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Abstract

It has been observed that for most classes of planar maps, the number
of maps of size n grows asymptotically like c · n−5/2γn, for suitable positive
constants c and γ. It has also been observed that, if dk is the limit probability
that the root vertex in a random map has degree k, then again for most classes
of maps the tail of the distribution is asymptotically of the form dk ∼ c·k1/2qk

as k →∞, for positive constants c, q with q < 1.
We provide a rationale for this universal behaviour in terms of analytic

conditions on the associated generating functions. The fact that generating
functions for maps satisfy as a rule a quadratic equation with one catalytic
variable, allows us to identify a critical condition implying the shape of the
above-mentioned asymptotic estimates. We verify this condition on several
well-known families of planar maps.

1 Introduction

A planar map is a connected planar graph, possibly with loops and multiple edges,
together with an embedding in the plane. A map is rooted if a vertex v and an edge
e incident with v are distinguished, and are called the root-vertex and root-edge,
respectively. The face to the right of e is called the root-face and is usually taken
as the outer face. All maps in this paper are rooted.

The enumeration of rooted maps is a classical subject, initiated by Tutte in the
1960’s. He introduced the technique now called “the quadratic method” in order to
compute the number Mn of rooted maps with n edges, proving the formula

Mn =
2(2n)!

(n + 2)!n!
3n.

This was later extended by Tutte and his school to several classes of planar maps:
2-connected, 3-connected, bipartite, Eulerian, triangulations, quadrangulations, etc.

Using the previous formula, Stirling’s estimate gives Mn ∼ c · n−5/212n, where
c > 0 is a constant. In all cases where a “natural” condition is imposed on maps,
the asymptotic estimates turn out to be of this kind:

c · n−5/2γn (1.1)

The constants c and γ depend on the class under consideration, but one gets system-
atically an n−5/2 term in the estimate. This phenomenon is discussed by Banderier
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et al. [1], where the generating function M(z) of a given class of maps is parame-
terized in Lagrangean form as

M(z) = ψ(L(z)), where L(z) = zφ(L(z)).

Usually this kind of parametrization gives rise to a square-root singularity and an
asymptotic estimate with a subexponential term n−3/2. However, as noted in [1],
it appears that in all known map-related parameterizations of this form, the can-
celation ψ′(τ) = 0 holds, where τ is the positive solution of τφ′(τ) − φ(τ) = 0, so
that the singular exponent is shifted to 3/2. The authors of [1] then observe: ‘This
generic asymptotic form is “universal” in so far as it is valid for all known “natural”
families of maps’. If the singular exponent is 3/2 then, by singularity analysis, the
subexponential term is n−5/2 instead of the usual n−3/2. The main goal of this paper
is to provide an explanation for this universal phenomenon, based on the analysis
of the associated counting generating functions.

We turn now to degree distributions. Given a class of planar maps, let dn,k be
the probability that the root-vertex has degree k in a map with n edges, and assume
that the following limit exists for all k ≥ 1:

dk = lim
n→∞

dn,k.

Liskovets observed in [14] that for several natural classes of planar maps, the esti-
mates of dk for large k are of the form

dk ∼ c · k1/2qk, k →∞, (1.2)

where again the constants c > 0 and 0 < q < 1 depend on the class, but the critical
exponent 1/2 appears to be universal, in the sense that it is the same for all classes
of planar maps. However we find no attempt to explain this universal phenomenon
in [14]. Our main result provides again such an explanation.

It must be noted that there are exceptions to this behaviour. For instance, the
class of rooted maps with a unique face: since they are in bijection with plane
trees, the subexponential term is n−3/2 in this case. Plane trees are also an ex-
ception for the degree of the root, since we have the well-known exact expression
dk = k(1/2)k+1. Outerplanar maps, which can be encoded by trees, are another
exception. Also, maps having some kind of symmetry usually do not follow the
universal pattern.

In the following table we list several classes of maps that conform to the universal
exponents n−5/2 for the univariate enumeration, and to k1/2 for the tail of the limit
distribution of the root-vertex degree. We display in each case the constants γ and
q that appear in (1.1) and (1.2).

Class of maps γ q
Arbitrary 12 5/6
Eulerian 8

√
3/2

3-connected 4 1/2
Loopless 256/27 3/4
2-connected 27/4 2/3
Bipartite 8 3/4

The last two families have not been discussed explicitly with respect to the degree
of the root-vertex, hence we treat them in some detail in Section 3 after proving
our main result. To illustrate the applicability of the method, we also discuss the
related problem of counting near-triangulations with respect to the degree of the
root-face.
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The goal of this paper is to provide an explanation for these universal phenom-
ena, based on a detailed analysis of the quadratic method. In order to motivate the
statements that follow, let us recall the basic technique for counting planar maps.
Let Mn,k be the number of maps with n edges and in which the degree of the root-
face is equal k. Let M(z, u) =

∑
mn,kukzn be the associated generating function.

