α > α ≥ |γ| = r(C).

Assume now that r(C) > 0. Since Cn
1 is compact, there exists an eigenvector z ∈ ℓp to some

eigenvalue s with |s| = r(C1). Since r(C) ≤ r(C1) + |γ|, we get

r(C)|z| ≤ (r(C1) + |γ|)|z| = |C1z|+ |γz| ≤ (|C1|+ |γ Ip |)|z| ≤ A|z|.
If we assume that r(A) ≤ r(C), then we have

r(A)|z| ≤ A|z|.(20)

Next we show that this inequality can only hold true if |z| = 0 or if |z| is strictly positive and a
right eigenvector of A to the eigenvalue r(A) (cf. [28, Lemma 5.2]): If |z| = 0, then (20) holds
trivially true. Hence we assume that |z| 6= 0. Lemma 5 implies that there exists a strictly positive
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left eigenvector y ∈ ℓq associated to the operator A. Hölders inequality and the fact that |z| ∈ ℓp

imply

1

r(A)
yA|z| = y · |z| =

∞
∑

n=1

xnαn < ∞.

Thus we have y · (A|z| − r(A)|z|) = 0 and since y is strictly positive this can only hold true if |z|
is an eigenvector of A to the eigenvalue r(A). The same way as in the proof of Lemma 5 one can
now show that the irreducibility of A1 implies the strict positivity of the eigenvector |z|.

It remains to show that r(A) ≤ r(C) yields a contradiction. Since z is an eigenvector (of Cn
1 )

we clearly have |z| 6= 0. Hence, let us assume that |z| is a strictly positive eigenvector of A. We
obtain

A|z| = r(A)|z| ≤ r(C)|z| ≤ (|C1|+ |γ Ip |)|z| ≤ A|z|.
Thus, we have (A − (|C1|+ |γ Ip |))|z| = 0. But since |z| is strictly positive and A ≥ |C1|+ |γ Ip |
but A 6= |C1|+ |γ Ip |, this is impossible. �

Remark 5. Let A be given as in Proposition 6. Furthermore, let B be obtained through eliminating
the first row and first column of A, that is B = B1 + α Ip, where B1 = ((B1)ij)1≤i,j<∞ is defined
by (B1)ij = (A1)i+1 j+1. Then we have

r(B) < r(A).

In order to see this, note that B is also compact, r(A) = r(A1) + α and r(B) = r(B1) + α. It is
easy to show that Proposition 6 (with α = γ = 0) implies r(B1) < r(A1), which shows the desired
result.

Lemma 6. Let the function F satisfy the assumptions of Theorem 1. Then we have that the map

(x,y) 7→ r

(

∂F

∂y
(x,y,0)

)

is continuous for all positive (x,y) ∈ B × U . Furthermore, if there exists an arbitrary point
(x̃, ỹ, ṽ) ∈ B × U × V such that

r

(

∂F

∂y
(x̃, ỹ, ṽ)

)

< 1,

then the same holds true in a neighborhood of (x̃, ỹ, ṽ).

Proof. First note, that (x,y) 7→ ∂F
∂y (x,y,0) = A(x,y) + α(x,y) is continuous. Let us fix some

positive (x,y) ∈ B×U (in the following, we suppress x and y for brevity). The positivity properties
of F and Lemma 5 imply that r (∂F/∂y) = r(A)+α. (Note, that we have σ(∂F/∂y) = σ(A)+α.)
Furthermore, we have (compare with the proof of Lemma 5)

r(A)n = r(An).

Thus it remains to show that r(An) is continuous for positive (x,y). Let r(An) > 0. Since An is
compact and isolated eigenvalues with finite multiplicity must vary continuously (see [19, Chapter
IV, § 3.5]), we obtain the desired result. If r(An) = 0, then the continuity follows from the upper
semi-continuity of the spectrum of closed operators (see [19, Chapter IV, § 3.1, Theorem 3.1]).

Now suppose that there exists a point (x̃, ỹ, ṽ) ∈ B × U × V such that

r := r

(

∂F

∂y
(x̃, ỹ, ṽ)

)

< 1.

