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To the memory of Eduard Wirsing,
an inspiring mathematician

Abstract We show that in any Piatetski-Shapiro sequence (⌊𝑛𝑐⌋)𝑛 with 𝑐 in
(1, +∞)\N, there exist long subsequences of consecutive elements no pair of which
are coprime, whereas for any 𝑐 in (1, 2), there exist infinitely many 𝑛 such that all the
elements in {⌊𝑛𝑐⌋, ⌊(𝑛 + 1)𝑐⌋, . . . , ⌊(𝑛 + 𝐻)𝑐⌋} are pairwise coprime for 𝐻 almost
as large as min(𝑐 − 1, 1 − 𝑐/2) log 𝑛.
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1 Introduction

We pursue the study of the arithmetical properties of Piatetski-Shapiro sequences of
integers, i.e. sequences (⌊𝑛𝑐⌋)𝑛, where 𝑐 is a non integer real number larger than one
(see [1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16]). The arithmetical property we are
looking at here is the coprimality of consecutive elements. The two extreme cases
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we are looking at are, first, whether no pair of elements (⌊(𝑛 + ℎ)𝑐⌋, ⌊(𝑛 + 𝑘)𝑐⌋),
with 0 ≤ ℎ < 𝑘 ≤ 𝐻, are coprime for some 𝑛 and 𝐻 as large as possible, or whether
all such pairs are coprime.

In [4], expanded in [5], with L. Spiegelhofer and A. Shubin we studied the
occurence of blocks of consecutive elements in the sequence of the residues of ⌊𝑛𝑐⌋
modulo an integer 𝑚. Here, we build on our previous approach to show that there
are very long sets of consecutive values of 𝑛 such that the respective values of ⌊𝑛𝑐⌋
are even: such even numbers are obviously not coprime. More precisely, we have

Theorem 1.1 Let 𝑐 ∈ (1,∞)\N. There exist a positive 𝜅 and infinitely many integers
𝑛 such that for any integer ℎ in [0, 𝑛𝜅 ], the numbers ⌊(𝑛 + ℎ)𝑐⌋ are even.

On the other hand, we expect that for any 𝑐 in (1,∞)\N, there are arbitrarily
long chains of consecutive elements in the Piatetski-Shapiro sequence (⌊𝑛𝑐⌋)𝑛 the
elements of which are pairwise coprime. However, here the classical harmonic
analysis approach to the question does not seem powerful enough. But, when 𝑐 is in
(1, 2), an ad hoc combinatorial approach permits to prove the following

Theorem 1.2 Let 𝑐 be in (1, 2) and 0 < 𝛼 < min(𝑐 − 1, 1 − 𝑐/2). There exist
infinitely many 𝑛 such that, for any integer 𝐻 ≤ 𝛼 log 𝑛, all the elements in the
sequence {⌊𝑛𝑐⌋, ⌊(𝑛 + 1)𝑐⌋, . . . , ⌊(𝑛 + 𝐻)𝑐⌋} are pairwise coprime.

2 Proof of Theorem 1.1

2.1 A little lemma

Lemma 1.1 Let 𝑥, 𝑢 and 𝑣 be real numbers with 0 ≤ 𝑢 ≤ 𝑣 < 1 and 𝑞 and 𝑎 be
integers with 0 ≤ 𝑎 < 𝑞. The two following properties are equivalent

{𝑥} ∈ [𝑢, 𝑣] and ⌊𝑥⌋ ≡ 𝑎mod 𝑞 (1)

and {
𝑥

𝑞

}
∈

[
𝑎 + 𝑢
𝑞

,
𝑎 + 𝑣
𝑞

]
. (2)

Proof The first part of (1) is equivalent to

𝑥

𝑞
∈

[
1
𝑞
⌊𝑥⌋ + 𝑢

𝑞
,

1
𝑞
⌊𝑥⌋ + 𝑣

𝑞

]
and thus (1) is equivalent to

∃𝐾 ∈ Z :
𝑥

𝑞
∈

[
𝐾 + 𝑎 + 𝑢

𝑞
, 𝐾 + 𝑎 + 𝑣

𝑞

]
,

which is equivalent to (2). □
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2.2 Reduction of Theorem 1.1

By Taylor expansion, we have

(𝑛 + ℎ)𝑐 =
⌊𝑐⌋∑︁
𝑡=0

ℎ𝑡
(⌊(

𝑐

𝑡

)
𝑛𝑐−𝑡

⌋
+

{(
𝑐

𝑡

)
𝑛𝑐−𝑡

})
+ ℎ⌊𝑐+1⌋ (𝑛 + 𝜃ℎ) {𝑐}−1, (3)

for some 𝜃 in (0, 1) which depends on 𝑐, 𝑛, ℎ. We used the binomial notation
(𝑐
𝑡

)
for

𝑐 a real number and 𝑡 a non-negative integer, namely
(𝑐
𝑡

)
= 𝑐(𝑐− 1) · · · (𝑐− 𝑡 + 1)/𝑡!.