As shown by Tutte [16], M(z, u) satisfies the quadratic equation

M(z, u) = 1 + zu2M(z, u)2 + uz
uM(z, u)−M(z, 1)

u− 1
. (1.3)

Completing the square and setting y(z) = M(z, 1) for simplicity, the former equation
can be rewritten as

[G1(z, u, y(z))M(z, u) + G2(z, u, y(z))]2 = H(z, u, y(z)), (1.4)

where the Gi and H depend on the variables indicated (in this particular case
only H depends on y). The quadratic method consists on binding variables z and u,
assuming that there exists a function u(z) such that H(z, u(z), y(z)) = 0 identically.
Because of the square in the left-hand side of (1.4), the derivative Hu(z, u(z), y(z))
with respect to u also vanishes. From the system of equations

H(z, u(z), y(z)) = 0, Hu(z, u(z), y(z)) = 0 (1.5)

one eliminates y(z) to find u(z), and then find y(z) from H(z, u(z), y(z)) = 0. Once
we know y(z) = M(z, 1), from Equation (1.3) we obtain M(z, u). If we carry out
this program in this particular case, we find that

y(z) =
18z − 1 + (1− 12z)3/2

54z2
= 1 + 2z + 9z2 + 54z3 + · · · ,

from which we can deduce the explicit form for the numbers Mn. An explicit ex-
pression is obtained also for M(z, u), which encodes completely the distribution of
the degree of the root-face. Since planar maps are closed under duality, this is the
same distribution as the degree of the root-vertex.

In order to estimate Mn and Mn,k we use singularity analysis. The singular
expansion of y(z) at its dominant singularity z = 1/12 is of the form

y(z) = y0 + y2(1− 12z) + y3(1− 12z)3/2 + O((1− 2z)2).

By transfer theorems [10, 11], we obtain immediately that

Mn = [zn]y(z) ∼ c · n−5/212n.

The key point is that there is no square-root term (1 − 12z)1/2 in the singular
expansion, hence the subexponential term is n−5/2 instead of the classical n−3/2

term that arises in the enumeration of trees.
It can be checked that, for u near 1, the singularity of M(z, u) as a function of

z does not change and we have a singular expansion

M(z, u) = y0(u) + y2(u)(1− 12z) + y3(u)(1− 12z)3/2 + O((1− 2z)2),

where the yi(u) are analytic and can be computed explicitly. The probability that
the root-face has degree k in a random map with n edges is equal to Mn,k/Mn.
Hence the probability generating function (PGF) of the root-face degree is

pn(u) =
[zn]M(z, u)

[zn]y(z)
.
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It follows that the PGF of the limiting distribution is equal to

p(u) = lim
n→∞

pn(u) =
y3(u)

y3
=

u
√

3√
(2 + u) (6− 5 u)3

,

whose dominant singularity is at u = 6/5. Finally, again by singularity analysis, we
obtain the tail estimate

dk = [uk]p(u) ∼ c · k1/2

(
5
6

)k

.

Our main result says (informally) that the above situation is typical for most
families of planar maps: the univariate expansion of y(z) has (1− z/z0)3/2 as dom-
inant term, where z0 is the singularity of y(z). Furthermore, the singularity in z of
M(z, u) does not change if u is small, and the singular expansion of the limit PFG
p(u) has (1− qu)−3/2 as the dominant term, where 1/q is the singularity of p(u).

More precisely, we concentrate on situations where

F (z, u) =
∑

n,k

fn,kukzn, y(z) =
∑

n

ynzn

are the unique solutions of equation (1.4). Usually G1, G2, and H are polynomials,
but the proof of our main result requires only that these functions are analytic in
a proper range. In our applications we also have y(z) = F (z, 1) or y(z) = F (z, 0),
but this is not be required either.

Nevertheless, we have to assume some a priori knowledge on the functions y(z)
and F (z, u). In particular we have to check first that y(z) has a finite radius of
convergence z0 such that y0 = y(z0) is finite. Actually, this is relatively simple if H
is a polynomial. We just have to eliminate u from the system

H(z, u, y) = 0, Hu(z, u, y) = 0 (1.6)

and analyze a single equation F (z, y) = 0; see the comments in Section 2.2. It is
also required that z0 is the only singularity on the circle of convergence |z| = z0,
and that y(z) can be analytically continued to a slit circle

C(z0, δ) = {z : |z| < |z0|+ δ} \ [z0,∞)

for some δ > 0. Again, since y(z) is (usually) the solution of a single equation
F (z, y) = 0, this is easy to establish.

Since

F (z, u) =
−G2(z, u, y(z)) +

√
H(z, u, y(z))

G1(z, u, y(z))
,

the analytic behaviour of the mapping u 7→ F (y0, u) is completely explicit and the
radius of convergence u0 can be determined. In our context it is natural to assume
that u0 satisfies H(z0, u0, y0) = 0. Furthermore, since y(z) is singular at z = z0

the point (z0, u0, y0) should be also a critical point of the system (1.6). This means
that the solution y(z) and u(z) of (1.6) have a common singularity at z = z0 with
u(z0) = u0.