This means, that the spectrum of (∂F/∂y)(x̃, ỹ, ṽ) is contained in a ball with radius r. We can use
again [19, Chapter IV, § 3.1, Theorem 3.1] (the upper semi-continuity of the spectrum of closed
operators) in order to deduce that there exists a neighborhood D of (x̃, ỹ, ṽ) such that for all
(x,y,v) ∈ D the spectrum of (∂F/∂y)(x,y,v) is contained in a ball with radius 1− (1− r)/2. In
particular, it follows that

r

(

∂F

∂y
(x,y,v)

)

≤ 1− (1 − r)/2 < 1.

This proves the second assertion of Lemma 6. �
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5.2. Proof of Theorem 1 and Corollary 1.

Proof of Theorem 1. First, we fix the vector v = 0. The implicit function theorem for Banach
spaces (see for example [6, Theorem 15.3]) implies that there exists a unique analytic solution
y = y(x,0) of the functional equation (4) in a neighborhood of (0,0). It also follows from the
Banach fixed-point theorem that the sequence y(0) ≡ 0 and

y(n+1)(x,0) = F(x,y(n)(x,0),0), n ≥ 1,

converges uniformly to the unique solution y(x,0) of (4). Since F is positive for v = 0, we get
that y(x,0) is positive. Next we show that

y0 = F(x0,y0,0),

r

(

∂F

∂y
(x0,y0,0)

)

= 1,(21)

holds true. The first equation follows from analyticity. Since F is positive, we obtain that the
Jacobian operator (evaluated at x, y(x,0) and 0) is positive. Lemma 6 and Proposition 6 imply
that the function

x 7→ r

(

∂F

∂y
(x,y(x,0),0)

)

is continuous and strictly monotonically increasing. We get for each x < x0 that

r

(

∂F

∂y
(x,y(x,0),0)

)

< 1.

In order to see this note that implicit differentiation yields
(

I − ∂F

∂y
(x,y(x,0),0)

)

∂y

∂x
(x,0) =

∂F

∂x
(x,y(x,0),0).(22)

Suppose that the spectral radius of the positive and irreducible Jacobian operator at (x,y(x,0),0)
for some x < x0 is equal to 1. Lemma 5 implies that there exists a strictly positive left eigenvector
to the eigenvalue 1. Multiplying this vector to equation (22) from the left yields a contradiction
since ∂F

∂x (x,y(x,0),0) 6= 0 (note that F(x,0,0) 6≡ 0 and that F is positive). Since y cannot
be analytically continued at the point x0 and since (x0,y(x0)) = (x0,y0) lies in the domain of
analyticity of F, we obtain that (21) holds true. Indeed, otherwise the implicit function theorem
would imply that there exists an analytic continuation.

Next, we divide equation (4) up into two equations (we project equation (4) onto the subspace
spanned by the first standard vector and onto its complement):

y1 = F1(x, y1,y,0),(23)

y = F(x, y1,y,0),(24)

where y = Sℓ y, F = SℓF and Sℓ denotes the left shift defined by Sℓ(x1, x2, x3, . . .) = (x2, x3, . . .).
Observe, that the Jacobian operator of F (with respect to y) can be obtained by deleting the first
row and column of the matrix of the Jacobian operator of F. The tuple (x0, (y0)1,y0) is a solution
of (23) and (24). We can employ the implicit function theorem and obtain that there exists a
unique positive analytic solution y = y(x, y1,0) of (24) with y(0, 0,0) = 0. For simplicity, we use
the abbreviation y01 = (y0)1 and y0 = Sℓy0. Set

A =
∂F

∂y
(x0,y0,0) and B =

∂F

∂y
(x0, y01,y0,0).

