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Abstract

We prove that the maximum degree ∆n of a random series-parallel graph
with n vertices satisfies ∆n/ log n → c in probability, and E∆n ∼ c log n for
a computable constant c > 0. The same result holds for outerplanar graphs.

1 Introduction

All graphs in this paper are simple and labelled. We recall that a graph is series-
parallel if it does not contain the complete graph K4 as a minor; equivalently, if it
does not contain a subdivision of K4. Since both K5 and K3,3 contain a subdivision
of K4, by Kuratowski’s theorem a series-parallel graph is planar. An outerplanar
graph is a planar graph that can be embedded in the plane so that all vertices are
incident to the outer face. They are characterized as those graphs not containing
a minor isomorphic to (or a subdivision of) either K4 or K2,3; hence they form a
subclass of series-parallel graphs.

In a previous paper [6] we determined the degree distribution in series-parallel
graphs. More precisely, we showed that that the probability that a given vertex has
degree k in a random series-parallel graph with n vertices tends to a computable
constant dk > 0 for all k ≥ 1, as n goes to infinity. In the present paper we use the
ideas introduced in [6] and develop new techniques in order to study the maximum
degree in random series-parallel graphs.

Our main result is the following. Let ∆n denote the maximum degree of a
random series-parallel graphs with n vertices. Then

∆n

log n
→ c in probability

and
E∆n ∼ c log n

for a certain constant c > 0. The same result holds for 2-connected series-parallel
graphs, and for outerplanar and 2-connected outerplanar graphs with suitable values
of c. The constant c is always well-defined analytically and can be computed as
c = 1/ log(1/q), where 0 < q < 1 is the exponential base in the asymptotic expansion
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of the corresponding degree distribution. We have

c ≈ 3.482774 for series-parallel graphs,
c ≈ 1.035792 for outerplanar graphs,
c ≈ 3.679771 for 2-connected series-parallel graphs,
c ≈ 1.134592 for 2-connected outerplanar graphs.

This result was conjectured in [1] and, as we are going to see, is the natural
result to expect in this context. McDiarmid and Reed [12] have recently proved
that the maximum degree ∆n in random planar graphs is of order Θ(log n) with
high probability; it is thus natural to expect that with high probability ∆n ∼ c log n
also in this case; this will be treated in a companion paper [7]. We remark that
an analogous result holds for planar maps [10], counted according to the number
of edges; in this case much more is know, since the authors obtain the full limit
distribution of ∆n.

Intuitively the reason for the ∆n ∼ c log n estimate is the following. Let dn,k

denote the probability that a random vertex in a random planar graph of size n
has degree k. Then it is known (see [6]) that dn,k → dk as n → ∞, where dk is a
sequence of positive numbers that satisfy dk ∼ ckαqk as k → ∞ (for computable
constants c and q). Thus, we can expect that dn,k ≈ ckαqk holds for n, k →∞ (in
a properly chosen range) and also

∑

`>k

dn,` ≈ cq

1− q
kαqk.

Furthermore, let Yn,k denote the random variable that counts the number of vertices
of degree > k in a random planar graph of size n. Then

EYn,k = n
∑

`>k

dn,` ≈ n
cq

1− q
kαqk, (1.1)

and by definition
Yn,k > 0 ⇐⇒ ∆n > k.

Hence the probability P{∆n > k} = P{Yn,k > 0} ≤ EYn,k is negligible if nkαqk →
0. Usually such a threshold is tight so that one can expect that the converse
statement is also true, which implies ∆n ∼ c log n for c = 1/ log(1/q).

In this paper we make this heuristics rigorous by applying the first and second
moment method. The precise statement that we show is the following, which can be
considered as a kind of Master Theorem for proving results on the maximum degree.
The proof is based on standard techniques, and we present it in Appendix A.

Theorem 1.1. Let dn,k denote the probability that a randomly selected vertex of
a certain class of random graphs of size n has degree k, and let dn,k,` denote the
probability that two different randomly selected (ordered) vertices have degrees k and
`. Suppose that we have the following properties:

1. There exists a limiting degree distribution dk (k ≥ 1) with an asymptotic
behaviour of the form

log dk ∼ k log q (k →∞), (1.2)

where q is a real constant with 0 < q < 1.

2. We have, as n → ∞, k → ∞, ` → ∞, and uniformly for k, ` ≤ C log n (for
an arbitrary constant C > 0)

dn,k ∼ dk and dn,k,` ∼ dkd`. (1.3)
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3. There exists q < 1 such that, uniformly for all n, k, ` ≥ 1,

dn,k = O(qk) and dn,k,` = O(qk+`). (1.4)

Let ∆n denote the maximum degree of a random graph of size n in this class. Then

∆n

log n
→ 1

log(1/q)
in probability (1.5)

and
E∆n ∼ 1

log(1/q)
log n (n →∞). (1.6)

Condition 1 is fulfilled for planar, series-parallel and outerplanar graphs, as
shown in [6]. Condition 2 is the key to applying the second moment method, as it
gives access to the variance of the number of vertices of degree k. It can be viewed
as a kind of asymptotic independence, in the sense that for random vertices v1 and
v2, as n →∞ we have

P(deg(v1) = k, deg(v2) = l) ∼ P(deg(v1) = k)P(deg(v2) = l).

The last condition is purely technical and is usually easy to verify.
Most of the paper is devoted to showing that outerplanar and series-parallel

graphs satisfy the conditions imposed by Theorem 1.1, the bulk of the work being
on verifying condition 2. For each of the two classes of graphs, we compute first
the associated counting generating functions from combinatorial decompositions:
this is done in Sections 2 (outerplanar) and 4 (series-parallel). Then, we analyze
the generating functions as functions of complex variables in order to obtain precise
asymptotics for the probability that a vertex or a pair of vertices have given degrees:
this is done in Sections 3 and 5. These sections make use of several technical lemmas
whose proofs are based on the Cauchy integration formula of analytic functions in
several variables. The proofs of these lemmas are given in Appendix B.

Before concluding this introduction, we present some technical preliminaries
needed in the paper: first the combinatorics of generating functions and secondly
some analytic considerations.

Generating functions. We use the following notation. For a class of labelled
graphs G having gn graphs with n vertices, we use

G(x) =
∑

n

gn
xn

n!

to denote the exponential generating function of G. A rooted graph is a graph
with a distinguished, or marked, vertex. A double rooted graph is a graph with
two marked vertices that are different (we cannot mark the same vertex twice)
and distinguishable (there is a first root vertex and a second root vertex). For
convenience, we assume that marked vertices are not labelled, and they do not
contribute towards the size of the graph. Note that the derivatives of G(x),

G′(x) =
∑

n≥1

ngn
xn−1

n!
=

∑
n

gn+1
xn

n!
, G′′(x) =

∑
n

gn+2
xn

n!
,

can also be interpreted as the exponential generating functions of rooted and double
rooted graphs in G.
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When rooting a graph, we are often interested in the degree of the marked
vertices, so we introduce generating functions

G•(x,w) =
∑

n,k

g•ndn+1,k
xn

n!
wk, G••(x,w, t) =

∑

n,k,`

g••n dn+2,k,`
xn

n!
wkt`

to enumerate rooted and double rooted graphs of G, where the exponent of variable
x counts the number of non-root vertices, the exponents of variables w and t count
the degrees of the first and second root, and the numbers dn,k and dn,k,` are the
probabilities that a randomly selected vertex (respectively, two randomly selected
vertices) of a graph of G of size n has degree k (respectively, have degrees k and `).
Notice that with this terminology, the coefficient g•ndn+1,k is precisely the number
of rooted graphs with n vertices and where the root has degree k, and similarly for
g••n dn+2,k,`. Since it holds that

G•(x, 1) = G′(x), G••(x, 1, 1) = G′′(x)

we see that g•n = gn+1 and g••n = gn+2.
For the sake of readability, we always use B(x) and C(x) to denote the generating

functions of 2-connected and connected graphs of the class of graphs we are working
with, and dn,k and dn,k,` to denote the associated probabilities; the context will
always make clear which class of graphs we refer to.

Singularity analysis. To obtain the asymptotic estimates for dn,k and dn,k,l as
required by Theorem 1.1, we analyse the singularities of the corresponding gener-
ating functions. It turns out that all these generating functions share the same
singularity structure, which we proceed to describe.

A power series of the square-root type is a power series y(x) with a square root
singularity at x0 > 0, that is, y(x) admits a local representation of the form

y(x) = g(x)− h(x)
√

1− x/x0 (1.7)

for |x − x0| < ε for some ε > 0 and | arg(x − x0)| > 0, where g(x) and h(x) are
analytic and non-zero at x0. Moreover, y(x) can be analytically continued to the
region

D = D(x0, ε) = {x ∈ C : |x| < x0 + ε} \ [x0,∞).

Note that y(x) can be represented alternatively as a power series in X =
√

1− x/x0,

y(x) = a0 + a1X + a2X
2 + a3X

3 + · · ·

for |X| < ε1/2.
We illustrate the common singularity structure of our generating functions by

using the explicit expression of the generating function of rooted 2-connected out-
erplanar graphs,

B•(x,w) = xw +
xw2

2
y(x)

1− y(x)w
, (1.8)

to be derived in Lemma 2.1, where y(x) is an explicit power series of the square-root
type. Clearly, B•(x,w) has two possible sources of singularities: the square-root
singularity of y(x) at x = x0, and the vanishing of the denominator 1 − y(x)w
at w = 1/y(x). These two sources coalesce at the critical point x = x0, w =
1/y(x0) (equivalently, w = 1/g(x0) due to the local representation y(x) = g(x) −
h(x)X). We derive asymptotic estimates for dn,k with n, k → ∞, on the range
k ≤ C log n for any C > 0, by using multivariate Cauchy coefficient extraction on
B•(x,w) with an integration path close to the critical point (x, w) = (x0, 1/g(x0)).
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More precisely, we integrate along Hankel contours, following Flajolet and Odlyzko’s
transfer theorems [8].

As for the remaining generating functions, they do not admit explicit expres-
sions as B•(x,w), but they share the same singularity structure: the square-root
singularity of y(x), and the vanishing of a term 1 − y(x)w. Curiously enough, the
nature of the singularity induced by 1 − y(x)w = 0 is different from case to case.
This fact justifies the need of distinct but closely related technical lemmas tailored
to the particular shapes of the generating functions. To wit, these singularities are
poles and double poles for 2-connected outerplanar graphs (Lemmas 3.1 and 3.2),
an essential singularity e∞ for connected outerplanar graphs (Lemmas 3.3 and 3.4,
whose proofs make use of Hayman’s method [11] to obtain the asymptotics), and
powers of square-roots for 2-connected and connected series-parallel graphs (Lem-
mas 5.3 and 5.4).

2 Outerplanar graphs: combinatorics

In this section we study the combinatorics of rooted and double rooted outerpla-
nar graphs with respect to the degree of the roots. We obtain explicit or nearly
explicit expressions for the corresponding generating functions, both for the case of
2-connected and connected outerplanar graphs. The analysis of their singularities
is done later in Section 3, where we also state the main results on the maximum
degree of outerplanar graphs.