If (z0, u0, y0) is a critical point of the system (1.6), then the Jacobian
∣∣∣∣

Hy Hu

Huy Huu

∣∣∣∣ =
∣∣∣∣

Hy 0
Huy Huu

∣∣∣∣ = HyHuu
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must vanish, that is, HyHuu = 0 at (z0, u0, y0). Interestingly enough, for all the
natural classes of planar maps amenable to the quadratic method, it turns out that
Huu = 0 and Hy 6= 0.1 The critical condition is then

Huu(z0, u0, y0) = 0.

This condition is easy to check, since we always work in the realm of algebraic
functions and algebraic numbers. Actually the system H = Hu = Huu = 0 has
(usually) only finitely many solutions. For the running example we are using, we
have (z0, u0, y0) = (1/12, 6/5, 4/3) and

H = 4(u− 1)u3z2y + u4z2 − 4u4z + 6u3z − 2u2z + u2 − 2u + 1. (1.7)

A simple check gives Huu(1/12, 6/5, 4/3) = 0. It also gives Huuu(1/12, 6/5, 4/3) 6= 0,
which is necessary, together with other non-vanishing conditions, for the method to
work properly.

We are now ready to state our main result.

Theorem 1. Let F (z, u) =
∑

n,k fn,kukzn and y(z) =
∑

n ynzn with fn,k ≥ 0 and
yn ≥ 0 be the unique solutions of the equation

(G1(z, u, y(z))F (z, u) + G2(z, u, y(z)))2 = H(z, u, y(z)), (1.8)

with functions G1, G2 and H that are analytic for |z| < z0 + η, |u| < u0 + η,
|y| < y0 + η for some η > 0, where z0 > 0 denotes the radius of convergence of y(z)
that satisfies 0 < y0 = y(z0) < ∞, and u0 > 0 denotes the radius of convergence of
the function F (z0, u). Assume also that z = z0 and u = u0 are the only singularities
on the circles of convergence of y(z) and F (y0, u) and that they can be continued
analytically to slit circles C(z0, δ

′) and C(u0, δ
′′), respectively.

Furthermore assume that

H(z0, u0, y0) = 0, Hu(z0, u0, y0) = 0, Huu(z0, u0, y0) = 0,

together with

G1 6= 0, Hy 6= 0, Huy 6= 0, Huuu 6= 0, HzHuy 6= HyHzu,

HuuuH2
uy −HyHuyHuuuu + 3HyHuuyHuuu 6= 0

evaluated at (z0, u0, y0). Then

1. The following asymptotic estimate holds for some constant c > 0:

yn ∼ c · n−5/2z−n
0 ,

2. For every integer k ≥ 0 the limit

dk = lim
n→∞

fn,k

yn

exists and we have, uniformly for k ≤ C log n,

fn,k

dn
∼ c · k1/2qk

for some c > 0, q = 1/u0 and any constant C > 0; in particular

dk ∼ c · qkk1/2 (k →∞).
1Actually we have no combinatorial or analytic explanation for this phenomenon.
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For completeness, we check all the condition in the statement for H(z, u, y) as
in (1.7), evaluated at the critical point (z0, u0, y0) = (1/12, 6/5, 4/3). In addition to
H, we need G1 = 2(1− u)u2z. Then

G1 =
−6
125

, Hy =
6

625
, Huy =

9
125

, Huuu =
−50
9

, HzHuy−HyHzu =
288

15625
,

HuuuH2
uy −HyHuyHuuuu + 3HyHuuyHuuu =

−43
625

.

The proof of the main result is presented in the next section. In Section 3 we
present further examples of natural families of maps to which Theorem 1 applies.
The paper concludes with some remarks on the degree distribution in maps and
graphs.

2 Proof of the main result

We divide the proof of Theorem 1 into several parts. We start with a discussion of
the (implicit) solution of a single equation F (z, y) = 0. The main parts are then the
analysis of the system (1.6) (Section 2.2) and a bivariate asymptotic expansion for
the coefficients fn,k using Cauchy’s formula (Section 2.3).

2.1 A single equation

The first lemma on the singular structure of the solution of a single equation
F (z, y) = 0 is classical (e.g., it can be found in [6] or [11]).

Lemma 1. Suppose that y0, z0 are complex numbers and that F (z, y) is a function
analytic at (z0, y0) and satisfies the properties

F (z0, y0) = 0, Fy(z0, y0) = 0, (2.1)

and
Fyy(z0, y0) 6= 0, Fz(z0, y0) 6= 0.

Then the equation F (z, y) = 0 has precisely two solutions

y(z) = g(z)± h(z)
√

1− z/z0 (2.2)

in a neighbourhood of z0 (except in the part where 1 − z/z0 ∈ R−), where the
functions g(z) and h(z) are analytic at z0 and satisfy g(z0) = y(z0) and

h(z0) =

√
2z0Fz(z0, y0)
Fyy(z0, y0)

6= 0.