Proposition 6 and Remark 5 implies that r(B) < r(A) = 1. Thus, we can employ the implicit
function theorem another time (at the point (x0, y01,y0,0)) and obtain that y(x, y1,0) is also
analytic in a neighborhood of (x0, y01,0). Furthermore, we have y(x0, y01,0) = y0. If we insert
this function into equation (23), we get a single equation

y1 = F1(x, y1,y(x, y1,0),0)
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for y1 = y1(x,0). The function G(x, y1) = F1(x, y1,y(x, y1,0),0) is an analytic function around
(0, 0) with G(0, y1) = 0 and such that all Taylor coefficients of G are real and non-negative (this
follows from the positivity of F and y(x, y1,0)). Furthermore, the tuple (x0, y01,0) belongs to the
region of convergence of G(x, y). In what follows, we show that (x0, y01,0) is a positive solution
of the system of equations

y1 = G(x, y1),

1 = Gy1
(x, y1),

with Gx(x0, y01) 6= 0 and Gy1y1
(x0, y01) 6= 0.

In order to see that Gy1
(x0, y01) is indeed equal to 1, note that the classical implicit function

theorem otherwise implies that there exists an analytic solution of y1 = G(x, y1) locally around
x0. Inserting this function into equation (24), we obtain that there also exists an analytic solution
y(x,0) of (4) in a neighborhood of x0. As in (22), implicit differentiation yields a contradiction
since the spectral radius of the (positive and irreducible) Jacobian operator of F at (x0,y0,0) is
equal to 1.

Next suppose that Gx(x0, y01) = 0. The positivity implies that the unique solution of y1 =
G(x, y1) is given by y1(x,0) ≡ 0. Consider the solution y(x,0) of (4) for some real x > 0 in the
vicinity of 0. Since the spectral radius of the Jacobian operator is smaller than 1 (for x small), we
can express the resolvent with the aid of the Neumann series, i.e., we have (cf. (22))

∂y

∂x
(x,0) =

(

I − ∂F

∂y
(x,y(x),0)

)−1
∂F

∂x
(x,y(x),0)

=
∑

n≥0

(

∂F

∂y
(x,y(x),0)

)n
∂F

∂x
(x,y(x),0).

Since ∂F/∂y is irreducible and ∂F/∂x 6= 0 we obtain that no component of the solution y(x,0)
is a constant function. In particular, y1(x,0) cannot be constant.

Finally, if Gy1y1
(x0, y01) = 0, it follows from the positivity of G that G is a linear function in

y1. But then the conditions G(x0, y01) = y01 and Gy1
(x0, y01) = 1 imply

y01 = G(x, y01) = G(x, 0) +Gy1
(x, y01) · y01 = G(x, 0) + y01.

Thus we have in this case that G(x, 0) = 0. But then (since Gy1
(x, y1) = G(x, 1) and G(0, y1) = 0),

the only solution of

y1 = G(x, y1) = Gy1
(x, y01) · y1

is y1(x,0) ≡ 0. As we have seen before, this is impossible.
It follows from [8, Theorem 2.19] that there exists a unique solution ỹ(x1,0) of the equation

y1 = G(x, y1) with ỹ1(0,0) = 0. It is analytic for |x| < x0 and there exist functions g1(x,0) and
h1(x,0) that are analytic around x0 such that ỹ1(x,0) has a representation of the form

ỹ1(x,0) = g1(x,0)− h1(x,0)

√

1− x

x0
(25)

locally around x0 with h1(x0,0) > 0 and g1(x0,0) = y01. Due to the uniqueness of the solution
y(x,0) of the functional equation (4), we have that the first component of y(x,0) coincide with
ỹ1(x,0), i.e., y1(x,0) = ỹ1(x,0). Moreover, we get y(x, y1(x,0),0) = (y2(x,0), y3(x,0), . . .).
More precisely, the analyticity of y implies that there exist an s > 0 and vectors an(x) :=
an(x, g1(x,0),0) ∈ ℓp such that

∑

n ‖an(x)‖ sn < ∞ and

y(x, y1,0) = y(x, g1(x,0),0) +
∑

n≥1

an(x)

n!

(

(y1 − g1(x,0))
n
)

,(26)
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and we obtain

y(x, y1(x,0),0) = y(x, g1(x,0),0) +
∑

n≥1

(

1− x
x0

)n

(2n)!
a2n(x)

(

h1(x,0)
2n
)

−
√

1− x

x0

∑

n≥0

(

1− x
x0

)n

(2n+ 1)!
a2n+1(x)

(

h1(x,0)
2n+1

)

= g(x,0)− h(x,0)

√

1− x

x0
.