2.1 2-Connected Outerplanar Graphs

Recall that an outerplanar graph is a planar graph that can be embedded in the
plane so that all vertices are incident to the external face. Furthermore, 2-connected
outerplanar graphs are quite close to dissections. A dissection is a (n+2)-gon (with
n ≥ 1) where one edge is rooted and the vertices are connected inside it by means
of diagonals that do not cross.

Let A(x) denote the generating function of dissections with n + 2 vertices, that
is, the two vertices of the root edge are not counted. Then A(x) is determined by
the system

A(x) = (1 + A(x)) xS(x),
S(x) = (1 + A(x))(1 + xS(x)),

where the generating function S(x) enumerates non-empty chains of dissections
and single edges, the root edges are lined up, and the two vertices of the chain (the
two poles of the network) are not counted (see Figure 1). Note that the term 1 in
1 + A(x) denotes the graph consisting of a single edge (which is not a dissection)
while the term 1 in 1 + xS(x) denotes the empty chain.

This system can be solved explicitly and we find that A(x) satisfies the quadratic
equation

2xA2 + (3x− 1)A + x = 0

and is given by

A(x) =
1− 3x−√1− 6x + x2

4x
. (2.1)

Observe that

S(x) = 2A(x) + 1 =
1− x−√1− 6x + x2

2x
.
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Figure 1: Closing a chain of dissections and edges to obtain a new dissection; the
dashed edge is the new root edge.

Next we consider 2-connected labelled outerplanar graphs. There is exactly one
2-connected outerplanar graph with two vertices, namely a single edge. However,
when n ≥ 3 the number of 2-connected outerplanar graphs is

bn =
(n− 1)!

2
an−2.

To see this, note that bn coincides with the number b•n−1 of rooted 2-connected
outerplanar graphs on n vertices with labels 1, 2, . . . , n− 1 (choose the vertex with
label n as root, and remove the label). Now consider a dissection with n vertices,
whose number is an−2. Direct the root edge of the dissection in counterclockwise
order, and mark its first vertex. Then, there are exactly (n− 1)! ways to label the
remaining n−1 vertices with 1, 2, . . . , n−1. Finally, since the direction of the outer
cycle is irrelevant, divide the resulting number (n − 1)!an−2 by 2 to get back bn.
Now, it is just a matter of computation to obtain that

B′(x) =
∑

n≥1

bn+1
xn

n!
= x +

1
2
xA(x) =

1 + 5x−√1− 6x + x2

8
.

Next we discuss the distribution of the degree of the first root in dissections. It
will be easy to translate this into a corresponding result for 2-connected outerplanar
graphs. Let A(x,w) be the generating function of dissections of an (n+2)-gon, where
the exponent of w counts the degree of the first vertex of the root edge. Similarly
to the above we have

A(x,w) = w(w + A(x,w))xS(x),

and thus

A(x,w) =
xw2S(x)
1− xS(x)

=
xw2(2A(x) + 1)

1− xw(2A(x) + 1)
.

In this context we introduce for later use a generating function S(x, w) that cor-
responds to series of dissections (compare with the above description) where the
exponent of w counts the degree of the first pole. Here we have

S(x,w) = (w + A(x, w))(1 + xS(x)).

With the help of A(x,w) we obtain an explicit representation for the generating
function for rooted 2-connected outerplanar graphs.

6



Lemma 2.1. Let B•(x,w) denote the bivariate generating function of labelled rooted
2-connected outerplanar graphs, where the exponent of x counts the number of non-
root vertices and the exponent of w counts the degree of the root vertex. Then we
have

B•(x,w) =
∑

n,k≥1

b•n dn+1,k
xn

n!
wk

= xw +
1
2
xA(x,w)

= xw +
xw2

2
x(2A(x) + 1)

1− x(2A(x) + 1)w
,

where b•n = bn+1, and dn+1,k is the probability that a randomly selected vertex of a
labelled 2-connected outerplanar graph of size n + 1 has degree k.

Next we study double rooted 2-connected outerplanar graphs. As before, we
start with dissections. Let A1(x,w, t) denote the generating function of dissections,
where the exponents of w and t count the degree of the first and the second vertex
of the root edge (in counterclockwise order). Similarly, we define A2(x,w, t) as the
generating function of dissections D with an additional root vertex v not in the root
edge, where the exponent of w and t count the degree of the first vertex of the root
edge and the degree of v, respectively. We also introduce the generating function
S2(x,w, t) for series of dissections with an additional root v not in the poles, where
the exponents of w and t count the degree of the first pole and the degree of v.
Then we have the following relations:

A1(x,w, t) = (w + A(x,w))wxtS(x, t)
A2(x,w, t) = (wt + A1(x,w, t))wxS(x, t)

+ A2(x,w, t)xwS(x)
+ (w + A(x,w))xwS2(x, 1, t),

S2(x,w, t) = A2(x,w, t)(1 + xS(x))
+ (wt + A1(x,w, t))xS(x, t)
+ (w + A(x,w))xS2(x, 1, t).

The three summands for A2 and S2 correspond to the three places where the addi-
tional root v can be placed: inside the first dissection, at the articulation vertex, or
inside the series of dissections. Summing up, this yields

A(x, w) =
xw2(2A + 1)

1− xw(2A + 1)
,

S(x, w) =
w(1 + x(2A + 1))
1− xw(2A + 1)

,

A1(x,w, t) =
xw2t2(1 + x(2A + 1))

(1− xw(2A + 1))(1− xt(2A + 1))

A2(x, 1, t) =
xt2(1 + x(2A + 1))

(1− xt(2A + 1))2(1− x(4A + 3))

S2(x, 1, t) = 2
xt2(1 + x(2A + 1))

(1− xt(2A + 1))2(1− x(4A + 3))

A2(x,w, t) =
xw2t2(1 + x(2A + 1))(P1 + x(wt− w − t)P2)

(1− xw(2A + 1))2(1− xt(2A + 1))2(1− x(4A + 3))
,

where

P1 = 1− x(4A + 1), P2 = 1− 2A + x(2A + 1).
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Lemma 2.2. Let B••(x,w, t) denote the generating function of double rooted la-
belled 2-connected outerplanar graphs, where the exponent of x counts the number
of non-root vertices, and the exponents of w and t count, respectively, the degree of
the first and second root. Then we have

B••(x,w, t) =
∑

n,k,`

b••n dn+2,k,`
xn

n!
wk t`

= wt +
1
2
A1(x,w, t) +

1
2
A2(x,w, t)

= wt +
x(1 + x(2A + 1)t2w2

2(1− xw(2A + 1))(1− xt(2A + 1))

+
xw2t2(1 + x(2A + 1))(P1 + x(wt− w − t)P2)

2(1− xw(2A + 1))2(1− xt(2A + 1))2(1− x(4A + 3))
,

where b••n = bn+2, and dn+2,k,` denotes the probability that two randomly selected
vertices of a labelled 2-connected outerplanar graph of size n + 2 have degrees k
and `.

2.2 Connected outerplanar graphs

We recall that in many classes of graphs, including outerplanar, series-parallel and
planar graphs, a recursive relation holds between the generating functions B(x) and
C(x) of 2-connected and connected graphs, namely:

C ′(x) = eB′(xC′(x)). (2.2)

This follows from the block decomposition of a connected graph; see, for instance, [2].
This relation can be extended to the following one.

Lemma 2.3. Let C•(x,w) and C••(x,w, t) be the generating functions of rooted
and double rooted connected outerplanar graphs, where the exponents of w and t
count the degree of the first and second root. Then, we have

C•(x,w) = eB•(xC′(x),w)

and

C••(x,w, t) =
x

(xC ′(x))′
∂

∂x
C•(x,w)

∂

∂x
C•(x, t)

+ B••(xC ′(x), w, t)C•(x, w)C•(x, t).

Proof. The equation for C•(x,w) is the natural extension of Equation (2.2), since
the degree of the root vertex is the sum of the degrees of the root vertices of the
blocks incident to it.

Next we consider double rooted graphs enumerated by C••(x,w, t). Here we
distinguish two situations, depending on whether the two roots are in the same
block or not (see Figure 2). In the former case, we have a block with two roots, so a
term B••(x,w, t) appears. Each non-root vertex of this block is replaced by a rooted
connected graph in xC ′(x), while the second root is replaced by C•(x, t), since this
replacement contributes to the degree of the second root. Thus, the generating
function of double rooted connected graphs where the two roots are in the same
block is

eB•(xC′(x),w)B••(xC ′(x), w, t)C•(x, t).

If the roots are in different blocks, it is still true that one of the blocks incident
to the first root is distinguished (the unique block leading to the second root), and
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Figure 2: Block decomposition of a connected graph with two roots, either sharing
a common block (left), or not (right).

so is one of its vertices (the articulation vertex leading to the second root). So this
time the decomposition has a rooted block with an additional distinguished vertex,
that is, a term x ∂

∂xB•(x, w). Every vertex is replaced by xC ′(x), except for the
distinguished one, which is replaced by x ∂

∂xC•(x, t), that is, a rooted connected
graph with an additional root.

Hence, the generating function of C••(x,w, t) is given by

C••(x,w, t) = eB•(xC′(x),w)x
∂

∂x
B•(xC ′(x), w)

∂

∂x
C•(x, t)

+ eB•(xC′(x),w)B••(xC ′(x), w, t)C•(x, t)

=
x

(xC ′(x))′
∂

∂x
C•(x,w)

∂

∂x
C•(x, t)

+ B••(xC ′(x), w, t)C•(x,w)C•(x, t).

Note that in the outerplanar case the functions C•(x,w) and C••(x,w, t) are
explicit in terms of C ′(x). For example, we have

C•(x,w) = exC′(x)w+a(x)w2/(1−wb(x)), (2.3)

where

a(x) =
1
2
x2C ′(x)2(1 + 2A(xC ′(x))),

b(x) = xC ′(x)(1 + 2A(xC ′(x))).

This is due to the fact that we have an explicit expression for B•(x,w), which is
not true in general.

3 Outerplanar graphs: asymptotics

In this section we analyze the singularities of the multivariate generating functions
derived in the previous section. By studying the “shape” of these functions when
x,w and t get close to the relevant singularities we derive asymptotic estimates for
the number dn,k and dn,k,`, as n, k, ` → ∞ in a suitable range. By applying the
Master Theorem discussed in the Introduction we obtain a precise estimate for the
maximum degree of outerplanar graphs.

9



3.1 2-Connected Outerplanar Graphs

In Propositions 3.1 and 3.2 we obtain asymptotic estimates for the numbers dn,k

and dn,k,`.

Proposition 3.1. Let dn,k denote the probability that a randomly selected vertex
in a 2-connected outerplanar graph with n vertices has degree k. Then we have
uniformly for k ≤ C log n

dn,k = 2k(
√

2− 1)k

(
1 + O

(
1
k

))
. (3.1)

Furthermore, we have uniformly for all n, k ≥ 1

dn,k = O(qk) (3.2)

for some real q with 0 < q < 1.

In order to prove the above result we need to perform singularity analysis on
the generating function B•(x,w) given in Lemma 2.1. The precise technical result
we need is the following.