Observe that, by the implicit function theorem, if z0 is a singularity of a solution
y = y(z) with a finite value y(z0) = y0 of the equation F (z, y) = 0, then we have
necessarily Fy(z0, y0) = 0. Thus, the above conditions are very natural.

Suppose now that the solution y(z) of F (z, y) = 0 has a power series expan-
sion y(z) =

∑
n≥0 ynzn. It is not immediately clear how to compute the radius

of convergence. For example, if F (z, y) is a polynomial then y(z) may have local
singular expansions of the form y(z) = y0 + y1(1 − z/z0)r + · · · , or of the form
y(z) ∼ y0(1 − z/z0)−r for some positive rational number r. Actually it is easy to
exclude the second case by looking at the zeros (in z) of the leading coefficient of
powers of y of F . In the remaining cases we have a finite value y0 = y(z0) which can
only appear at a singular point, that is, if Fy(z0, y0) = 0. Hence, we just have to
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consider the system (2.1) and to determine positive solutions (z0, y0). In particular,
if there is just a single positive solution it follows that z0 has to be the radius of
convergence of y(z) and y(z0) = y0. If there is more than one solution then one has
to be more careful, but in any case it is possible (e.g., by using a priori bounds or
just by using numerical analysis) to decide which solution is the proper one.

The above lemma assures that y(z) has a square-root singularity if FyyFz 6= 0. If
this condition is not satisfied there might be a different analytic behaviour. However,
we will not encounter such situations.

Note also that any solution of the system (2.1) is a possible further singularity of
y(z) when it is extended analytically beyond the circle of convergence. In particular,
if there is no other singularity on the circle of convergence |z| = z0 then it follows
that y(z) is regular in a slit circle C(z0, δ) for some δ > 0. Together with the local
representation (2.2) it thus follows by the transfer theorem (see [10]) that

yn ∼ c z−n
0 n−3/2 (n →∞),

where c = ±h(z0)/(2
√

π) > 0.
Since we use a similar technique to obtain a bivariate asymptotic expansion for

fn,k (see Section 2.3), we sketch the main points of the proof method. It is based
on Cauchy’s formula

yn =
1

2πi

∫

γ

y(z)
zn+1

dz

with the following contours of integration: γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4, where

γ1 =
{

z = z0

(
1 +

−i + (log n)2 − t

n

)
: 0 ≤ t ≤ (log n)2

}
,

γ2 =
{

z = z0

(
1− 1

n
e−iφ

)
: −π

2
≤ φ ≤ π

2

}
,

γ3 =
{

z = z0

(
1 +

i + t

n

)
: 0 ≤ t ≤ (log n)2

}
,

and γ4 is a circular arc centered at the origin and making γ a closed curve. The
integral over γ4 is bounded by O

(
z−n
0 e−(log n)2

)
and is therefore negligible. Finally

the integral over γ1 ∪ γ2 ∪ γ3 is approximated by the integral

±h(z0)z−n
0

n3/2

1
2πi

∫

H
(−x)1/2e−x dx

where one uses the substitution z = z0(1 + x/n) and x varies on a so-called Hankel
contour H (see Figure 1). By Hankel’s integral representation of 1/Γ(s) we finally
obtain

yn ∼ ±h(z0)z−n
0

Γ(−1/2)n3/2
=
∓h(z0)z−n

0

2
√

π n3/2
.

It is clear that if y(z) behaves like (1 − z/z0)α then the asymptotic leading
term of the coefficient is z−n

0 n−1−α/Γ(−α), and it is also possible to transfer a
O ((1− z/z0)α) term in a proper expansion of y(z) into a O

(
z−n
0 n−1−α

)
term of

the Cauchy integral (see [10] or [11]).

2.2 Two equations

We recall that the quadratic methods requires to solve the system of equations (1.5).
The next lemma provides a variant of Lemma 1 which will be applicable in this
framework.
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H

Figure 1: Hankel contour of integration

Lemma 2. Suppose that z0, u0, y0 are complex numbers and that H(z, u, y) is a
function analytic at (z0, u0, y0) and that satisfies the properties

H(z0, u0, y0) = 0, Hu(z0, u0, y0) = 0, Huu(z0, u0, y0) = 0

and
Hy 6= 0, Huy 6= 0, Huuu 6= 0, HzHuy 6= HyHuz

for (z, u, y) = (z0, u0, y0). Then the system of functional equations

H(z, u(z), y(z)) = 0, (2.3)
Hu(z, u(z), y(z)) = 0, (2.4)

has precisely two solutions u(z) and y(z) with u(z0) = u0 and y(z0) = y0, which are
given by

u(z) = g1(z)± g2(z)
√

1− z/z0, (2.5)

y(z) = h1(z)± h2(z) (1− z/z0)
3/2 (2.6)

in a neighbourhood of z0 (except in the part, where 1− z/z0 ∈ R−). The functions
g1(z), g2(z), h1(z), and h2(z) are analytic at z0 and satisfy

g1(z0) = u0,

g2(z0) =

√
2z0(HyHuz −HzHuy)

HyHuuu
6= 0,

h1(z0) = y0,

h2(z0) = g2(z0)
2z0(HyHuz −HzHuy)(HuuuH2

uy −HyHuyHuuuu + 3HyHuuyHuuu)
3HuuuH2

uyH2
y

,

where all derivatives of H have to be evaluated at (z, u, y) = (z0, u0, y0).