Let us assume that we can find a positive 𝜏 such that for infinitely many 𝑛 we have

∀𝑡 ∈ [0, ⌊𝑐⌋] ∩ Z :
⌊(
𝑐

𝑡

)
𝑛𝑐−𝑡

⌋
is even and

{(
𝑐

𝑡

)
𝑛𝑐−𝑡

}
≤ 𝑛−𝜏 . (4)

If we take 𝜅 < min(𝜏/⌊𝑐⌋, (1− {𝑐})/⌊𝑐 +1⌋), then, when 𝑛 is large enough, (𝑛+ ℎ)𝑐
is the sum of an even integer and a positive real number less than 1 for any ℎ ≤ 𝑛𝜅 ;
thus ⌊(𝑛 + ℎ)𝑐⌋ is an even integer for ℎ ≤ 𝑛𝜅 which is precisely the statement of
Theorem 1.1. Hence, we just have to show that (4) holds.

2.3 Proof of Theorem 1.1

We shall use the multidimensional version of the Erdős and Turán inequality, as
given in [7] (Theorem 1.21, page 15).

Proposition 1.1 Let 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑁 ) be a finite sequence of elements of R𝑠 and
let 𝐷𝑁 (𝑋) denote its discrepancy defined by

sup
0≤𝑎𝑖<𝑏𝑖≤1

1≤𝑖≤𝑠

����� 1
𝑁

♯
{
𝑛 ∈ [1, 𝑁] : ({𝑥1

𝑛} · · · {𝑥𝑠𝑛}) ∈
𝑠∏
𝑖=1

[𝑎𝑖 , 𝑏𝑖)
}
−

𝑠∏
𝑖=1

(𝑏𝑖 − 𝑎𝑖)
����� .

For any positive integer 𝐾 we have

𝐷𝑁 (𝑋) ≤
(

3
2

)𝑠 ©« 2
𝐾 + 1

+
∑︁

0<∥𝑘 ∥∞≤𝐾

1
𝑟 (𝑘)

����� 1
𝑁

𝑁∑︁
𝑛=1

e(𝑘 · 𝑥𝑛)
�����ª®¬ , (5)

where e(•) = exp(2𝜋𝑖•), 𝑢 · 𝑣 denote the usual scalar product of two elements 𝑢 and
𝑣 in R𝑠 and 𝑟 (𝑘) = ∏𝑠

𝑖=1 max{1, |𝑘𝑖 |} for 𝑘 = (𝑘1, 𝑘2, . . . , 𝑘𝑠) ∈ Z𝑠 .

In order to apply Proposition 1.1 we need upper bounds for trigonometric sums.

Proposition 1.2 Let 𝑐 > 1 be a real number which is not an integer. There exist posi-
tive real numbers𝐶, 𝛼, 𝜂 such that for any non-zero (⌊𝑐⌋+1)-tuple (𝑘0, 𝑘1, . . . , 𝑘 ⌊𝑐⌋)
of integers in [−𝑁 𝜂 , 𝑁 𝜂] one has
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𝑛≤𝑁

e

( ⌊𝑐⌋∑︁
𝑡=0

(
𝑐

𝑡

)
𝑘𝑡𝑛

𝑐−𝑡/2

)
≤ 𝐶𝑁1−𝛼 . (6)

Proof This is a straightforward application of the results stated and proved in Chapter
2 of [8], entitled The simplest van der Corput estimates. We just give a hint of the
proof, not mentioning that the different cases we consider separately according to
the order of growth of the argument of the exponentiel in (6) can indeed be made
uniform to lead to Proposition 1.2.

In the case when (𝑘0, 𝑘1, . . . , 𝑘 ⌊𝑐⌋−2) is non-zero, Proposition 1.2 follows from
Theorem 2.8 of [8]. Assume now that (𝑘0, 𝑘1, . . . , 𝑘 ⌊𝑐⌋−2) is zero; if 𝑘 ⌊𝑐⌋−1 is non
zero, Proposition 1.2 follows from Theorem 2.2 of [8] and when 𝑘 ⌊𝑐⌋−1 = 0, then 𝑘 ⌊𝑐⌋
is non zero by assumption and then Proposition 1.2 follows from the Kusmin-Landau
Theorem 2.1 of [8]. □

Remark 1.1 The number 2 in (6) may be replaced by any real number in [𝑁−𝛾 , 𝑁𝛾]
for a sufficiently small real 𝛾.