Lemma 3.1. Let f(x, w) =
∑

n,k fn,kxnwk be a bivariate generating function of
non-negative numbers fn,k, and suppose that f(x, w) can be represented as

f(x,w) =
G(x,X,w)
1− y(x)w

, (3.3)

where X =
√

1− x/x0, y(x) is a power series with non-negative coefficients of the
square-root type as in (1.7),

y(x) = g(x)− h(x)
√

1− x/x0,

and the function G(x, v, w) is analytic in the region

D′ = {(x, v, w) ∈ C3 : |x| < x0 + η, |v| < η, |w| < 1/g(x0) + η}

for some η > 0, and satisfies G(x0, 0, 1/g(x0)) 6= 0.
Then we have uniformly for k ≤ C log n (with an arbitrary constant C > 0)

fn,k =
G(x0, 0, 1/g(x0))h(x0)

2
√

π
g(x0)k−1x−n

0 k n−
3
2

(
1 + O

(
1
k

))
. (3.4)

Moreover, for every ε > 0 we have uniformly for all n, k ≥ 0

fn,k = O
(
(g(x0) + ε)kx−n

0 n−
3
2

)
. (3.5)

If g(x0) < 1, then fn =
∑

k fn,k is given asymptotically by

fn =
1

2
√

π

(
h(x0)G(x0, 0, 1)

(1− g(x0))2
− Gv(x0, 0, 1)

1− g(x0)

)
x−n

0 n−
3
2

(
1 + O

(
1
n

))
, (3.6)

and for every k the limit

dk = lim
n→∞

fn,k

fn

exists.
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The proof of Lemma 3.1 is given in Appendix B.
We proceed to prove Proposition 3.1. We remind the reader that the limit

dk = limn→∞ dn,k exists for all fixed k, and that (see [6])

dk = 2(k − 1)(
√

2− 1)k.

Proof of Proposition 3.1. Recall that the dn,k are encoded in the function B•(x,w)
(see Lemma 2.1). Next observe that B•(x,w) has precisely the form of f(x,w) in
Lemma 3.1. In particular, we have that

y(x) = x(2A(x) + 1) =
1− x−√1− 6x + x2

2
is a power series with non-negative coefficients that admits the local expansion

y(x) = g(x)− h(x)
√

1− x

x0

g(x) =
1− x

2

h(x) =
1
2
√

1− xx0,

with x0 = 3− 2
√

2, and that G(x,X,w) is given by

G(x,X, w) = xw +
xw

4
(
xw − w + x

√
1− xx0X

)
.

Hence, we just need to compute the evaluations

g(x0) =
√

2− 1

h(x0) =
√

3
√

2− 4

G(x0, 0, 1/g(x0)) =
3− 2

√
2

2(
√

2− 1)

G(x0, 0, 1) =
1
2
(13− 9

√
2)

Gv(x0, 0, 1) =
1
2
(3− 2

√
2)

√
3
√

2− 4

to obtain the asymptotics for fn,k and fn, in accordance with Equations (3.4)
and (3.6). Now it is just a matter of computation to check that

dn,k =
fn,k

fn
= 2k(

√
2− 1)k

(
1 + O

(
1
k

))
,

as required by (3.1). Also, (3.2) follows immediately from (3.5).

Next we turn to the case of double rooted graphs.

Proposition 3.2. Let dn,k,` denote the probability that two different (and ordered)
randomly selected vertices in a 2-connected outerplanar graph with n vertices have
degrees k and `. Then we have uniformly for 2 ≤ k, ` ≤ C log n

dn,k,` = 4k` (
√

2− 1)k+`

(
1 + O

(
1
k

+
1
`

))
. (3.7)

Furthermore, we have uniformly for all n, k ≥ 1

dn,k,` = O(qk+`), (3.8)

for some real number q with 0 < q < 1.
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Again we need a precise technical result, to be proved in Appendix B.

Lemma 3.2. Let f(x,w, t) =
∑

n,k,` fn,k,`x
nwkt` be a triple generating function of

non-negative numbers fn,k,`, and assume that f(x,w, t) can be represented as

f(x, w, t) =
G(x,X,w, t)

X (1− y(x)w)2(1− y(x)t)2
, (3.9)

where X =
√

1− x/x0, y(x) is a power series of the square-root type as in (1.7),
and G(x, v, w, t) is non-zero and analytic at (x, 0, w, t) = (x0, 0, 1/g(x0), 1/g(x0)).

Then we have uniformly for k, ` ≤ C log n (with an arbitrary constant C > 0)

fn,k,` =
G(x0, 0, 1/g(x0), 1/g(x0))√

π
g(x0)k+`x−n

0 k ` n−
1
2

(
1 + O

(
1
k

+
1
`

))
.

Moreover, for every ε > 0 we have uniformly for all n, k ≥ 0

fn,k,` = O
(
(g(x0) + ε)k+`x−n

0 n−
1
2

)
. (3.10)

If g(x0) < 1, then fn =
∑

k,` fn,k,` is given asymptotically by

fn =
G(x0, 0, 1, 1)√
π(1− g(x0))4

x−n
0 n−

1
2

(
1 + O

(
1
n

))

and for every pair (k, `) the limit

dk,` = lim
n→∞

fn,k,`

fn

exists.

Proof of Proposition 3.2. Recall that dn,k,` are encoded in the function B••(x,w, t),
which is given explicitly in Lemma 2.2. The result follows from a direct application
of Lemma 3.2, since B••(x,w, t) is exactly of the form f(x,w, t), with the same
y(x) = x(2A(x) + 1) and x0 = 3− 2

√
2, as in the proof of Lemma 3.1. Indeed, the

factors (1− xw(2A + 1))2 and (1− xt(2A + 1))2 in the denominator of B••(x,w, t)
become (1 − y(x)w)2 and (1 − y(x)t)2 in f(x,w, t), and the factor (1 − x(4A +
3)) transforms into

√
1− xx0X (the term

√
1− xx0 is analytic and contributes to

G(x, X, w, t)).
We just need to compute the evaluations

G(x0, 0, 1/g(x0), 1/g(x0)) =
√

2

2
√

3
√

2− 4

G(x0, 0, 1, 1) =
√

2(
√

2− 1)4

2
√

3
√

2− 4
(1− g(x0))4 = (2−

√
2)4

and check that
G(x0, 0, 1/g(x0), 1/g(x0))
G(x0, 0, 1, 1)(1− g(x0))4

= 4.

Hence,

dn,k,` =
fn,k,`

fn
= 4k`(

√
2− 1)k+`

(
1 + O

(
1
k

+
1
`

))
,

as required by (3.7). Also, (3.8) follows immediately from (3.10).
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Theorem 3.1. Let ∆n denote the maximum degree of a random labelled 2-connected
outerplanar graph with n vertices. Then

∆n

log n
→ 1

log(
√

2 + 1)
in probability

and
E∆n ∼ log n

log(
√

2 + 1)
(n →∞).

Proof. The proof is an application of Theorem 1.1 to the class of 2-connected out-
erplanar graphs. Condition 1 of the theorem is a direct consequence of either the
asymptotics dk ∼ ckαqk derived in [6], or the asymptotics from dn,k of Proposi-
tion 3.1. Conditions 2 and 3 follow from Proposition 3.1 (for the dn,k), and Propo-
sition 3.2 (for the dn,k,`). The condition dn,k,` ∼ dkd` is easily verified from both
asymptotic estimates.

Remark. Prior to the proof of Proposition 3.1, we mentioned that dk = limn→∞ dn,k =
2(k−1)(

√
2−1)k. This relation can be verified easily by considering the generating

function

p(w) =
∑

k≥2

dkwk = lim
n→∞

[xn]B•(x,w)
[xn]B′(x)

.

By setting

H(x,w, z) = xw +
xw2

2
4z − 3x

1− (4z − 3x)w

we have B•(x,w) = H(x, w, B′(x)), and consequently, by [6, Lemma 3.1],

p(w) = Hz(3− 2
√

2, w, B′(3− 2
√

2)) =
2w2

(1 +
√

2− w)2
,

from where it follows the explicit expression for dk for k ≥ 2. Similarly we can
analyze B••(x,w, t). Define dk,` = limn→∞ dn,k,` and

p(w, t) =
∑

k,`≥2

dk,`w
kt` = lim

n→∞
[xn]B••(x,w, t)

[xn]B′′(x)
.

The analytic situation is a little bit different from the univariate one. The asymp-
totic leading term comes from the factor 1/(1−x(4A+3)) = 1/

√
1− 6x + x2. Hence

it follows that

p(w, t) =




xw2t2(1 + x(2A + 1))(P1 + x(wt− w − t)P2)
2(1− xw(2A + 1))2(1− xt(2A + 1))2

x(1 + x(2A + 1))(P1 − xP2)
2(1− x(2A + 1))2(1− x(2A + 1))2




x=3−2
√

2,A=1/
√

2

=
2w2

(1 +
√

2− w)2
2t2

(1 +
√

2− t)2
= p(w)p(t).

It particular it follows that dk,` = dkd` for all k, ` ≥ 2. The interpretation of this
relation is that the degrees of the two randomly chosen vertices are independent
in the limit (which is not unexpected). Furthermore, this relation provides an
automatic proof that dn,k,` ∼ dkd`.
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3.2 Connected Outerplanar Graphs

Again we need asymptotic expansions for dn,k and dn,k,`, but in this case it is a
little more involved due to the presence of essential singularities in the associated
generating functions. We recall that C•(x,w) and C••(x,w, t) are explicit in terms
of C ′(x).

The numbers cn of vertex labelled outerplanar graphs satisfy [2]

cn = c · n− 5
2 ρ−nn!

(
1 + O

(
1
n

))
,

where ρ = v0e
−B′(v0) ≈ 0.136594 is the radius of convergence of C(x) and v0 ≈

0.170765 satisfies the equation 1 = v0B
′′(v0). Furthermore, C ′(x) has a local rep-

resentation of the form (1.7).

Proposition 3.3. Let dn,k denote the probability that a randomly selected vertex
in a connected outerplanar graph with n vertices has degree k. Then we have as
n, k →∞ and uniformly for k ≤ C log n

dn,k ∼ dk, (3.11)

where dk denotes the asymptotic degree distribution of connected outerplanar graphs
encoded by the generating function

p(w) =
∑

k≥1

dkwk

= ρ
v2
0(2A(v0) + 1)(2A(v0) + 1 + 2v0A

′(v0))w2

2(1− v0(2A(v0) + 1)w)2

× exp
(

v0w +
v2
0(2A(v0) + 1)w2

2(1− v0(2A(v0) + 1)w)

)

and is given asymptotically by

dk ∼ c1k
1/4ec2

√
kqk,

where c1 ≈ 0.667187, c2 ≈ 0.947130.
Furthermore, we have uniformly for all n, k ≥ 1

dn,k = O(qk), (3.12)

for some real q with 0 < q < 1.

The corresponding technical result needed to prove the previous proposition is
the following.