In particular, we get the desired representation

y(x,0) = g(x,0)− h(x,0)

√

1− x

x0

with g(x,0) = (g1(x,0),g(x,0)) and h(x,0) = (h1(x,0),h(x,0)). Furthermore, we have the
property h1(x,0) > 0. Since the same result can be obtained when equation (4) is projected
onto the subspace spanned by the i-th standard vector and onto its complement, we obtain that
hi(x,0) > 0, either. (Note, that the reasoning of Remark 5 also works when the i-th row and
column of the Jacobian matrix is deleted.)

Until now, we have shown that the statement of Theorem 1 is true for v = 0. Next, we prove
that the solution y(x,v) is also analytic in v. We have seen before, that

r

(

∂F

∂y
(x0, (y0)1,y0,0)

)

< 1.

It follows, that there exists a unique solution y(x, y1,v) of the function equation

y = F(x, y1,y,v)

for all (x,y1,v) in a neighborhood of (x0, (y0)1,0). Inserting this solution into (23) (but this time
with the additional variable v), we have already seen that the functional equations

y1 = G(x, y1,v),

1 = Gy1
(x, y1,v),

withG(x, y1,v) = F1(x, y1,y(x, y1,v),v) have a positive solution (x0, (y0)1,0). Furthermore, note
that Gx(x0, (y0)1,0) 6= 0 and Gy1y1

(x0, (y0)1,0) 6= 0. Since we have (evaluated at (x0, (y0)1,0))
that

det

(

−Gx 1−Gy1

−Gy1,x −Gy1,y1

)

= Gx ·Gy1y1
6= 0,

the implicit function theorem implies that there exist unique analytic functions x0(v) and y1(v) in
a neighborhood of 0, such that we have y1(v) = G(x0(v), y1(v),v) and Gy1

(x0(v), y1(v),v) = 1.
In particular, we have x0(0) = x0 and y1(0) = (y0)1. ¿From continuity it follows that for any v

in a neighborhood of 0 we have Gx(x0(v), y1(v),v) 6= 0 and Gy1y1
(x0(v), y1(v),v) 6= 0. Thus, the

Weierstrass preparation theorem implies that there exist analytic functions g1(x,v) and h1(x,v)
such that

y1(x,v) = g1(x,v) − h1(x,v)

√

1− x

x0(v)
(27)

(see for example the proof of [8, Theorem 2.19]). Inserting this solution into y(x, y1,v) (cf. 26),
this finally proves (5).

In what follows, we show that x0(v) is the only singularity of y(x,v) on the circle |x| = x0(v).
Recall that by assumption, there exist two integers n1 and n2 that are relatively prime such that
[xn1 ]y1(x,0) > 0 and [xn2 ]y1(x,0) > 0. In order to show the desired result, it suffices to show
that

Gy1
(x,y1(x,v),v) 6= 1(28)
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for |x| = x0(v) but x 6= x0(v) (compare with the proof of [8, Theorem 2.19]). Let us first study the
case v = 0. Since y1(x,0) is positive, we clearly have |y1(x,0)| ≤ y1(|x|,0). If equality occurs,
then

xn1 = |x|n1 = xn1

0 and xn2 = |x|n2 = xn2

0 .

Since n1 and n2 are relatively prime we obtain x = x0, which is impossible. Thus, we actually
have |y1(x,0)| < y1(|x|,0). The positivity of G implies

|Gy1
(x,y1(x,0),0)| ≤ Gy1

(|x|, |y1(x,0)|,0)
< Gy1

(|x|,y1(|x|,0),0) = Gy1
(x0, (y0)1,0) = 1.

¿From continuity we obtain that |Gy1
(x,y1(x,v),v)| < 1 and (28) follows. Thus, there exists an

analytic continuation of y1(x,v) locally around x. ¿From positivity, it follows that
∣

∣

∣

∣

∂F

∂y
(x, (y(x,0))1,y(x,0),0)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∂F

∂y
(x0, y01,y0,0)

∣

∣

∣

∣

.

