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Abstract We prove that the number of vertices of given degree in (general or
2-connected) random planar maps satisfies a central limit theorem with mean
and variance that are asymptotically linear in the number of edges. The proof
relies on an analytic version of the quadratic method and singularity analysis
of multivariate generating functions.
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1 Introduction

In this paper we study statistical properties of planar maps, which are con-
nected planar graphs, possibly with loops and multiple edges, together with
an embedding in the plane. Such objects are frequently used to describe topo-
logical features of geometric arrangements in two or three spatial dimensions.
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Thus, the knowledge of the structure and of properties of “typical” objects
may turn out to be very useful in the analysis of particular algorithms that
operate on planar maps.

We say that map is rooted if a vertex v and an edge e incident with v are
distinguished. We call v the root-vertex and e the root-edge. The face to the
right of e is called the root-face and is usually taken as the outer (or infinite)
face. In this paper we only consider rooted maps.

The enumeration of rooted maps is a classical subject, initiated by Tutte in
the 60’s, see [16]. Among many other results, Tutte computed the number Mn

of rooted maps with n edges, proving the formula

Mn =
2(2n)!

(n+ 2)!n!
3n.

Our main interest is the degree distribution of random planar maps. We denote
by dn,k the probability that the root-vertex has degree k in a random map
with n edges, i.e., a map that is drawn uniformly at random from the set of
all maps with n edges. It is known that the limit dk = limn→∞ dn,k exists.
Actually, the values dk are almost explicit. They are given by the generating
function

∑

k≥2

dku
k =

u
√
3

√

(2 + u)(6− 5u)3
. (1)

For more details see Liskovets [14] and the references therein.
The problem is slightly different when we look at the degree of of random

vertex in a random map. Let pn,k denote the probability that a randomly
chosen vertex in a random map with n edges has degree k. Then the limit
pk = limn→∞ pn,k exists, too, and we have

pk = µdk/k

for a certain constant µ > 0, see also [14]. By integration it is possible to
obtain an explicit (but involved) representation of the generating function for
the sequence pk. Note that pk is closely related to the average behavior of the

number X
(k)
n of vertices of degree k in a random planar map with n edges.

It is well known that the number of vertices Vn in maps of size n satisfies a
central limit theorem with E[Vn] ∼ n/2. Consequently, as n → ∞

E[X(k)
n ] ∼ 1

2
pkn.

2 Our Result

The main goal of this paper is to study the random variable X
(k)
n in more

detail. In particular we will prove a central limit theorem and tail estimates
in the general and in the 2-connected case.
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Theorem 1 Let k ∈ N. The number X
(k)
n of vertices of degree k in a random

planar map with n edges satisfies a central limit law, i.e.,

X
(k)
n − E[X

(k)
n ]

Var[X
(k)
n ]1/2

→ N (0, 1),

where E[X
(k)
n ] = µkn+O(1) and Var[X

(k)
n ] = σ2

kn+O(1), and µk, σk > 0 are

computable constants. Moreover, X
(k)
n has exponential tails, i.e., there is an

ε0 > 0 and a ck > 0 such that for any 0 < ε < ε0

Pr
[

|X(k)
n − E[X(k)

n ]| ≥ εE[X(k)
n ]
]

≤ e−ε2ckn.

The same is true for random 2-connected planar maps.

Note that µk in the above statement equals (in the case of planar maps) the
quantity pk/2 from Section 1. Since the dual of a planar map is again a planar
map and the degree of a vertex corresponds to the valency of a face in the
dual, the same result holds for the number of faces of given valency. Actually,
our combinatorial approach will make use of this correspondence.

Tail estimates for X
(k)
n in the case of general maps have been also obtained

by Gao and Wormald [11]. They are on the one hand weaker, but on the
other hand more uniform (for k ≤ c logn, where c > 0 is sufficiently small).
Moreover, Johannsen and the second author [13] studied, among others, the
case of 2-connected planar maps. However, the central limit theorem was in
both cases unknown. Note that our work does not answer the question for
the 3-connected case; it seems that there is no (known) method for counting
directly 3-connected planar maps that is similar to the presented methods
for general and 2-connected planar maps. On the other hand, the expected
number of vertices of a given degree for 3-connected planar maps was given in
[1], see also [7].

Nevertheless, there are several classes of planar maps and graphs, where a
central limit theorem holds. For example, Gao and Wormald [12] showed such
a result for certain classes of triangulations. Moreover, for labeled outerplanar
graphs and labeled series-parallel graphs this was shown by Drmota, Gimenéz
and Noy [6]. This result was extended to so-called subcritical graph classes by
Drmota, Fusy, Kang, Kraus and Rue [5], even in the unlabeled case.

For random planar graphs the current picture is unfortunately incomplete.
It was shown by Drmota, Gimenez and Noy [7] and Panagiotou and Steger [15]
that limiting degree distribution exists (and that there is at least a weak con-

centration result for X
(k)
n [15]) but – at the moment – there is no central limit

theorem although there is no doubt that a central limit theorem should hold.
Indeed, there is a strong relation between planar maps and planar graphs. For
example, by Whitney’s theorem 3-connected planar maps and 3-connected pla-
nar graphs coincide. It is therefore very likely that several shape characteristics
have (up to a scaling constant) the same limiting behavior. Hence, our results
supports the conjecture that there is also a central limit theorem for planar
graphs.
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Plan of the proof The proof of Theorem 1 is divided into several steps, where
we mostly concentrate on the case of general maps; the modifications that are
needed for the 2-connected case are discussed in Section 6. The first step is to
solve the counting problem in terms of generating functions. More precisely,
we provide a quadratic catalytic equation for the ordinary generating function
enumerating planar maps, where also the number of faces of a certain valency
is taken into account, see Section 3. The basic idea is to generalize Tutte’s
classical approach [16] to counting planar maps. However, it turns out that
the direct generalization leads to an equation, where the catalytic variable u
has to be evaluated at u = 1 and u = 0. We overcome this problem by showing
that the function (and their derivatives) when it is evaluated at u = 0 can be
expressed analytically in terms of the variables and of the function evaluated
at u = 1. This leads to a catalytic quadratic equation, see Lemma 2.