Lemma 3.3. Let f(x, w) =
∑

n,k fn,kxnwk be a bivariate generating function of
non-negative numbers fn,k, and assume that f(x,w) can be represented as

f(x,w) = G(x,X, w) exp
(

H(x,X, w)
1− y(x)w

)
, (3.13)

where X =
√

1− x/x0, y(x) is a power series of the square-root type as in (1.7),
and the functions G(x, v, w) and H(x, v, w) are non-zero and analytic at (x, v, w) =
(x0, 0, 1/g(x0)).
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Then we have uniformly for k ≤ C log n (with an arbitrary constant C > 0)

fn,k =
G

(
x0, 0, 1

g(x0)

)
h(x0)H

(
x0, 0, 1

g(x0)

) 1
4

4π
e

1
2 H(x0,0,1/g(x0))− 1

g(x0) Hw(x0,0,1/g(x0))

× g(x0)k−1x−n
0 k

1
4 e2
√

Hx0,0,1/g(x0)) kn−
3
2

(
1 + O

(
1√
k

))
.

Moreover, for every ε > 0 we have uniformly for all n, k ≥ 0

fn,k = O
(
(g(x0) + ε)kx−n

0 n−
3
2

)
.

If g(x0) < 1 then, fn =
∑

k fn,k is given asymptotically by

fn = exp
(

H(x0, 0, 1)
1− g(x0)

) (
G(x0, 0, 1)

(
h(x0)H(x0, 0, 1)

(1− g(x0))2
− Hv(x0, 0, 1)

1− g(x0)

)
−Gv(x0, 0, 1)

)

× x−n
0 n−

3
2

(
1 + O

(
1
n

))
,

and for every k the limit

dk = lim
n→∞

fn,k

fn

exists.

Proof of Proposition 3.3. The existence of dk, the probability generating function
p(w) encoding them, and the asymptotic expression dk ∼ c1k

1/4ec2
√

kqk, have been
derived in [6]. It only remains to show the asymptotic relations (3.11) and (3.12);
these will follow from an application of Lemma 3.3 to f(x,w) = C•(x,w) with
x0 = ρ, the radius of convergence of C ′(x).

Indeed, recall from Equation (2.3) that C•(x, w) is of the form

C•(x,w) = exp (xC ′(x)w) exp
(

a(x)w2

1− wb(x)

)
,

with

a(x) =
1
2
x2C ′(x)2(1 + 2A(xC ′(x))),

b(x) = xC ′(x)(1 + 2A(xC ′(x))).

Note that C ′(x) is not analytic at x = ρ. Thus, we must use a local representation
C ′(x) = g(x) − h(x)

√
1− x/ρ of the form (1.7) in order to obtain the analytic

expressions A(x, v, w) and G(x, v, w). In contrast with the 2-connected case, we are
evaluating the function A(x) at a point ρC ′(ρ) smaller that its radius of convergence
3− 2

√
2, so that both A(xC ′(x)) and

y(x) = b(x) = xC ′(x) (1 + 2A(xC ′(x))) ,

admit a local representation of the form (1.7).
Hence, we can apply Lemma 3.3 and deduce (3.11) and (3.12). Note that the

asymptotic expansion for the dk is derived from two sources, on the one side from
asymptotic estimates on the coefficients of the PGF p(w), as in [6], and on the
other side from the limit fn,m/fn from Lemma 3.3. As expected, both asymptotic
expansions coincide.

The estimates for double rooted graphs come next, together with the associated
technical result.

15



Proposition 3.4. Let dn,k,` denote the probability that two different (and ordered)
randomly selected vertices in a connected outerplanar graph with n vertices have
degrees k and `. Then we have for n, k, ` →∞ and uniformly for 2 ≤ k, ` ≤ C log n

dn,k,` ∼ dkd`, (3.14)

where dk denotes the asymptotic degree distribution of connected outerplanar graphs.
Furthermore, we have uniformly for all n, k ≥ 1

dn,k,` = O(qk+`) (3.15)

for some real q with 0 < q < 1.

Lemma 3.4. Let f(x,w, t) =
∑

n,k,` fn,k,`x
nwkt` be a triple generating function of

non-negative numbers fn,k,`, and suppose that f(x, w, t) can be represented as

f(x,w, t) =
G(x, X,w, t)

X

exp
(

H(x,X,w)
1−y(x)w + H(x,X,t)

1−y(x)t

)

(1− y(x)w)2(1− y(x)t)2
, (3.16)

where X =
√

1− x/x0, the functions G(x, v, w, t) and H(x, v, w) are non-zero and
analytic at (x, v, w, t) = (x0, 0, 1/g(x0), 1/g(x0)), and y(x) is a power series of the
square-root type as in (1.7).

Then we have uniformly for k, ` ≤ C log n (with an arbitrary constant C > 0)

fn,k,` =
G(x0, 0, 1/g(x0), 1/g(x0)
4π3/2H(x0, 0, 1/g(x0))3/2

e
H(x0,0,1/g(x0))− 2

g(x0) Hw(x0,0,1/g(x0))

× g(x0)k+`x−n
0 (k`)

1
4 e2
√

H(x0,0,1/g(x0)(
√

k+
√

`)n−
1
2

(
1 + O

(
1√
k

+
1√
`

))
.

Moreover, for every ε > 0 we have uniformly for all n, k ≥ 0

fn,k,` = O
(
(g(x0) + ε)k+`x−n

0 n−
1
2

)
.

If g(x0) < 1, then fn =
∑

k,` fn,k,` is given asymptotically by

fn =
G(x0, 0, 1, 1) exp

(
2H(x0,0,1)
1−g(x0)

)
√

π(1− g(x0))4
x−n

0 n−
1
2

(
1 + O

(
1
n

))
,

and for every pair (k, `) the limit

dk,` = lim
n→∞

fn,k,`

fn

exists.

Proof of Proposition 3.4. As usual, we check that C••(x,w, t) has the form of the
generating function f(x,w, t) in Lemma 3.4. Then (3.14) and (3.15) will follow
automatically.

From (2.3) it follows that

∂

∂x
C•(x,w) = exC′(x)w+a(x)w2/(1−wb(x))

(
(xC ′(x))′w +

a′(x)w2

1− wb(x)
+

a(x)b′(x)w3

(1− wb(x))2

)
.

By using the local expansion of C ′(x) it follows that (xC ′(x))′, a′(x), and b′(x) can
be represented as

g(x)− h(x)
√

1− x/ρ√
1− x/ρ

,

with functions g(x), h(x) that are analytic and non-zero for x = ρ. Furthermore,
observe that B••(x,w, t) is analytic for x = v0 = ρC ′(ρ). Hence it follows easily
that C••(x,w, t) satisfies the assumptions of Lemma 3.4, as claimed.
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Theorem 3.2. Let ∆n denote the maximum degree of a random connected outer-
planar vertex labelled graph with n vertices. Then

∆n

log n
→ c in probability

and
E∆n ∼ c log n (n →∞),

where c =
1

log(1/q)
, and q is given by

q = v0 (1 + 2A(v0)) ≈ 0.380813,

and v0 ≈ 0.1707649 satisfies the equation 1 = v0B
′′(v0).

Remark. Similarly as in the 2-connected case, it is possible to check the relation
dk,` = dkd`, or equivalently p(w, t) = p(w)p(t). However, in the connected case we
can prove a more universal property. Suppose that we have a class of vertex labelled
graphs whose block decomposition translates into the equation C ′(x) = eB′(xC′(x)),
and consequently into C•(x,w) = eB•(xC′(x),w). Furthermore, assume that the
radius of convergence of B′(x) is strictly larger than the evaluation of xC ′(x) at
its radius of convergence. Then we automatically have the property that C ′(x) has
a square-root singularity at its dominant singularty ρ (which is also the radius of
convergence). Setting H(z, w) = eB•(z,w), we have that (again by [6, Lemma 3.1])

p(w) =
∑

k≥1

dkwk = Hz(ρC ′(ρ), w) = eB•(ρC′(ρ),w) ∂B•

∂x
(ρC ′(ρ), w).

Next observe that the asymptotic leading part of C••(x,w, t) comes from the term

T :=
x

(xC ′(x))′
∂

∂x
C•(x,w)

∂

∂x
C•(x, t).

Since
∂

∂x
C•(x,w) = Hz(xC ′(x), w)(xC ′(x))′,

we also have
T = Hz(xC ′(x), w)Hz(xC ′(x), t)x(xC ′(x))′,

and consequently

p(w, t) = lim
n→∞

[xn]T
[xn]x(xC ′(x))′

= Hz(ρC ′(ρ), w)Hz(ρC ′(ρ), t) = p(w)p(t).

In particular we obtain the relation dk,l = dkd` for connected outerplanar graphs,
as well as for connected series-parallel graphs.

4 Series-parallel graphs: combinatorics

We now turn our attention to the combinatorics of rooted and double rooted 2-
connected and connected series-parallel graphs with respect to the degree of the
roots. In this section we derive equations for the generating functions of these
families of graphs, while their singularity analysis is postponed to Section 5.
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4.1 SP networks

Recall that a connected series-parallel graph can be seen as the result of repeated
series-parallel edge extensions applied to a tree. Thus, the basic element of a series-
parallel graph is the result of series-parallel edge extensions of a single edge. Such
graphs are also called series-parallel networks. They have two distinguished ver-
tices (or roots) that are called poles. Series-parallel extensions induces a recursive
description of SP networks: they are either a parallel composition of SP networks,
a series composition of SP networks, or just the smallest network consisting of the
two poles and an edge joining them.

Let E(x) and S(x) be the generating functions for labelled SP networks and
series SP networks, where the exponent of x counts the number of vertices other
than the two poles. They satisfy the relations

E(x) = 2eS(x) − 1,

S(x) = x(E(x)− S(x))E(x).

The first equation follows from the fact that a series SP network is a non-empty
set of series SP networks (it is a parallel SP network if the set contains more than
one network, and a series SP network otherwise), where the factor 2 stands for
choosing whether we have an edge joining both poles or not (see Figure 3). The
second equation stablishes that a series SP network is always the series composition
of two SP networks, where the first one is taken to be non-series to avoid multiple
counting.

Figure 3: A parallel composition (left) and a series composition (right) of SP net-
works.

Next let D(x,w) and S(x,w) be the generating functions for SP and series SP
networks, where the exponent of w counts the degree of the first pole. Note that
E(x) = D(x, 1) and S(x) = S(x, 1). (To be consistent, we should have chosen D(x)
instead of E(x), but we have opted for E(x) to avoid confusion in future formulas).
Here we have

D(x, w) = (1 + w)eS(x,w) − 1,

S(x, w) = x(D(x,w)− S(x, w))E(x).

We now consider double rooted SP networks: the first root is taken always
as the first pole, while the second root is a vertex other than the first pole. Let
D1(x,w, t) and S1(x,w, t) denote the generating functions for SP and series SP
networks where the second root is the second pole, and D2(x,w, t) and S2(x,w, t)
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denote the generating functions for SP and series SP networks where the second
root is not the second pole. Here, the exponents of w and t count the degree of the
first and second root, respectively. The corresponding relations are

D1(x,w, t) = (1 + wt)eS1(x,w,t) − 1,

S1(x,w, t) = x(D(x, w)− S(x,w))D(x, t),

D2(x,w, t) = (1 + w)eS(x,w)S2(x, w, t),
S2(x,w, t) = x(D2(x,w, t)− S2(x,w, t))E(x)

+ x(D1(x,w, t)− S1(x,w, t))D(x, t)
+ x(D(x,w)− S(x,w))D2(x, 1, t).