Employing Proposition 6 yields

r

(

∂F

∂y
(x′,y(x′,v),v)

)

< 1

for x′ = x and v = 0. Lemma 6 implies that the same holds true for all (x′,v) in a neighborhood
of (x,0). The implicit function theorem implies that we can insert the function y1(x,v) into
the solution of equation (24). We obtain that x0(v) is the only singularity of y(x,v) on the
circle |x| = x0(v) and there exist constants δ and η such that y(x,v) is analytic in {x : |x| <
x0(v) + η, | arg(x/x0(v)− 1)| > δ} (note, that locally around x0(v) the representation (27) yields
an analytic continuation). �

Proof of Corollary 1. The first part of the proof is similar to (26). Since G(x,y,v) is analytic in
(x0(0),y(x0(0),0),0) there exist an s > 0 and continuous symmetric n-linear forms An(x,v) :=
An(x,g(x,v),v) (defined on the the right space) such that

∑

n≥1

‖An(x,v)‖ sn < ∞

and

G(x,y,v) = G(x,g(x,v),v) +
∑

n≥1

An(x,v)

n!

(

(y − g(x,v))n
)

.

Note, that

A1(x,v)(y) =
∂G

∂y
(x,g(x,v),v) ∈ ℓq

and

A1(x0(0),0) =
∂G

∂y
(x0(0),y(x0(0),0),0) 6= 0

by assumption. We can write

G(x,y(x,v),v) = G(x,g(x,v),v) +
∑

n≥1

(

1− x
x0(v)

)n

(2n)!
A2n(x,v)

(

h(x,v)2n
)

−
√

1− x

x0(v)

∑

n≥0

(

1− x
x0(v)

)n

(2n+ 1)!
A2n+1(x,v)

(

h(x,v)2n+1
)

= ḡ(x,v) − h̄(x,v)

√

1− x

x0(v)
.

Moreover, we have that ḡ and h̄ are analytic and

h̄(x0(0),0) = A1(x0(0),0) · h(x0(0),0) 6= 0.
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(Recall that h ∈ ℓp and hi(x0(0),0) > 0 for all i ≥ 1, see Theorem 1). The analyticity of x0(v)
and G(x,y(x,v),v) follows from Theorem 1. Using the transfer lemma of [14] (the region of
analyticity ∆ from Theorem 1 is uniform in v) we finally obtain that

[xn]G(x,y(x,v),v) =
h̄(x0(v),v)

2
√
π

x0(v)
−nn−3/2

(

1 +O

(

1

n

))

uniformly for v in a neighborhood of 0. (Note, that the part coming from g(x,v) is exponentially
smaller than the stated term.) �

5.3. Proof of Theorem 2 and Corollary 2. Recall that G(x,y,v) is the generating function
of some combinatorial object of the form

G(x,y(x,v),v) =

∞
∑

n=0

cn(v)x
n,

where y(x,v) satisfies a functional equation

y = F(x,y,v)

with y(0,v) = 0 such that the assumptions of Theorem 1 are satisfied. Moreover, Xn denotes an
ℓp-valued (1 ≤ p < ∞) random variable defined on some probability space (Ω,F ,P) with

E
[

eitℓ·Xn
]

=
cn(itℓ)

cn(0)

for all ℓ ∈ ℓq.

Proof of Theorem 2. We have ℓ ∈ ℓq. Corollary 1 implies that uniformly in t (for small values of
t) that

cn(itℓ) =
h̄
(

x0(itℓ), itℓ
)

2
√
π

x0(itℓ)
−nn−3/2

(

1 +O

(

1

n

))

,

where h̄ and x0 are analytic functions . Thus we get

E
[

eitℓ·Xn
]

=
cn(itℓ)

cn(0)
=

h̄
(

x0(itℓ), itℓ
)

h̄(x0(0),0)

(

x0(0)

x0(itℓ)

)n(

1 +O

(

1

n

))

.