Proof. We solve the system (2.3)–(2.4) by first considering the equation
Hu(z, u, y) = 0, where z and u are considered as independent variables and
y = Y (z, u) is the unknown function. In a second step we solve the equation
H(z, u, Y (z, u)) = 0, where z is the independent variable. Then the solution
u = u(z) is the function that we are looking for and y(z) = Y (z, u(z)).

Since we assume that Huy(z0, u0, y0) 6= 0, it follows from the implicit function
theorem that there exists a function Y (z, u) with Y (z0, u0) = y0 that is analytic at
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(z0, u0) and solves (locally) the equation Hu(z, u, Y (z, u)) = 0. Observe that

Yu(z0, u0) = −Huu

Huy
= 0,

Yuu(z0, u0) = −Huuu

Huy
6= 0,

Yuu(z0, u0) =
3HuuyHuuu −HuyHuuuu

H2
uy

,

Yz(z0, u0) = −Huz

Huy
,

Yuz(z0, u0) =
HuuyHuz −HuuzHuy

H2
uy

,

evaluated at (z, u, y) = (z0, u0, y0). Next we apply Lemma 1 with F (z, u) =
H(z, u, Y (z, u)) (and z as the independent variable). By assumption we have

F (z0, u0) = H(z0, u0, y0) = 0,

Fu(z0, u0) = Hy(z0, u0, y0)Yu(z0, u0) + Hu(z0, u0, y0) = 0,

Fuu(z0, u0) = Hy(z0, u0, y0)Yuu(z0, u0) 6= 0,

Fz(z0, u0) = Hy(z0, u0, y0)Yz(z0, u0) + Hz(z0, u0, y0)

=
(HzHuy −HyHuz)(z0, u0, y0)

Huy(z0, u0, y0)
6= 0.

Hence, the only two solutions u(z) have local expansions of the form

u(z) = g1(z)± g2(z)
√

1− z/z0,

where g1(z) and g2(z) are analytic and satisfy g1(z0) = u0 and

g2(z0) =

√
2z0Fz(z0, u0)
Fuu(z0, u0)

=

√
2z0(HyHuz −HzHuy)

HyHuuu
.

A simple calculation (by using Taylor’s theorem and comparing coefficients) we also
obtain an expression for

g′1(z0) =
FzFuuu − 3FuzFuu

F 2
uu

=
1

3H2
yH2

uuu

(−3H2
yHuuuHuuz + 2HuuuHuyHyHuz − 2HuuuH2

uyHz

+ 3HyHuuyHuuuHz + H2
yHuuuuHuz −HyHuyHuuuuHz

)
.

Finally we use the expansion of u(z) to derive the local behaviour of

y(z) = Y (z, u(z))

= y0 + Yz(z0, u0)(z − z0) +
1
2
Yuu(z0, u0)(u(z)− u0)2

+ Yuz(z0, u0)(z − z0)(u(z)− u0) +
1
6
Yuuu(z0, u0)(u(z)− u0)3 + O((z − z0)2).

Note that the property Yu(z0, u0) = 0 implies that y(z) has no
√

1− z/z0 term in
its expansion. Precise expressions for the coefficients (like h2(z0)) can be determined
easily.
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2.3 Bivariate asymptotics for the coefficients

Lemma 3. Suppose that G(z, u, y) is a function that is analytic for |z| < z0 + η,
|y| < y0 + η, and |u| < u0 + η, where z0, u0, y0 and η are positive real numbers.
Furthermore suppose that F (z, u) =

∑
n,k fn,kukzn, with fn,k ≥ 0, is given by

F (z, u) =
√

G(z, u, y(z)),

where y(z) =
∑

n≥0 ynzn, with yn ≥ 0, is analytic in a slit circle C(z0, δ
′), with

δ′ > 0, and can be represented locally by

y(z) = h1(z) + h2(z) (1− z/z0)
3/2

with functions h1(z), h2(z), that are analytic at z = z0 and satisfy y0 = h1(z0) 6= 0
and h2(z0) 6= 0. Assume also that

G = 0, Gu = 0, Guu = 0

and
Guuu 6= 0, Gy 6= 0

evaluated at (z, u, y) = (z0, u0, y0), and G(z0, u, y0) 6= 0 for u ∈ C(u0, δ
′′) for some

δ′′ > 0.
Then for every integer k ≥ 0 the limit

dk = lim
n→∞

fn,k

yn

exists and we have uniformly for k ≤ C log n

fn,k

yn
∼ c qkk1/2

for some c > 0 and q = 1/u0, for any constant C > 0. In particular we have

dk ∼ c qkk1/2, k →∞.