Note that D(x, 1) = D1(x, 1, 1) = E(x), S(x, 1) = S1(x, 1, 1) = S(x) and that
D2(x, 1, 1) = xE′(x) and S2(x, 1, 1) = xS′(x). Also, observe that, by symmetry,
D1(x, 1, t) = D(x, t).

These equations can be easily solved. First one uses the implicit equation

E(x) = 2 exp
(

xE(x)2

1 + xE(x)

)
− 1 (4.1)

for E(x) to express

S(x) =
xE(x)2

1 + xE(x)
.

Secondly, the implicit equation

D(x,w) = (1 + w) exp
(

xD(x,w)E(x)
1 + xE(x)

)
− 1 (4.2)

determines D(x,w), and it can be used to obtain

S(x, w) =
xE(x)

1 + xE(x)
D(x,w).

With the help of these representations we get directly

D1(x,w, t) = (1 + wt) exp
(

x

1 + xE(x)
D(x,w)D(x, t)

)
− 1,

S1(x,w, t) =
x

1 + xE(x)
D(x, w)D(x, t).

Next we set w = 1 and obtain from the two equations for D2 and S2 the represen-
tations

D2(x, 1, t) =
x(1 + E(x))

1− 2xE(x)2 − x2E(x)3
D(x, t)2,

S2(x, 1, t) =
x

1− 2xE(x)2 − x2E(x)3
D(x, t)2.

Finally this gives

D2(x,w, t) =
x(1 + D(x,w))D(x, t)

1− xE(x)D(x,w)

(
(1 + wt) exp

(
x

1 + xE(x)
D(x,w)D(x, t)

)
− 1

)

+
x2E(x)(1 + xE(x))

1− 2xE(x)2 − x2E(x)3
(1 + D(x,w))D(x,w)D(x, t)2

1− xE(x)D(x,w)
,

S2(x,w, t) =
xD(x, t)

1− xE(x)D(x,w)

(
(1 + wt) exp

(
x

1 + xE(x)
D(x,w)D(x, t)

)
− 1

)

+
x2E(x)(1 + xE(x))

1− 2xE(x)2 − x2E(x)3
D(x,w)D(x, t)2

1− xE(x)D(x,w)
.
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4.2 2-connected SP graphs

It has been shown (see [6]) that the generating function B(x) of 2-connected SP
graphs can be expressed in terms of E(x) as

B(x) =
1
2

log(1 + xE(x))− xE(x)(x2E(x)2 + xE(x) + 2− 2x)
4(1 + xE(x))

. (4.3)

Next we recall that the generating function B•(x,w) of rooted 2-connected SP
graphs, where the exponent of x counts the number of non-root vertices and the
exponent of w the degree of the root, satisfies

w
∂

∂w
B•(x,w) =

∑

k≥1

kBk(x)wk = xweS(x,w). (4.4)

From this relation it is possible to obtain an explicit representation for B•(x,w).

Lemma 4.1 (From [6, Lemma 4.2]). Let B•(x,w) be the generating function of
vertex rooted 2-connected SP graphs, where the exponent of x counts the number of
vertices and the exponent of w the degree of the root vertex. Then we have

B•(x,w) = x

(
D(x,w)− xE(x)

1 + xE(x)
D(x,w)

(
1 +

D(x, w)
2

))
.

We also obtain an explicit expression for the generating function of double rooted
2-connected graphs.

Lemma 4.2. Let B••(x,w, t) denote the generating function of labelled double
rooted 2-connected SP graphs, where the exponent of x counts the number of non-
root vertices, and the exponents of w and t count the degree of the two roots. Then
we have

w
∂

∂w
B••(x,w, t) = wteS1(x,w,t) + weS(x,w)S2(x,w, t) (4.5)

= wt exp
(

x

1 + xE(x)
D(x,w)D(x, t)

)

+
xwD(x, t)(D(x,w) + 1)

(1 + w)(1− xE(x)D(x,w))

(
(1 + wt) exp

(
xD(x,w)D(x, t)

1 + xE(x)

)
− 1

+
xE(x)(1 + xE(x))D(x,w)D(x, t)

1− 2xE(x)2 + x2E(x)3

)

Proof. Equation (4.5) is the natural extension of Equation (4.4) to double rooted
graphs. Both follow from the fact that we can obtain a SP network with non-
adjacent poles (that is, an object enumerated by eS(x)) by distinguishing, orienting
and then deleting any edge of an arbitrary 2-connected SP graph. Here, we use the
partial derivative ∂/∂w to distinguish an edge incident to the first root. Finally, we
note that the two summands of Equation 4.5 correspond, respectively, to the case
where the second root is the other vertex of the distinguished edge, and to the case
where it is not.

4.3 Connected SP graphs

As before we denote the corresponding generating functions for connected SP graphs
by C ′(x), C•(x,w), and C••(x,w, t). The function C ′(x) satisfies the same equation
as in the outerplanar case,

C ′(x) = eB′(xC′(x)).

Indeed, the situation is completely analogous to that of rooted and double rooted
connected outerplanar graphs (compare with Lemma 2.3).
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Lemma 4.3. Let C•(x,w) and C••(x,w, t) be the generating functions of rooted
and double rooted connected SP graphs, where the exponents of w and t count the
degrees of the first and second roots. Then, we have

C•(x,w) = eB•(xC′(x),w)

and

C••(x,w, t) =
x

(xC ′(x))′
∂

∂x
C•(x,w)

∂

∂x
C•(x, t)

+ B••(xC ′(x), w, t)C•(x, w)C•(x, t).

5 Series-parallel graphs: asymptotics

We now analyze the singularities of the generating functions derived in the pre-
vious section. In contrast to the case of outerplanar graphs, the singularities of
2-connected and connected SP graphs are of the same type (square-roots and pow-
ers of square-roots), so that a single pair of technical lemmas is sufficient to deal
with both cases. As before, we derive asymptotic estimates for the numbers dn,k

and dn,k,` as n, k, ` → ∞ in a suitable range, and we obtain a precise estimate
for the maximum degree of 2-connected and connected SP graphs by applying the
Master Theorem discussed in the Introduction.

5.1 Series-Parallel Networks

We first discuss the singular behaviour of the functions E(x) and D(x,w) associated
to SP networks.

Lemma 5.1 (From [2, Lemma 2.2]). The function E(x) admits a local expansion
of the form (1.7) or, equivalently, of the form

E(x) = E0 + E1X + E2X
2 + E3X

3 · · · ,

where X =
√

1− x/ρ1 and ρ1 ≈ 0.1280038. More precisely, we have that E0, ρ1

and E1 satisfy the equations

E0 + 1 = 2 exp

(
1

1 + 1/E0 +
√

1 + 1/E0

)
, (5.1)

ρ1 =

√
1− 1/E0 − 1

E0
,

E1 = −
√

2E0(1 + E0)
4 + 3ρ1E0

,

from where we obtain E0 ≈ 1.867893 and E1 ≈ −1.507045.

Proof. We start with the implicit equation (4.1). By [4, Theorem 2.19] the gener-
ating function E(x) has a singular representation of the form

E(x) = g(x)− h(x)
√

1− x

ρ1

= E0 + E1X + E2X
2 + E3X

3 + · · · ,
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where E0 = E(ρ1) and ρ1 are determined by the system of equations

E0 = 2 exp
(

ρ1E
2
0

1 + ρ1E0

)
− 1,

1 = 2 exp
(

ρ1E
2
0

1 + ρ1E0

)
ρ1E0(2 + ρ1E0)

(1 + ρ1E0)2
.

From here we obtain that
ρ1E

2
0 (2 + ρ1E0) = 1, (5.2)

and hence Equation 5.1 in the statement, and the approximations ρ1 ≈ 0.128004
and E0 ≈ 1.867893. Furthermore,

E1 = −
√

2E0(1 + E0)
4 + 3ρ1E0

≈ −1.507045 6= 0.

Lemma 5.2. The function D(x,w) has a local expansion of the form

D(x,w) = D0(x) + D1(x)W + D2(x)W 2 + · · · , (5.3)

where W =
√

1− w/w0(x) and

w0(x) =
(

1 +
1

xE(x)

)
exp

(
− 1

1 + xE(x)

)
− 1,

D0(x) =
1

xE(x)
,

D1(x) = −
(

1 +
1

xE(x)

) √
2w0(x)

1 + w0(x)
,

D2(x) = −2
3

(
exp

(
1

1 + xE(x)

)
− 1− 1

xE(x)

)
.

In particular, the functions w0(x), D0(x), D1(x) and D2(x) have a singular expan-
sion in X analogous to E(x).

Proof. Recall that the generating function D(x,w) satisfies the Equation (4.2). We
first consider x as a (complex) parameter and observe, by another application of [4,
Theorem 2.19], that D(x,w) has a representation of the form

D(x, w) = g(x,w)− h(x,w)
√

1− w

w0(x)

= D0(x) + D1(x)W + D2(x)W 2 + D3(x)W 2 + · · · , (5.4)

where W =
√

1− w/w0(x) and where w0(x) and D0(x) are determined by the
system of equations

D0(x) = (1 + w0(x)) exp
(

xD0(x)E(x)
1 + xE(x)

)
− 1,

1 = (1 + w0(x)) exp
(

xD0(x)E(x)
1 + xE(x)

)
xE(x)

1 + xE(x)
.

In particular we obtain the representations claimed for w0(x), D0(x), D1(x) and
D2(x).
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Note that representations similar to those of Lemma 5.1 and 5.2 hold for S(x) =
xE(x)2/(1 + xE(x)) and S(x,w) = xE(x)D(x,w)/(1 + xE(x)), respectively. We
also note for future use that w0(x) of Lemma 5.2 satisfies w0(ρ1) ≈ 1.312267 > 1.

Finally, we remark that (5.3) can be rewritten as

D(x,w) = G(x,X, w)−H(x, X, w)
√

1− y(x)w, (5.5)

where X =
√

1− x/ρ1, y(x) = 1/w0(x), and G(x, v, w) and H(x, v, w) are analytic
functions that are non-zero for (x, v, w) = (ρ1, 0, w0(ρ1)).

5.2 2-Connected Series-Parallel Graphs

We first recall the asymptotic estimate for the number of 2-connected SP graphs.
From [2, Theorem 2.5], the number of labelled 2-connected SP graphs is given
asymptotically by

bn = b · n− 5
2 ρ−n

1 n!
(

1 + O

(
1
n

))
,

where ρ1 ≈ 0.1280038 and b ≈ 0.0010131.
Next we derive the asymptotic estimates for dn,k and dn,k,` that we need in

order to apply Theorem 1.1.