Set

Φℓ(s) := x0(sℓ), fℓ(s) = log

(

Φℓ(0)

Φℓ(s)

)

, and gℓ(s) = log

(

h̄
(

Φℓ(s), sℓ
)

h̄(Φℓ(0),0)

)

.

These functions are analytic in a neighborhood of s = 0 and we have fℓ(0) = gℓ(0) = 0 and
Φℓ(0) = x0(0). We obtain

E
[

eitℓ·Xn
]

= efℓ(it)·n+gℓ(it)

(

1 +O

(

1

n

))

= eitµℓn−σ2

ℓ
n t2

2
+O(nt3)+O(t)

(

1 +O

(

1

n

))

,

where µℓ = f ′
ℓ(0) and σ2

ℓ
= f ′′

ℓ (0). Replacing t by t/
√
n we get

E

[

eitℓ·Xn/
√
n
]

= eitµℓ

√
n−σ2

ℓ

t2

2
+O(t3/

√
n)

(

1 +O

(

1

n

))

.(29)

By definition, ℓ · EXn = E[ℓ · Xn]. If we set χn(t) = Eeitℓ·Xn , then E[ℓ · Xn] = −i · χ′
n(0). By

Cauchy’s formula, we have

−i · χ′
n(0) = − 1

2π

∫

|u|=ρ

χn(u)

u2
du.
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Setting ρ = 1/n, we get

E[ℓ ·Xn] = − 1

2π

∫

|u|=1/n

1 + iuµℓn+ iug′
ℓ
(0) +O

(

u2
)

u2

(

1 +O

(

1

n

))

du

=
1

2πi

∫

|u|=1/n

µℓn

u
du+O(1).

Hence, ℓ · EXn = µℓn+O(1). Setting

Yn :=
Xn − EXn√

n
,

we finally obtain (see (29))

lim
n→∞

E
[

eitℓ·Yn
]

= e−
σ2

ℓ
t2

2 .

In particular, this implies that Yn weakly converges to a centered Gaussian random variable with
variance σ2

ℓ
. It remains to calculate µℓ and σ2

ℓ
: Since x0 : ℓq → C is an analytic function, it

follows that there exists a vector ∂x0/∂v : ℓq → ℓp ≈ (ℓq)∗ (the first derivative) and an operator
∂2x0/∂v

2 : ℓq → L(ℓq, ℓp) (the second derivative) such that

x0(h) = x0(0) +
∂x0

∂v
(0) · h+

1

2

(

∂2x0

∂v2
(0)

)

(h) · h+ o(‖h‖2)

in a neighborhood of 0. Note, that the second derivative can be associated with the infinite
dimensional Hessian matrix A = (aij)1≤i,j<∞ via

(

∂2x0

∂v2
(0)

)

(h) · h = hHAh,

where

aij =
∂2x0

∂vivj
(0).

We obtain

µℓ = − 1

Φℓ(0)
Φ′

ℓ(0) = − 1

Φℓ(0)
· ∂x0

∂v
(0) · ℓ,

and

σ2
ℓ =

Φ′
ℓ
(0)2

Φℓ(0)2
− Φ′′

ℓ
(0)

Φℓ(0)
= µ2

ℓ −
Φ′′

ℓ
(0)

Φℓ(0)
= µ2

ℓ −
1

Φℓ(0)

(

∂2x0

∂v2
(0)

)

(ℓ) · ℓ.

If we define B ∈ L(ℓq, ℓp) by

1

Φℓ(0)2

(

∂x0

∂v
(0) · ∂x0

∂v
(0)T

)

− 1

Φℓ(0)
A,

then we have

σ2
ℓ
= ℓ

HBℓ.