Proof. First it follows from the methods described in Section 2.1 (or directly by the
transfer theorem) that

yn ∼ c1z
−n
0 n−5/2

for some constant c1 > 0.
Next we turn to the analysis of F (z, u). By assumption it follows that

G(z, u, y(z)) has a local expansion of the form

G(z, u, y(z)) = G(z0, u, y0) + Gz(z0, u, y0)(z − z0)

+ Gy(z0, u, y0)(y(z)− y0) + O
(|1− z/z0|2

)

=
1
6
Guuu(z0, u0, y0)(u− u0)3 + O

(|1− u/u0|4
)

+ (Gz(z0, u, y0) + Gy(z0, u, y0)h′1(z0)) (z − z0)

+ Gy(z0, u0, y0)h2(z0)(1− z/z0)3/2

+ O
(
|1− z/z0|3/2|1− u/u0|+ |1− z/z0|2

)

= A(u)(z − z0) + B(1− z/z0)3/2 + C(u)(1− u/u0)3

+ O
(
|1− z/z0|2 + |1− z/z0|3/2|1− u/u0|

)
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where A(u) is a function that is analytic at u = u0, B is a non-zero constant, and
C(u) is another function that is analytic at u = u0 with C(u0) 6= 0. In particular
this shows that u = u0 is a singularity of the mapping u 7→ F (z0, u). By assumption
it follows that F (z0, u) has no other singularities in a proper slit circle C(u0, δ

′′)
(with δ′′ > 0). Consequently, u = u0 is the radius of convergence of F (z0, u). Since
fn,k ≥ 0, it also follows that F (z, u) is analytic for |z| < z0 and |u| < u0, there are no
other singularities on the circles of convergence, and we have analytic continuation
to proper slit circles C(z0, δ

′) and C(u0, δ
′′), respectively.

Next suppose that |u| < u0 and consider the mapping z 7→ F (z, u). Due to
the singularity of y(z) and the non-vanishing of G it follows that the mapping
z 7→ F (z, u) has also a singularity at z = z0 and it can be analytically continued to
the same slit circle as y(z). Moreover we have a local expansion of the form

F (z, u) = F0(u) + F2(u)(1− z/z0) + F3(u)(1− z/z0)3/2 + · · ·

which comes from the local behaviour of y(z). By applying the transfer theorem it
thus follows that the limit

lim
n→∞

[zn] F (z, u)
[zn] y(z)

= c3F3(u)

exists (with a proper constant c3 6= 0). By assumption this limit has to be a power
series in u:

p(u) = c3F3(u) =
∑

k≥0

dkuk.

Furthermore we have for every k ≥ 0

lim
n→∞

fn,k

yn
= dk.

It is easy to get an explicit form for p(u) in terms of derivatives of G and to exploit
this representation to observe that u0 is the radius of convergence of this series with
a local behaviour of the form c′(1 − u/u0)−3/2. By the transfer theorem this local
behaviour implies an asymptotic equivalent for dk of the form dk ∼ cu−k

0 k1/2.
However, we use a different approach to deduce this asymptotic relation by

providing even a bivariate asymptotic relation for fn,k. We use Cauchy’s formula

fn,k =
1

(2πi)2

∫

γ

∫

γ

F (z, u)
un+1uk+1

dz du

where γ is chosen as described in Section 2.1 and γ is a corresponding path for u.
As in the univariate case, the dominant part of the integral comes from those parts
that are close to z0 and u0. Therefore we neglect the other parts, since they do not
contribute to the asymptotic leading term (a similar but more detailed analysis is
worked out in [9]). An important observation is that we restrict ourselves to the
case k ≤ C log n (for an arbitrary constant C > 0). This implies that |u − u0| is
larger than any power of |z−z0| in the range of interest; recall that |1−z/z0| ≈ 1/n
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and |1− u/u0| ≈ 1/k in this range. Hence, in this range, F (z, u) is given by

F (z, u) =
√

G(z, u, y(z))

=
√

C(u) (1− u/u0)3/2

(
1 +

A(u)(z − z0) + B(1− z/z0)3/2

C(u)(1− u/u0)3

+ O

( |1− z/z0|2
|1− u/u0|3 +

|1− z/z0|3/2

|1− u/u0|2
))1/2

=
√

C(u) (1− u/u0)3/2 +
A(u)(z − z0) + B(1− z/z0)3/2

2
√

C(u) (1− u/u0)3/2

+ O

( |1− z/z0|2
|1− u/u0|3/2

+
|1− z/z0|3/2

|1− u/u0|1/2

)

By doing the double Cauchy integration the first two terms give no contribution,
since they are analytic in z. However, the third term