We now end the proof of Theorem 1.1. We consider the sequence (𝑥𝑛)1≤𝑛≤𝑁 of
elements in R𝑠 , with 𝑠 = ⌊𝑐⌋ + 1 defined by

𝑥𝑛 =

((
𝑐

0

)
𝑛𝑐/2,

(
𝑐

1

)
𝑛𝑐−1/2, . . . ,

(
𝑐

⌊𝑐⌋

)
𝑛{𝑐}/2

)
and we apply Proposition 1.1 with 𝐾 = ⌊𝑁 𝜂⌋, where 𝜂 satisfies Proposition 1.2. For
𝜏 such that

0 < (⌊𝑐⌋ + 1)𝜏 < min(𝛼, 𝜂) (7)

we have ���Card
{
𝑛 ≤ 𝑁 : 𝑥𝑛 ∈ [0, 𝑁−𝜏) ⌊𝑐⌋+1

}
− 𝑁1−(⌊𝑐⌋+1)𝜏

���
≪𝑐

𝑁

𝐾
+

∑︁
0<∥𝑘 ∥∞≤𝐾

1
𝑟 (𝑘) 𝑁

1−𝛼 ≪𝑐,𝜀 𝑁
1−min(𝛼,𝜂)+𝜀 , (8)

for any 𝜀 > 0. Thus, there exists an integer 𝑛 in [1, 𝑁] such that

∀𝑡 ∈ [0, ⌊𝑐⌋] ∩ Z :
{(
𝑐

𝑡

)
𝑛𝑐−𝑡/2

}
≤ 𝑁−𝜏 .

Using 𝑁−𝜏 ≤ 𝑛−𝜏 and applying the considerations of Subsections 2.1 and 2.2, this
last inequality implies Theorem 1.1.

3 Proof of Theorem 1.2

Let 𝑐 be in (1, 2) and 𝛼 be in (0,min(𝑐 − 1, 1 − 𝑐/2)). We let 𝑁 be a (large) integer
and
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𝐻 = ⌊𝛼 log(2𝑁)⌋ and Π𝐻 =
∏
𝑝≤𝐻

𝑝. (9)

3.1 Reduction

We first show the following propositionosition, which will be used for the proof of
Theorem 1.2.

Proposition 1.3 Let 𝑁 be a sufficiently large integer, 𝐻 and Π𝐻 be defined in (9). If
𝑛 in (𝑁, 2𝑁] satisfies

{𝑛𝑐} ≤ 1/3, {𝑐𝑛𝑐−1} ≤ 1/(3𝐻) (10)
Π𝐻 | ⌊𝑐𝑛𝑐−1⌋ (11)
and
gcd(⌊𝑛𝑐⌋, ⌊𝑐𝑛𝑐−1⌋) = 1, (12)

then the elements in the sequence (⌊𝑛𝑐⌋, ⌊(𝑛 + 1)𝑐⌋, . . . , ⌊(𝑛 + 𝐻)𝑐⌋) are pairwise
coprime.

Proof In this part, let ℎ and 𝑘 denote any two distinct integers in [0, 𝐻] and 𝑛

sufficiently large an integer satisfying the hypotheses of Proposition 1.3.
By Taylor expansion (3), we have, for 1 < 𝑐 < 2

(𝑛 + ℎ)𝑐 = 𝑛𝑐 + ℎ𝑐𝑛𝑐−1 + (𝑛 + 𝜃ℎ)𝑐−2

= ⌊𝑛𝑐⌋ + {𝑛𝑐} + ℎ⌊𝑐𝑛𝑐−1⌋ + ℎ{𝑐𝑛𝑐−1} + ℎ2 (𝑛 + 𝜃ℎ)𝑐−2

and thus, by (10) we have for 𝑛 sufficiently large

⌊(𝑛 + ℎ)𝑐⌋ = ⌊𝑛𝑐⌋ + ℎ⌊𝑐𝑛𝑐−1⌋ . (13)

Let 𝑝 be a prime which is at most equal to 𝐻: by (11) it divides ⌊𝑐𝑛𝑐−1⌋ and since
by (12) ⌊𝑛𝑐⌋ and ⌊𝑐𝑛𝑐−1⌋ are coprime, it divides ⌊(𝑛 + ℎ)𝑐⌋ for no ℎ in [1, 𝐻]. Let
𝑝 be a prime which divides ⌊(𝑛 + ℎ)𝑐⌋ and ⌊(𝑛 + 𝑘)𝑐⌋; as we have just seen, it is
larger than 𝐻 and it divides ⌊(𝑛+ ℎ)𝑐⌋ − ⌊(𝑛+ 𝑘)𝑐⌋ = (ℎ− 𝑘) ⌊𝑐𝑛𝑐−1⌋; thus it divides
⌊𝑐𝑛𝑐−1⌋; thus it divides also ⌊𝑛𝑐⌋, a contradiction to (12). □