Proposition 5.1. Let dn,k denote the probability that a randomly selected vertex
in a 2-connected SP graph with n vertices has degree k. Then we have uniformly
for k ≤ C log n

dn,k ∼ dk, (5.6)

where dk denotes the asymptotic degree distribution of 2-connected SP graphs en-
coded by the generating function

p(w) =
∑

k≥2

dkwk =
B1(w)
B1(1)

,

with

D0(w) = (1 + w) exp
(

ρ1E0

1 + ρ1E0
D0(w)

)
− 1,

B1(w) =
E1ρ

2
1D0(w)2

2(1 + ρ1E0)2
,

and ρ1, E0, and E1 are as in Lemma 5.1. The dk are given asymptotically by

dk = cw0(ρ1)−kk−
3
2

(
1 + O

(
1
k

))
, (5.7)

where c > 0 is some constant.
Furthermore, we have uniformly for all n, k ≥ 1

dn,k = O(qk) (5.8)

for some real q with 0 < q < 1.

The proof of Proposition 5.1 makes use of the following technical lemma, which
we prove in Appendix B.
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Lemma 5.3. Suppose that a generating function f(x,w) =
∑

n,k≥0 fn,kxnwk with
non-negative coefficients fn,k has a local representation of the form

f(x,w) = G(x,X, w) + H(x, X, w) (1− y(x)w)
3
2 ,

where X =
√

1− x/x0, the functions G(x, v, w) and H(x, v, w) are non-zero and
analytic at (x, v, w) = (x0, 0, 1/g(x0)), and y(x) is a power series of the square-root
type as in (1.7).

Then we have uniformly for k ≤ C log n (with an arbitrary constant C > 0)

fn,k =
3h(x0)H(x0, 0, 1/g(x0))

8π
g(x0)k−1x−n

0 k−
3
2 n−

3
2

(
1 + O

(
1
k

))
.

Moreover, for every ε > 0 we have uniformly for all n, k ≥ 0

fn,k = O
(
(g(x0) + ε)kρ−nn−

3
2

)
.

If g(x0) < 1, then fn =
∑

k fn,k is given asymptotically by

fn =
1

2
√

π

(
Gv(x0, 0, 1) + (1− g(x0))3/2

(
Hv(x0, 0, 1)− 3h(x0)

2(1− g(x0))
H(x0, 0, 1)

))

× x−n
0 n−

3
2

(
1 + O

(
1
n

))
,

and for every k the limit

dk = lim
n→∞

fn,k

fn

exists.

Proof of Proposition 5.1. It is not difficult to check that B•(x,w) fits precisely into
the assumptions of Lemma 5.3. By using Lemma 4.2 and Equation (5.4) it follows
that B•(x,w) has a singular representation of the form

B•(x,w) = B•
0(x) + B•

2(x)W 2 + B•
3(x)W 3 + · · · , (5.9)

where W =
√

1− w/w0(x) and the coefficients B•
j (x) are analytic functions in x

and E(x). For example, we have

B•
0(x) =

1
2E(x)(1 + xE(x))

,

B•
2(x) = −x2E(x)D1(x)2

2(1 + xE(x))
,

B•
3(x) = −x2E(x)D1(x)D2(x)

1 + xE(x)
.

Clearly, this representation can be rewritten as

B•(x,w) = G(x, X, w) + H(x,X,w) (1− y(x)w)3/2
, (5.10)

where X =
√

1− x/ρ1 and y(x) = 1/w0(x).
There is an alternative way to derive the same result without making use of

the explicit representation for B•(x,w). Start from (5.5) to derive a corresponding
representation for

∂

∂w
B•(x,w) =

∑

k≥1

kBk(x)wk = xeS(x,w) = G̃(x, X,w)−H̃(x,X, w) (1− y(x)w)1/2
.
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By expanding the functions G̃(x,X,w) and H̃(x,X, w) in W =
√

1− y(x)w this
leads to a local representation of the form

∂

∂w
B•(x,w) = G0(x,X) + G1(x,X)W + G2(x,X)W 2 + · · · .

Finally, since ∫
W ` dw = − 2

(` + 2)y(x)
W `+1 + C,

we obtain a representation for B•(x,w) of the form

B•(x,w) = G̃0(x,X) + G̃2(x, X)W 2 + G̃3(x,X)W 3 + · · · , (5.11)

where

G̃0(x,X) =
∫ 1/y(x)

0

∂

∂w
B•(x,w) dw

and

G̃j(x,X) = −2Gj−2(x,X)
jy(x)

for j ≥ 2. Of course, (5.11) rewrites to (5.10).
Anyway, this shows that B•(x, w) has precisely the form of f(x,w) in Lemma 5.3,

and that w(ρ1) > 1 implies that y(ρ1) = g(ρ1) < 1. Hence, all the properties claimed
follow. The representation for p(w) and the asymptotic expansion of dk can be also
found in [6].

Proposition 5.2. Let dn,k,` denote the probability that two different (and ordered)
randomly selected vertices in a 2-connected SP graph with n vertices have degrees k
and `. Then we have uniformly for 2 ≤ k, ` ≤ C log n

dn,k,` ∼ dkd`. (5.12)

Furthermore, we have uniformly for all n, k ≥ 1

dn,k,` = O(qk+`) (5.13)

for some real number q with 0 < q < 1.

The proof of the proposition makes use of the following lemma.

Lemma 5.4. Let f(x, w, t) =
∑

n,k,` fn,k,`x
nwkt` be a generating function of non-

negative numbers fn,k,`, and suppose that f(x,w, t) can be represented as

f(x, w, t) =
1
X

(
G1(x,X, w, t) + G2(x,X,w, t) (1− y(x)w)1/2 (5.14)

+ G3(x,X, w, t) (1− y(x)t)1/2 + G4(x,X, w, t) (1− y(x)w)1/2 (1− y(x)t)1/2
)
,

where X =
√

1− x/x0, the functions Gj(x, v, w) are analytic for at (x, v, w, t) =
(x0, 0, 1/g(x0), 1/g(x0)) for j = 1, 2, 3, 4, and non-zero for j = 4, and y(x) is a
power series of the square-root type as in (1.7).

Then, we have uniformly for k, ` ≤ C log n (with an arbitrary constant C > 0)

fn,k,` =
G4

(
x0, 0, 1

g(x0)
, 1

g(x0)

)

4π3/2
g(x0)k+`x−n

0 (k`)−
3
2 n−

1
2

(
1 + O

(
1√
k

+
1√
`

))
.

Moreover, for every ε > 0 we have uniformly for all n, k ≥ 0

fn,k,` = O
(
(g(x0) + ε)k+`x−n

0 n−
1
2

)
.
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If g(x0) < 1, then fn =
∑

k,` fn,k,` is given asymptotically by

fn =
1√
π

(
G1 + (G2 + G3)

√
1− g(x0) + G4(1− g(x0))

)

× x−n
0 n−

1
2

(
1 + O

(
1
n

))
,

in which Gj (j = 1, 2, 3, 4) has to be evaluated at (x, v, w, t) =
(
x0, 1, 1

g(x0)
, 1

g(x0)

)
,

and for every pair (k, `) the limit

dk,` = lim
n→∞

fn,k,`

fn

exists.

Proof of Proposition 5.2. Since we do not have an explicit expression for B••(x,w, t),
we proceed using the second idea in the proof of Proposition 5.1. We start with the
explicit expression for ∂

∂wB••(x,w) from Lemma 4.2. By using the local singular
expansion (5.5) for D(x,w), it follows directly that

D(x,w)D(x, t)
(

(1 + wt) exp
(

x

1 + xE(x)
D(x, w)D(x, t)

)
− 1

)

and that D(x,w)2D(x, t)2 can be represented as

G1(x,X,w, t) + G2(x,X, w, t)W + G3(x,X, w, t)T + G4(x,X,w, t)WT,

where T =
√

1− t/w0(x), and w and t vary in a ∆-domain corresponding to the
common singularity w0(x) = 1/y(x). Furthermore, since D0(x) = 1/(xE(x)) we
have

1
1− xE(x)D(x, w)

= − D0(x)
D1(x)W

(
1− D2(x)

D1(x)
W + O(W 2)

)
.

Finally, since ρ1E
2
0 (2 + ρ1E0) = 1 (see (5.2)) we have the expansion

1
1− 2xE(x)2 − x2E(x)3

=
F−1

X
+ F0 + F1X + O(X2),

where X =
√

1− x/ρ1.
Consequently, the function ∂

∂wB••(x,w, t) can be represented as

1
XW

(H1(x,X, w, t) + H2(x,X, w, t)W + H3(x,X,w, t)T + H4(x, X, w, t)WT ) ,

with analytic functions Hj(x, v, w, t). Hence, by rewriting this representation as a
series in W , integration with respect to w leads, as in the proof of Proposition 5.1,
to a representation of B••(x,w, t) of the form

B••(x,w, t)

=
1
X

(
H̃1(x, X, w, t) + H̃2(x,X,w, t)W + H̃3(x,X, w, t)T + H̃4(x,X, w, t)WT

)
.

Hence, we can apply Lemma 5.4 to obtain all the claimed properties.

We are ready to prove the main result in this section.
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Theorem 5.1. Let ∆n denote the maximum degree of a random labelled 2-connected
SP graph with n vertices. Then

∆n

log n
→ c in probability

and
E∆n ∼ c log n (n →∞),

where c =
1

log(1/q)
≈ 3.679772, and q ≈ 0.7620402 is given by

q =
((

1 +
1

ρ1E0
)
)

exp
(
− 1

1 + ρ1E0

)
− 1

)−1

,

with ρ1 and E0 as in Lemma 5.1.

Proof of Theorem 5.1. The proof is a direct application of Propositions 5.1, 5.2 and
Theorem 1.1.

Remark. It is also possible to prove in this case that p(w, t) = p(w)p(t). However,
it is much more technical than in the case of 2-connected outerplanar graphs. For
the sake of conciseness we skip the details.

5.3 Connected Series-Parallel Graphs

We first analyze the equation for C ′(x). From [2, Theorem 3.7], the number cn of
labelled connected SP graphs is given asymptotically by

cn = c · n− 5
2 ρ−n

2 n!
(

1 + O

(
1
n

))
,

where ρ2 ≈ 0.11021 and c ≈ 0.0067912.
The function v(x) = xC ′(x) has a local representation of the form

xC ′(x) = g(x)− h(x)
√

1− x

ρ2
. (5.15)

Thus, from an analytic point of view, we are in the same situation as in the outer-
planar case. Recall that

C•(x,w) = eB•(xC′(x),w).

The singularity ρ1 of B′(x) has no influence on the singular behavior of C ′(x),
since it is not hard to check that v(ρ2) = ρ2C

′(ρ2) < ρ1. Consequently we obtain
corresponding representations for

C(x) = g2(x) + h2(x)
(

1− x

ρ2

) 3
2

and the asymptotic expansion for cn.
The final step is to prove the following properties.

Proposition 5.3. Let dn,k denote the probability that a randomly selected vertex
in a connected SP graph with n vertices has degree k. Then we have uniformly for
k ≤ C log n

dn,k ∼ dk, (5.16)
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where dk denotes the asymptotic degree distribution of connected SP graphs encoded
by the generating function

p(w) =
∑

k≥2

dkwk = ρ2e
B•(v0,w) ∂

∂x
B•(v0, w).

where v0 = v(ρ2), and is given asymptotically by

dk = c′ · k− 3
2 w0(v0)−k

(
1 + O

(
1
k

))
, (5.17)

where c′ ≈ 3.5952391.
Furthermore, we have uniformly for all n, k ≥ 1

dn,k = O(qk) (5.18)

for some real q with 0 < q < 1.