B(1− z/z0)3/2

2
√

C(u) (1− u/u0)3/2
=

B(1− z/z0)3/2

2
√

C(u0) (1− u/u0)3/2
+ O

( |1− z/z0|3/2

|1− u/u0|1/2

)

gives a non-trivial contribution. Since the dependence in z and u factors, the in-
tegration with respect to z and u can be done independently and we obtain the
estimate (similarly to the procedure described in Section 2.1)

c2 z−n
0 u−k

0 n−5/2k1/2 + O
(
z−n
0 u−k

0 n−5/2k−1/2
)

for a certain constant c2 6= 0. Finally the contributions of the other error terms add
up to

O
(
z−n
0 u−k

0

(
n−3k1/2 + n−5/2k−1/2

))

which is negligible for k ≤ C log n.
This completes the proof of the lemma.

2.4 Proof of Theorem 1

We are finally ready to prove Theorem 1. As already indicated we follow the prin-
ciples of the quadratic method and in each step we also determine the kind of
singularities of the corresponding generating functions.

First of all we apply Lemma 2 for H and obtain proper expansions for u(z) and
y(z), which are given by (2.5) and (2.6). By assumption we have g2(z0) 6= 0 and
h2(z0) 6= 0. Again by assumption z = z0 is the only singularity of y(z) =

∑
n≥0 ynzn

on the circle of convergence |z| = z0 and there is an analytic continuation to a proper
slit circle C(z0, δ

′). By the transfer theorem, it follows that

yn ∼ ±h2(z0)√
π

z−n
0 n−

5
2 .

Since G1 and G2 are analytic at (z0, u0, y0) the functions G1,2(z, u, y(z)) are
analytic in u if (z, u) are in a neighbourhood of (z0, u0). Hence, the ratio −G2/G1

does not contribute to the asymptotic leading term of fn,k. The dominant part
comes from the function

√
H(z, u, y(z))/G1(z, u, y(z)). Since H(z0, u0, y0) = 0, this

function gets singular. Actually we can apply Lemma 3 for G = H/G2
1 and obtain the

asymptotic expansion for fn,k. It is easy to verify that all assumptions of Lemma 3
are satisfied.

This completes the proof of Theorem 1.
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3 Examples

Our first example, arbitrary planar maps, has been discussed in the introduction.
We continue with 2-connected maps (also called non-separable in the literature). In
what follows, the size of a map is its number of edges.

2-connected maps. A maps is 2-connected if it has no cut vertex. The core of a
map is the 2-connected component containing the root-edge. Given a map M of size
n whose core C has size k, then M is obtained form C by attaching an arbitrary
at each of the 2k corners of C. Let B(z) =

∑
Bnzn be the counting generating

function for 2-connected maps. The decomposition based on the core of a map
gives, as shown by Tutte [16], the relation

M(z) = B(zM(z)2),

where M(z) is the generating function for arbitrary maps. If now we add variable
u to take into account the degree of the root-face, then we have

M(z, u) = B

(
zM(z)2,

uM(z, u)
M(z)

)
. (3.1)

The proof uses again the decomposition into the core and the maps attached to the
corners, refined to take into account the degree of the root-vertex (see [4]).

We change variables x = zM(z)2 and w = M(z, u)/M(z), and eliminate z, u
and M(z, u) from (3.1) and (1.3). If we notice that M(z) = B(x), the resulting
equation is for B(x,w) is

B(x, w)2 − (w2x + wB(x) + 1)B(x,w) + (w3 + w)B(x)x + w2x− wx = 0.

Completing the square, the corresponding H function in (1.4) is equal to

H(x,w, y) = w2y2 − (
2w3x + 2w

)
y + w4x2 − 2w2x + 4wx + 1.

The dominant singularity of B(x) is at x0 = 4/27. Then y0 = y(x0) = 4/3, and
w0 = w(x0) = 3/2. Again we check that

Hww(4/27, 3/2, 4/3) = 0,

together with the non-vanishing conditions. Thus we have proved the following.

Proposition 1. Let dk be the asymptotic probability that the root-vertex in 2-
connected maps has degree k. Then, as k →∞,

dk ∼ c · k1/2

(
2
3

)k

.

As in the first section, one can compute the probability generating function and
it turns out to be

p(w) =
w

2

(
1− 27− 36w + 4w2

√
(2w − 27)(2w − 3)3

)
.

The dominant term is (1− 2w/3)−3/2, which implies the previous estimate by sin-
gularity analysis. But the important point is that the critical condition Hww = 0,
together with the non-vanishing conditions, guarantees the result without knowl-
edge of the probability generating function.
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Bipartite and Eulerian maps. The enumeration of bipartite maps is classical
and follows the same scheme used for arbitrary maps. If u marks the degree of the
root-face, then the associated generating function B(z, u) satisfies

B(z, u) = 1 + u2zB(z, u)2 + u2z
B(z, u)−B(z, 1)

u2 − 1
. (3.2)

The fact that the equation is in terms of u2 is because in a bipartite map the root
face has even degree. We then obtain

H(z, u, y) = (4u6z2 − 4u4z2)y + u4 − 2u2 + 6u4z + 1− 2u2z + u4z2 − 4u6z.