3.2 Proof of Theorem 1.2

Let 𝐾1 = 𝑐(𝑐 − 1)2𝑐−2 and 𝐾2 = 𝑐(𝑐 − 1). By the mean value theorem, we have for
positive real numbers 𝑚 and ℓ ≤ 𝑚

𝐾1ℓ𝑚
𝑐−2 ≤ 𝑐(𝑚 + ℓ)𝑐−1 − 𝑐𝑚𝑐−1 ≤ 𝐾2ℓ𝑚

𝑐−2. (14)
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By the prime number theorem (PNT), we have logΠ𝐻 ∼ 𝐻; since

log(𝑐𝑁𝑐−1/Π𝐻 ) ∼ (𝑐 − 1) log 𝑁 − 𝛼 log(2𝑁) ∼ (𝑐 − 1 − 𝛼) log 𝑁

the quantity (𝑐𝑁𝑐−1/Π𝐻 ) tends to infinity as 𝑁 tends to infinity at least like a (small)
power of 𝑁; by the PNT, this implies that when 𝑁 is large enough, there exists a
prime number 𝑞 such that

𝑐𝑁𝑐−1 ≤ 𝑞Π𝐻 < 𝑐(3𝑁/2)𝑐−1 − 1, (15)

and moreover, it implies that we have 𝑞 > 𝐻. We let 𝑚 be the smallest integer
satisfying

⌊𝑐𝑚𝑐−1⌋ = 𝑞Π𝐻
and notice that 𝑚 is in [𝑁, 3𝑁/2].

When 𝑁 is large enough, we have 𝐾2𝑚
𝑐−2 ≤ 1/(20𝐻) and thus there exists ℓ

(indeed less than 𝑚2−𝑐/4𝐾1𝐻) such that

⌊𝑐(𝑚 + ℓ)𝑐−1⌋ = 𝑞Π𝐻 and {𝑐(𝑚 + ℓ)𝑐−1} ∈
[

1
5𝐻

,
1

4𝐻

]
. (16)

From now on, we denote 𝑚 + ℓ as 𝑛0.
For 0 ≤ 𝑘 ≤ 10𝐻Π𝐻 , we have

(𝑛0 + 𝑘)𝑐 = ⌊𝑛𝑐0⌋ + {𝑛𝑐0} + 𝑘 ⌊𝑐𝑛
𝑐−1
0 ⌋ + 𝑘{𝑐𝑛𝑐−1

0 } +𝑂 (𝑘2𝑛𝑐−2
0 ).

Because of (16), we have

10𝐻Π𝐻 {𝑐𝑛𝑐−1
0 } ≥ 2Π𝐻

and so, when 𝑁 is large enough it is possible to find a 𝑘 in the prescribed range such
that

⌊𝑛𝑐0⌋ + 𝑘 ⌊𝑐𝑛
𝑐−1
0 ⌋ +

⌊
{𝑛𝑐0} + 𝑘{𝑐𝑛

𝑐−1
0 } +𝑂 (𝑘2𝑛𝑐−2

0 )
⌋
≡ 1(modΠ𝐻 ) (17)

⌊𝑛𝑐0⌋ + 𝑘 ⌊𝑐𝑛
𝑐−1
0 ⌋ +

⌊
{𝑛𝑐0} + 𝑘{𝑐𝑛

𝑐−1
0 } +𝑂 (𝑘2𝑛𝑐−2

0 )
⌋
. 0(mod 𝑞) (18)

{(𝑛0 + 𝑘)𝑐} =
{
{𝑛𝑐0} + 𝑘{𝑐𝑛

𝑐−1
0 } +𝑂 (𝑘2𝑛𝑐−2

0 )
}
≤ 1/3. (19)

By (14) and (16), we have

{𝑐(𝑛0 + 𝑘)𝑐−1} ≤ 1/(4𝐻) + 10𝐻Π𝐻𝐾2𝑛
𝑐−2
0 ≤ 1/(3𝐻). (20)

Finally, collecting (17), (18), (19) and (20), we can apply Proposition 1.3 with
𝑛 = 𝑛0 + 𝑘 , thus ending the proof of Theorem 1.2.
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