Proof. By using (5.9) we derive the singular representation

eB•(x,w) = eB•0 (x)
(
1 + B•

2(x)W 2 + B•
3(x)W 3 + O(W 4)

)
.

By using this local expansion and (5.15) we get

C•(x,w) = eB•(xC′(x),w)

= C•0 (x) + C•2 (x)W
2

+ C•3 (x)W
3

+ · · · , (5.19)

= G(x,X2, w) + H(x, X2, w) (1− y(x)w)3/2
,

where all functions C•j (x) have a square-root singularity of the form (1.7) with x0 =
ρ2, X2 =

√
1− x/ρ2, and with y(x) = 1/w0(xC ′(x)). We have W =

√
1− y(x)w,

where the function y(x) = 1/w0(xC ′(x)) = g(x) − h(x)X2 has also a square-root
singularity of the form (1.7) with x0 = ρ2.

Hence we are exactly in the same situation as in the 2-connected case and we
can apply Lemma 5.3.

Proposition 5.4. Let dn,k,` denote the probability that two different (and ordered)
randomly selected vertices in a connected SP graph with n vertices have degrees k
and `. Then we have uniformly for 2 ≤ k, ` ≤ C log n

dn,k,` ∼ dkd`. (5.20)

Furthermore, we have uniformly for all n, k ≥ 1

dn,k,` = O(qk+`) (5.21)

for some real number q with 0 < q < 1.

Proof. We consider the function C••(x,w, t). We focus first on the term

x

(xC ′(x))′
∂

∂x
C•(x,w)

∂

∂x
C•(x, t).

Since

∂

∂x
X2 = − 1

2x2X2
,

∂

∂x
y(x) =

1
X2

(
1

2x2
h(x)− h

′
(x)X2

2 + g′(x)X2

)
,
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it follows from (5.19) that ∂
∂xC•(x,w) can be represented as

∂

∂x
C•(x,w) =

1
X2

(
G(x,X2, w)−H(x, X2, w)W

)
.

Hence, we obtain

x

(xC ′(x))′
∂

∂x
C•(x, w)

∂

∂x
C•(x, t)

=
1

X2

(
H1(x, X2, w, t) + H2(x,X2, w, t)W + H3(x,X2, w, t)T + H4(x,X2, w, t)WT

)
,

for certain analytic functions Hj .
Since v0 = ρ2C

′(ρ2) < ρ1, the function X(xC ′(x)) =
√

1− xC ′(x)/ρ1 is analytic
at x = ρ2. Consequently, the second term

B••(xC ′(x), w, t)C•(x,w)C•(x, t)

can be represented as

J1(x,X2, w, t) + J2(x,X2, w, t)W + J3(x, X2, w, t)T + J4(x, X2, w, t)W T,

with analytic functions Jj . Hence we obtain

C••(x,w, t)

=
1

X2

(
H̃1(x,X2, w, t) + H̃2(x,X2, w, t)W + H̃3(x,X2, w, t)T + H̃4(x,X2, w, t)W T

)
,

with H̃j = Hj + X2Jj .
Thus, we can apply Lemma 5.4 and obtain (as in the 2-connected case) all the

properties claimed.

Theorem 5.2. Let ∆n denote the maximum degree of a random labelled connected
SP graph with n vertices. Then

∆n

log n
→ c in probability

and
E∆n ∼ c log n (n →∞),

where c =
1

log(1/q)
≈ 3.482774, and q ≈ 0.750416 is given by

q =
((

1 +
1

τE(τ)

)
exp

(
− 1

τE(τ)

)
− 1

)−1

,

with τ = ρ1C
′(ρ1).

Proof. Again, the proof is a direct consequence of Proposition 5.3, 5.4 and Theo-
rem 1.1.

Remark. We recall that the radius of convergence of C ′(x) is smaller than that of
B′(x). Consequently, for the class of connected SP graphs we obtain automatically
that p(w, t) = p(w)p(t).
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Appendix A

The proof of Theorem 1.1 is based on the so-called first and second moment methods.

Lemma 5.5. Let X be a discrete random variable on non-negative integers with
finite first moment. Then

P{X > 0} ≤ min{1,EX}.

Furthermore, if X is a non-negative random variable which is not identically zero
and has finite second moment then

P{X > 0} ≥ (EX)2

E (X2)
.

Proof. For the first inequality we only have to observe that

EX =
∑

k≥0

k P{X = k} ≥
∑

k≥1

P{X = k} = P{X > 0}.

The second inequality follows from an application of the Cauchy-Schwarz inequality:

EX = E
(
X · 1[X>0]

) ≤
√
E (X2)

√
E (12

[X>0]) =
√
E(X2)

√
P{X > 0}.

As indicated in the Introduction, we apply this principle for the random variable
Yn,k that counts the number of vertices of degree > k in a random graph with n
vertices. This random variable is closely related to the maximum degree ∆n by the
relation

Yn,k > 0 ⇐⇒ ∆n > k.

One of our aims is to get bounds for the expected maximum degree E∆n. Due to
the relation

E∆n =
∑

k≥0

P{∆n > k}

=
∑

k≥0

P{Yn,k > 0},

we are actually led to estimate the probabilities P{Yn,k > 0}, which can be handled
via the first and second moment methods by estimating the first two moments

EYn,k and EY 2
n,k.

Actually, we compute asymptotics for the probabilities dn,k. Observe that the
number Xn,k of vertices of degree k is given by

Xn,k =
∑

v∈V (Gn)

1[d(v)=k], (5.22)

and consequently we have
EXn,k = ndn,k.

Since Yn,k =
∑

`>k Xn,`, we have

EYn,k = n
∑

`>k

dn,`. (5.23)
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The second moment is a bit more involved. From (5.22) we get

X2
n,k =

∑

v,w∈V (Gn)

1[d(v)=k]1[d(w)=k]

=
∑

v∈V (Gn)

1[d(v)=k] +
∑

v,w∈V (Gn),v 6=w

1[d(v)=k∧ d(w)=k],

and consequently
EX2

n,k = ndn,k + n(n− 1)dn,k,k,

where dn,k,k denotes the probability that two different randomly selected vertices
have degree k. Similarly, for k 6= ` we have

Xn,kXn,` =
∑

v,w∈V (Gn)

1[d(v)=k]1[d(w)=`]

=
∑

v,w∈V (Gn),v 6=w

1[d(v)=k∧ d(w)=`]

and
EXn,kXn,` = n(n− 1)dn,k,`,

where dn,k,` denotes the probability that two different randomly selected vertices
have degrees k and `.

This also shows that

EY 2
n,k =

∑

`1,`2>k

EXn,`1Xn,`2

=
∑

`>k

EX2
n,` + 2

∑

`1>`2>k

EXn,`1Xn,`2

= n
∑

`>k

dn,` + n(n− 1)
∑

`>k

dn,`,`

+ 2n(n− 1)
∑

`1>`2>k

dn,`1,`1

= n
∑

`>k

dn,` + n(n− 1)
∑

`1,`2>k

dn,`1,`1 .

Summing up we have the following estimates.

Lemma 5.6. Suppose that dn,k denotes the probability that a randomly selected
vertex in a graph of size n from a certain class of random planar graphs has degree k,
and that dn,k,` denotes the probability that two randomly selected (ordered) vertices
have degrees k and `. Furthermore let ∆n denote the maximum degree of a random
planar graph (in this class) of size n.

Then the probability P{∆n > k} is bounded by

n2
(∑

`>k dn,`

)2

n
∑

`>k dn,` + n(n− 1)
∑

`1,`2>k dn,`1,`1

≤ P{∆n > k} ≤ min

{
1, n

∑

`>k

dn,`

}
.

(5.24)
Consequently the expected value satisfies

E∆n ≤
∑

k≥0

min

{
1, n

∑

`>k

dn,`

}
(5.25)

and

E∆n ≥
∑

k≥0

n2
(∑

`>k dn,`

)2

n
∑

`>k dn,` + n(n− 1)
∑

`1,`2>k dn,`1,`1

. (5.26)
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With the help of Lemma 5.24 is it easy to prove Theorem 1.1.

Proof of Theorem 1.1. We start with the proof of (1.6). Suppose that the constant
C of condition (2) satisfies C > 2max

{
(log(1/q))−1, (log(1/q))−1

}
, and define k0(n)

as

k0(n) = min

{
k ≥ 0 : n

∑

`>k

d` ≤ 1

}
.

By assumptions (1.2) and (1.4) it follows that

k0(n) ∼ log n

log(1/q)
(n →∞).

In particular we obtain from (5.25) that

E∆n ≤
∑

k≥0

min

{
1, n

∑

`>k

dn,`

}

≤ k0(n) + 1 + n
∑

`>k

d` (1 + o(1))

∼ log n

log q−1
.

Next define k1(n) by

k1(n) = max

{
k ≥ 0 : n

∑

`>k

d` ≥ log n

}
,

which also satisfies
k1(n) ∼ log n

log q−1
(n →∞).

By assumptions (1.2)–(1.4) it follows that, uniformly for 0 ≤ k ≤ k1(n),

n(n− 1)
∑

`1,`2>k

dn,`1,`1 ∼ n2

(∑

`>k

dn,`

)2

and

n
∑

`>k

dn,` = o


n2

(∑

`>k

dn,`

)2

 .

Consequently

n
∑

`>k dn,` + n(n− 1)
∑

`1,`2>k dn,`1,`1 − n2
(∑

`>k dn,`

)2

n
∑

`>k dn,` + n(n− 1)
∑

`1,`2>k dn,`1,`1

→ 0,

uniformly for 0 ≤ k ≤ k1(n) as n →∞.
In order to obtain an upper bound for E∆n we use (5.26) and get, as n →∞,

E∆n ≥
∑

0≤k≤k1(n)

n2
(∑

`>k dn,`

)2

n
∑

`>k dn,` + n(n− 1)
∑

`1,`2>k dn,`1,`1

=
∑

0≤k≤k1(n)

1

−
∑

0≤k≤k1(n)

n
∑

`>k dn,` + n(n− 1)
∑

`1,`2>k dn,`1,`1 − n2
(∑

`>k dn,`

)2

n
∑

`>k dn,` + n(n− 1)
∑

`1,`2>k dn,`1,`1

∼ log n

log q−1
.
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Finally, it follows directly from assumptions (1.2)–(1.4) and the estimate (5.24)
that for every ε > 0

P
{∣∣∣∣

∆n

log n
− 1

log q−1

∣∣∣∣ ≥ ε

}
→ 0

as n →∞. This implies (1.5) and completes the proof of Theorem 1.1

Remark. It is clear that asymptotic relations with error terms (that are more precise
than (1.2)–(1.4)) imply an error term for the expected maximum degree E∆n.