The usual computations give the critical values z0 = 1/8, u0 = 2/
√

3, y0 = 5/4.
Again we check the critical condition Huu(z0, u0, y0) = 0, together with the addi-
tional non-vanishing conditions. By duality, we obtain the distribution of the degree
of the root-vertex degree in Eulerian maps.

In order to obtain the distribution of the degree of the root-vertex in bipar-
tite maps, we can use a bijection between 2-colored maps and 3-colored triangula-
tions [12]. Given a bipartite map M whose vertices are colored black and white, add
a new vertex inside each face f of M and join it to all the vertices in the boundary
of f . This produces a triangulation T that is 3-colored by given color red to the
new vertices. The triangulation T has a unique 3-coloring (this is the same as saying
that is Eulerian), so that the three color classes are indistinguishable. If v and f are,
respectively, the root-vertex and the root-face of M , then f has the same degree in
T as in M , but the degree of v in T is twice its degree in M . This implies that the
number of bipartite maps of size n whose root-vertex has degree k is the same as
the number of bipartite maps of size n whose root-face has degree 2k. Hence both
distributions are essentially the same, and the critical value u0 for the degree of
the root-vertex is the square of the corresponding value for the root-face, that is,
u0 = (2/

√
3)2 = 4/3.

Proposition 2. Let dk be the asymptotic probability that the root-vertex in bipartite
maps has degree k. Then, as k →∞,

dk ∼ c · k1/2

(
3
4

)k

.

Triangulations. This example is a bit different and illustrates the flexibility of the
method. In this section all maps are simple, that is, they have no multiple edges. A
triangulation is a map in which every face is a triangle. A near-triangulation is a map
in which all faces are triangles except possibly the outer face, and in addition there is
no chord. Vertices in the outer face of a near-triangulation are called external, and
internal otherwise. To enumerate triangulations, Tutte [15] proceeded as follows.
Let Tn,k be the number of near-triangulations with n internal vertices and k + 3
external vertices, and let T (z, u) =

∑
Tn,kznuk. Notice that T (z, 0) enumerates

triangulations according to the number of internal vertices.
By removing the triangle containing the root-edge in a near triangulation one

obtains a sequence of near-triangulations. This decomposition gives rise to the equa-
tion

u2 T (z, u)2 + (z + zuy(z)− u− u2)T (z, u) + u− zy(z),

where y(z) = T (z, 0). The basic function to be analyzed is once more the discrimi-
nant of the quadratic equation, and is equal to

H(z, u, y) = z2u2y2 + 2
(
z2u + zu2 − zu3

)
y +

(
z − u− u2

)2 − 4u3.
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The critical values are z0 = 27/256, u0 = 3/16, y0 = 32/27. Notice that in this case
u0 < 1; this is because the univariate generating function is now obtained by setting
u = 0. But this is only a detail and the analysis is the same. Indeed, we check the
critical condition Huu(z0, u0, y0) = 0, together with the non-vanishing conditions.

If we denote by S(z, u) the generating function of near-triangulations, where
now z marks the total number of vertices minus 3, then S(z, u) = T (z, zu). The
critical values (z̃0, ũ0) for S(z, u) are determined by z̃0 = z0 and z̃0ũ0 = u0, so that
ũ0 = u0/z0 = 16/9, and we obtain the following.

Proposition 3. Let dk be the asymptotic probability that the root-face in near-
triangulations, counted according to the number of vertices, has degree k. Then, as
k →∞,

dk ∼ c · k1/2

(
9
16

)k

.

4 Concluding remarks

For maps of genus g, the asymptotic estimates for natural families of maps are of
the form

c · n5/2(g−1)γn.

Bender [2] posed as an open problem to find a combinatorial explanation for the
presence of the exponent 5/2(g−1). This has been achieved recently by Chapuy [5],
by constructing inductively maps of genus g from maps of genus g − 1. Our main
result gives an analytic explanation for the base case g = 0.

Finally, one can also study these problems for graphs instead of maps, that is,
graphs without an embedding. Building on results from [13] and [7], it has been
shown [8] that for labelled planar graphs counted according to the number of ver-
tices, there is a degree distribution dk, and the estimate for the tail is of the from

c · k−1/2qk,

for suitable constants c and q < 1. The reason for the exponent −1/2 instead of the
exponent 1/2 we have encountered for maps is that maps are rooted, hence there
is an extra factor of k for the degree of the root vertex. The same kind of estimate
holds for 2- and 3-connected planar graphs. However, for certain subclasses of planar
graphs, such as series-parallel graphs, the estimates are of the form c · k−3/2qk, due
to a different critical behaviour of the corresponding generating functions at their
singularities (see also [3] for a different approach).
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