This finally proves Theorem 2. �

Proof of Corollary 2. Set Yn = (Xn − EXn)/
√
n. Since the set of laws of (Yn)n≥1 is tight, we

know from Prohorov’s theorem (see [3, Chapter I, Section 5]) that the set of laws of (Yn)n≥1 is
a relatively compact set. In particular, it follows that there exists a subsequence (Ynk

)k≥1 that
weakly converges to some random variable X. Let χℓ(t) be the characteristic function of ℓ · X,
that is, χℓ(t) = Eeitℓ·X. ¿From weak convergence of Ynk

, we obtain on the one hand that

lim
k→∞

E
[

eitℓ·Ynk

]

= χℓ(t)

for all ℓ ∈ ℓq. One the other hand, Theorem 2 implies that there exist constants σ2
ℓ
such that

lim
n→∞

E
[

eitℓ·Yn
]

= e−
σ2

ℓ
t2

2
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for all ℓ ∈ ℓq. Hence we see that we actually have

χℓ(t) = e−
σ2

ℓ
t2

2 ,

and thus, X is a centered Gaussian random variable. Moreover, we obtain that not only (Ynk
)k≥1

but (Yn)n≥1 weakly converges to X. Since the distribution of X is uniquely determined by the
distributions of ℓ ·X, ℓ ∈ ℓq, we obtain that X is uniquely determined by the operator B stated
in Theorem 2. �

5.4. Proof of Theorem 3. For the sake of brevity we just give an outline of the proof. Corollary 2
implies that we only have to show the tightness condition. Theorem 6.2.3 of [17] states that

tightness follows from the property (9). First of all we know by assumption that X
(j)
n = 0 if

j > cn. Hence the condition (9) reduces to

(30) lim
N→∞

sup
n≥1

∑

N<j≤cn

σ2
n,j = 0

where σ2
n,j denote the variance of the normalized random variable (X

(j)
n −EX

(j)
n )/

√
n. Now assume

that we know that σ2
n,j is asymptotically given by

(31) σ2
n,j = σ2

j +
τj
n

+O(n−2),

where
∑

j≥0

σ2
j < ∞, and τj = o(1) (j → ∞),

and the error term is uniform for all j ≥ 0. Then it is clear that (31) implies (30) and, hence,
tightness follows. By Theorem 2.23 of [8] we already know that we have an expansion of the form
(31) and that σ2

j is given by

σ2
j =

Fvj

x0Fx
+

(

Fvj

x0Fx

)2

+
1

x0F 3
xFyy

(

F 2
x (FyyFvjvj − F 2

yvj )− 2FxFvj (FyyFxvj − FyxFyvj )

+ F 2
vj (FyyFxx − F 2

yx)
)

.

By assumption it is then clear that the sum
∑

σ2
j is convergent. In a similar (but slightly more

involved) way it is also possible to calculate τj explicitly, from which we easily deduce the conver-
gence τj → 0.

5.5. Proof of Theorem 4. In this section we prove Theorem 4. Let us recall that F can be
written as

F(x,y,v) = L(x,v)y + b(x,v),

where L(x,0) = A(x) + α(x) Ip, α is an analytic function, and there exists an integer n such that
An is compact. Furthermore, A(x) is irreducible and strictly positive for x > 0 and α and b(x,0)
has positive Taylor coefficients. Moreover, F(0,y,v) = 0 for all y and v in a neighborhood of 0.

In order to show the desired result we proceed as in the proof of Theorem 1. Let us first assume
that v = 0 (in the following, we suppress the variable v = 0 in order to make text more readable).
The implicit function theorem (and the Banach fixed-point theorem) implies that there exists a
unique analytic and positive solution y(x) of the function equation y = F(x,y), y(0) = 0. Since
F is linear, this can be also deduced from the following reasoning: Since r(L(0)) = 0 (note, that
F(0,y) = 0 for all y in a neighborhood of 0), we see that the solution y(x) is given by

y(x) = (Ip −L(x))−1b(x) =

∞
∑

k=0

L(x)kb(x).

Here we also used that the inverse of (Ip −L(x)) can be represented by the corresponding Neumann
series as long as r(L(x)) < 1. Since L and b is positive, the solution y is also positive. Note, that
the solution exists for all x < x0 and that there is a singularity at x0.
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In what follows we split the functional equation y = F(x,y) up into two equations (cf. (23)
and (24)). Since F is linear, this gives

y1 = l11(x) · y1 + lr(x) · y + b1(x)(32)

y = y1lc(x) + L(x)y + b(x),(33)

where we denote by lr the vector in ℓp associated to the first row of the infinite matrix L (that is,
lTr = eT1 L), by lc the first column of L, and by l11 the element eT1 Le1. The operator L is defined
as the operator SℓLSr, where Sℓ is the left shift- and Sr is the right shift operator; moreover we
set a = Sℓa. Note that the matrix representation of L is equal to the matrix representation of L
without the first row and column.