Appendix B

Proof of Lemma 3.1. We use Cauchy’s formula

fn,k =
1

(2πi)2

∫

γ

∫

Γ

f(x, w)
xn+1wk+1

dx dw

with the following contours of integration.
For the integration with respect to x we use γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4, where

γ1 =
{

x = x0

(
1 +

−i + (log n)2 − t

n

)
: 0 ≤ t ≤ (log n)2

}
,

γ2 =
{

x = x0

(
1− 1

n
e−iφ

)
: −π

2
≤ φ ≤ π

2

}
,

γ3 =
{

x = x0

(
1 +

i + t

n

)
: 0 ≤ t ≤ (log n)2

}
,

and γ4 is a circular arc centered at the origin and making γ a closed curve.
Similarly, for the integration with respect to w we use Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4,

where

Γ1 =
{

w = w0

(
1 +

−i + (log k)2 − s

k

)
: 0 ≤ s ≤ (log k)2

}
,

Γ2 =
{

w = w0

(
1− 1

k
e−iψ

)
: −π

2
≤ ψ ≤ π

2

}
,

Γ3 =
{

w = w0

(
1 +

i + s

w

)
: 0 ≤ s ≤ (log k)2

}
,

where w0 = 1/g(x0) and Γ4 is a circular arc centered at the origin and making Γ a
closed curve.

We recall that we assume that k ≤ C log n (for some constant C > 0). The
following calculations will show that the Cauchy integral is always well defined, in
particular we have 1 − y(x)w 6= 0 for x ∈ γ and w ∈ Γ. (Recall that y(x) has
non-negative coefficients.) The most important part of the integral comes from the
x ∈ γ1 ∪ γ2 ∪ γ3 and w ∈ Γ1 ∪ Γ2 ∪ Γ3. If we use the substitutions x = x0

(
1 + t

n

)
and w = w0

(
1 + s

k

)
, then t and s vary in a corresponding curve H1 ∪H2 ∪H3 that

can be considered as a finite part of a so-called Hankel contour H (see Figure 4).
In particular we note that |X| ≤ (log n)/

√
n and |w − w0| ≥ w0/k ≥ w0/(C log n)

on these parts of the integration.
By using the substitution y(x) = g(x0) − h(x0)X + O(X2) and the relations

w0g(x0) = 1, we have

1− y(x)w = g(x0)(w0 − w) + h(x0)w0X + O(X2).
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H

Figure 4: Hankel contour of integration

Hence, if n is large enough we definitely have 1− y(x)w 6= 0, in particular the term
h(x0)w0X +O(X2) is of minor order of magnitude on these parts of the integration.
Consequently we can rewrite the reciprocal of 1− y(x)w as

1
1− y(x)w

=
1

g(x0)(w0 − w) + h(x0)w0X + O(X2)

=
1

g(x0)(w0 − w)

(
1− h(x0)w0X

g(x0)(w0 − w)
+ O

( |X|2
|w0 − w|2

))

=
1

1− w
w0

− h(x0)w0X(
1− w

w0

)2 + O

( |X|2
|w − w0|3

)
.

Next we set x = x0(1−X2) and rewrite G(x,X, w) locally as

G(x,X,w) = G0(w) + G1(w)X + O(X2).

Hence, if x and w are in this range then f(x, w) can be represented as

f(x,w) =
(
G0(w) + G1(w)X + O(X2)

)

 1

1− w
w0

− h(x0)w0X(
1− w

w0

)2 + O

( |X|2
|w − w0|3

)



=
G0(w)
1− w

w0

− G(x0, 0, w0)h(x0)w0X(
1− w

w0

)2 + O


 |X|∣∣∣1− w

w0

∣∣∣


 .

The first term does not depend on x, hence it does not contribute for n ≥ 1. The
second term provides the asymptotic leading term

1
(2πi)2

∫

γ1∪γ2∪γ3

∫

Γ1∪Γ2∪Γ3

G(x0, 0, w0)h(x0)w0X(
1− w

w0

)2 x−n−1w−k−1 dx dw

= −G(x0, 0, w0)h(x0)
2
√

π
g(x0)k−1x−n

0 k n−
3
2

(
1 + O

(
1
k

))
,

compare with the methods of Flajolet and Odlyzko [8]. We just remark that x−n

and w−k are replaced by

x−n = x−n
0 e−t+O(t2/n) and w−k = w−k

0 e−s+O(s2/k),

so that one can use Hankel’s representation of 1/Γ(s) to evaluate the resulting
integrals asymptotically.
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Finally, the remainder term provides an error term of the form

∫

γ1∪γ2∪γ3

∫

Γ1∪Γ2∪Γ3

O


 |X|∣∣∣1− w

w0

∣∣∣


 |x|−n−1|w|−k−1 |dx| |dw| = O

(
w−k

0 x−n
0 n−

3
2

)
,

compare again with [8].
If x ∈ γ1 ∪ γ2 ∪ γ3 and w ∈ Γ4 we can argue in a similar way. We use the

expansions

1
1− y(x)w

=
1

1− w
w0

+ O


 |X|∣∣∣1− w

w0

∣∣∣
2


 , (5.27)

G(x, X,w) = G0(w) + O(|X|), (5.28)

and the bounds x−n = O(x−n
0 ) and w−k = O(w−k

0 e−(log k)2) to observe that

1
(2πi)2

∫

γ1∪γ2∪γ3

∫

Γ4


 G0(w)

1− w
w0

+ O


 |X|∣∣∣1− w

w0

∣∣∣





 x−n−1w−k−1 dx dw

= O
(
w−k

0 x−n
0 ke−(log k)2n−

3
2

)
.

Note that the first term does not depend on x and does not contribute if n ≥ 1.
Next suppose that x ∈ γ4 and w ∈ Γ1 ∪ Γ2 ∪ Γ3. In this case we need not

be that precise. We can use the estimates G(x,X, w) = O(1) and |1 − y(x)w| ≥
c/k ≥ c′/ log n (for certain positive constants c, c′). Furthermore we have x−n =
O(x−n

0 e−(log n)2) and w−k = O(w−k
0 ). Hence the corresponding integral can be

estimated by

1
(2πi)2

∫

γ4

∫

Γ1∪Γ2∪Γ3

G(x,X, w)
1− y(x)w

x−n−1w−k dx dw = O
(
x−n

0 w−k
0 log n e−(log n)2)

)
,

which is negligible compared to the asymptotic leading term.
Finally, if x ∈ γ4 and w ∈ Γ4, the corresponding integral just provides an error

term of the form
O

(
x−n

0 w−k
0 log n e−(log n)2−(log k)2)

)
,

which is again negligible. This proves the asymptotic expansion (3.4).
In order to show the upper bound (3.5) we use again Cauchy’s formula for

x ∈ γ1∪γ2∪γ3∪γ4 (as above) and |w| = w0(1−δ) for some δ > 0. If x ∈ γ1∪γ2∪γ3

we use the expansions (5.27) and (5.28) to obtain

1
(2πi)2

∫

γ1∪γ2∪γ3

∫

|w|=w0(1−δ)


 G0(w)

1− w
w0

+ O


 |X|∣∣∣1− w

w0

∣∣∣





 x−n−1w−k−1 dx dw

= O
(
w−k

0 (1− δ)−kx−n
0 n−

3
2

)
.

The integral over x ∈ γ4 and |w| = w0(1−δ) can be estimated directly (and similarly
to the above), which leads to an additional error term of the form

O
(
x−n

0 w−k
0 (1− δ)−ke−(log n)2

)
.

This completes the proof of (3.5).
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Now suppose that g(x0) < 1. Then the generating function of fn =
∑

k fn,k is
given by ∑

n≥0

fnxn = f(x, 1) =
G(x,X, 1)
1− y(x)

.

By a local expansion it follows that

G(x,X, 1)
1− y(x)

=
G(x0, 0, 1)
1− g(x0)

− h(x0)G(x0, 0, 1)− (1− g(x0))Gv(x0, 0, 1)
(1− g(x0))2

X + O(X2),

which induces an asymptotic expansion for fn of the form

fn ∼ h(x0)G(x0, 0, 1)− (1− g(x0))Gv(x0, 0, 1)
2
√

π(1− g(x0))2
x−n

0 n−3/2.

Similarly we can derive an asymptotic expansion for
∑

k

fn,kwk = [xn]f(x,w),

which shows that the limit
lim

n→∞

∑

k

fn,k

fn
wk

exists uniformly for |w| ≤ 1. This also shows the existence of the limits dk =
limn→∞ fn,k/fn.

Proof of Lemma 3.2. The proof of Lemma 3.2 is very close to that of Lemma 3.1.
The essential observation is an asymptotic representation of f(x,w, t) of the form

f(x,w, t) =
G(x0, 0, w0, w0)

X
(
1− w

w0

)2 (
1− t

w0

)2 −
2h(x0)G0(w, t)

1− w
w0

− 2h(x0)G0(w, t)
1− t

w0

+ O

(
X

|w − w0| +
X

|t− w0|
)

,

for (x, w, t) close to the singularity (x0, w0, w0), and the fact that the first term is
the asymptotic leading one.

Proof of Lemma 3.3. The main observation is that f(x,w) can be approximated by

f(x,w) = G(x0, 0, w0) exp

(
H(x0, 0, w)

1− w
w0

)

×
(

1 +

(
G(x0, 0, w)
Gv(x0, 0, w)

+
Hv(x0, 0, w)

1− w
w0

− H(x0, 0, w)h(x0)w0(
1− w

w0

)2

)
X

+ O

(
X2

|w − w0|3
))

if x and w are close to their singularities x0 and w0. Hence, the term

−G(x0, 0, w0) exp

(
H(x0, 0, w)

1− w
w0

)
h(x0)H(x0, 0, w0)w0X(

1− w
w0

)2

leads to the asymptotic expansion as claimed. The main difference with the proof
of Lemma 3.1 is that the contour integration with respect to w is a circle |w| =
w0(1− η), where η ∼ ck−1/2 is chosen such that w0(1− η) becomes a saddle point
of the integrand; compare with Hayman’s method [11] and with [1]. All error terms
can be easily estimated.
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Proof of Lemma 3.4. The proof is (more or less) a direct combination of the meth-
ods used in the proof of Lemma 3.1 and 3.3. The main observation here is that the
asymptotic leading term of f(x,w, t) is of the form

G(x0, 0, w0, w0)
X

exp
(

H(x0, 0, w)
1− w/w0

+
H(x0, 0, t)
1− t/w0

)

(1− w/w0)
2 (1− t/w0)

2 .

Proof of Lemma 5.3. We can neglect the function G(x,X,w) since it is analytic in
w around the critical point (x0, w0).

The main observation now it that the remaining part can be represented (locally)
as

H(x,X,w)
(

1− w

w0
+ h(x0)w0X + O(X2)

)3/2

= H(x,X,w)
(

1− w

w0

)3/2
(

1 +
(3/2)h(x0)w0X

1− w
w0

+ O

(
X2

|w − w0|
))

.

Hence, the main contribution comes from the term

3
2
h(x0)w0H(x0, 0, w0)

(
1− w

w0

)1/2 (
1− x

x0

)1/2

.

Prof of Lemma 5.4. The proof is an easy combination of the proofs of Lemma 5.3
and 3.2. The asymptotic leading term of f(x,w, t) is given by

G4(x0, 0, w0, w0)
X

(
1− w

w0

)1/2 (
1− t

w0

)1/2

.
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