Since r(L(x0)) = 1, we obtain (cf. Remark 5) that r(L(x0)) < 1. Thus, the solution of (33) is
given by

y(x,y1) = (Ip −L(x))−1
(

y1lc(x) + b(x)
)

.

Inserting this solution into Equation (32) gives

y1(x) =
lr(x)(Ip −L(x))−1b(x) + b1(x)

1− l11(x) − lr(x)(Ip −L(x))−1lc(x)
.

We finally obtain

y(x) = (Ip −L(x))−1

(

lr(x)(Ip −L(x))−1b(x) + b1(x)

1− l11(x) − lr(x)(Ip −L(x))−1lc(x)
· lc(x) + b(x)

)

.

Set γ(x) = l11(x) + lr(x)(Ip −L(x))−1lc(x) and define k(x) by

k1(x) = lr(x)(Ip −L(x))−1b(x) + b1(x),

and

k(x) = (Ip −L(x))−1
(

(

lr(x)(Ip −L(x))−1b(x) + b1(x)
)

· lc(x) + (1− γ(x)) · b(x)
)

.

Then we have

y(x) =
k(x)

1− γ(x)
.

Note, that k(x) is analytic for x in a neighborhood of x0. Note furthermore, that γ(x) is also
analytic for x in a neighborhood of x0 and that it is a positive function, and thus, a monotonically
increasing function (again, this can be shown with the help of the Neumann series). We also
know that γ(x0) = 1 since otherwise (Ip −L(x0)) would be an invertible operator (contrary to
r(L(x0)) = 1). Finally we set (for x 6= x0)

f(x) =
x0 − x

1− γ(x)
· k(x)

x0
.

We obtain that

y(x) =
1

1− x
x0

f(x).

In order to finish the proof of Theorem 4 for v = 0 it suffices to show that f(x) can be analytically
continued to x0 and that f(x0)j 6= 0 for all j. First note that

lim
x→x0

f(x) = lim
x→x0

x0 − x

γ(x0)− γ(x)
· k(x)

x0
=

1

γ′(x0)
· k(x0)

x0
.(34)

This implies that for every ℓ ∈ ℓq the limit

lim
x→x0

ℓ · f(x)

exists. Riemann’s theorem on removable singularities now implies that ℓ · f(x) can be continued
analytically to x0 for all ℓ ∈ ℓq which finally implies that f(x) can be analytically continued to x0.
Since γ′(x0) 6= 0 (γ is positive) and k(x0)j 6= 0 for all j (this follows from irreducibility with the
help of the Neumann series), we have also proved that f(x0)j 6= 0 for all j.
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In the second part of the proof we show that the result holds also true for v in a neighborhood
of 0. First we see that Equation (33) can also be solved with the additional parameter v. Indeed,
the analyticity of F and Lemma 6 imply that r(L(x0,v)) < 1 for all v in a neighborhood of 0.
Inserting this solution into Equation (32), we obtain in the same way as above that

y(x,v) =
k(x,v)

1− γ(x,v)
.

for some analytic function k(x,v) and for γ(x,v) = l11(x,v) + lr(x,v)(Ip −L(x,v))−1lc(x,v).
Since γ′(x0,0) > 0, the implicit function theorem implies that there exists an analytic function
x0(v) in a neighborhood of 0 such that

γ(x0(v),v) = 1.

Thus we obtain with

f(x) =
x0(v)− x

1− γ(x,v)
· k(x,v)
x0(v)

, x 6= x0(v),

that

y(x,v) =
1

1− x
x0(v)

f(x,v).

As before, we see that f can be continued analytically to x0(v). This finally proves Theorem 4.
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