In principle this equation could be handled with the help of the so-called
quadratic method by Brown [2]. However, this cannot be done explicitly due
to the complexity of the equation. The next step is therefore to mimic the
quadratic method analytically, which is done Section 4. The main problem is
to characterize the kind of dominating singularities that are responsible for
the asymptotic behavior of the parameters of interest. The main observation
is that, under mild analytic conditions, there is a universal behavior for the
dominant singularity, namely a critical exponent 3/2, as it has been observed
in all known map counting problems; see Lemma 3.

Finally, in Section 5 it is shown that this method is applicable to determine

the asymptotic behavior of the probability generating function of X
(k)
n . This

leads directly to the central limit theorem with the help of Hwang’s Quasi-
Power-Theorem (Lemma 7, see [10] or [4]).

The case of 2-connected planar maps is discussed in Section 6. There, the
combinatorial part is slightly more involved, but it finally leads to a polynomial
equation that can be rewritten as a catalytic quadratic equation. Hence, the
same analytic approach as developed for the connected case applies. Finally,
in Section 7 we outline an extension of Theorem 1 for random planar maps
with a given vertex-density.

3 Combinatorics

We use ordinary generating functions, where z marks edges and x non-root
faces. The next statement is classical in the area of map enumeration and
goes back to Tutte [16]. We include a proof for completeness, as we shall use
similar considerations in Lemma 2 to determine a functional equation for the
generating function that takes faces of degree k into account, too. Note that
it is sufficient to study the valency distribution of faces, since it is the same as
the degree distribution.

Lemma 1 Let M(z, x, u) be the ordinary generating function enumerating
general maps with respect to edges and non-root faces, where additionally u



A Central Limit Theorem for the Number of Degree-k Vertices in Random Maps 5

marks the valency of the root face. Then

M(z, x, u) = 1 + zu2M(z, x, u)2 +
zxu

1− u
(M(z, x, 1)− uM(z, x, u)). (2)

Proof We replicate the argument by Tutte [16], tailored to our specific pur-
pose. A general map belongs to precisely one of the following three categories.
First, it contains no edge, so that the corresponding generating function is the
constant 1. Second, the root edge is a bridge, i.e., if removed, the map falls
apart in two general maps. Clearly, the generating function enumerating such
maps is given by zu2M(z, x, u)2.

All maps that belong to none of the two categories above are obtained by
taking a map and adding an edge that preserves its root node and “cuts across”
the root face in some unambiguous fashion, i.e., so that the construction can
be reverted. This operation results in r + 1 new distinct maps with root-face
degrees in {1, . . . , r + 1}, and one edge and one non-root face more than the
map we started with; see Figure 1 for an illustration. By putting everything
together we infer that this construction translates the monomial ur to

zx(u+ u2 + · · ·+ ur+1) =
zxu(1− ur+1)

1− u
.

Consequently, the maps in the last category are enumerated by zxu
1−u (M(z, x, 1)−

uM(z, x, u)). This completes the proof. �

In a second step we also take into account the number of (non-root) faces of
valency k.

Lemma 2 Let k ≥ 2 be a fixed integer and let M(z, x, w, u) be the ordinary
generating function enumerating general maps with respect to edges and non-
root faces, where additionally u marks the valency of the root face and w the
non-root faces of valency k. Then

M(z, x, w, u)
(

1− zx(w − 1)u−k+2
)

= 1 + zu2M(z, x, w, u)2

+
zxu

1− u
(M(z, x, w, 1)− uM(z, x, w, u))

− zx(w − 1)u−k+2G (z, x, w,M(z, x, w, 1), u)

(3)

Fig. 1 All maps that can be obtained by “cutting across” the root face of size five.
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where G(z, x, w, y, u) is a polynomial of degree k− 2 in u with coefficients that
are analytic functions in (z, x, w, y) for |z| ≤ 1/10, |x| ≤ 2, |w − 1| ≤ 21−k,
and |y| ≤ 2.

Proof For the sake of brevity let us write M(u) for M(x, z, w, u) and Mℓ =
Mℓ(x, z, w) for the coefficient [uℓ]M(u). By using the same decomposition as
in the proof of Lemma 1 we get

M(u) = 1 + zu2M(u)2 +
zxu

1− u
(M(1)− uM(u))

+ zx(w − 1)u−k+2

(

M(u)−
k−2
∑

ℓ=0

Mℓu
ℓ

)

.
(4)

The difference to the proof of Lemma 1 is that ur is replaced now by

zx(u+ u2 + · · ·+ ur+1) + zx(w − 1)ur−k+2

=
zxu(1− ur+1)

1− u
+ zx(w − 1)ur−k+2

if r ≥ k − 1 (and by zx(u+ u2 + · · ·+ ur+1) if r < k − 1).
What we show next is that Mℓ = Mℓ(z, x, w) can be represented as an

analytic function in z, x, w, and M(1). Of course we have M0 = 1. Moreover,

by differentiating (4) with respect to u, noting that M(u) −∑k−2
ℓ=0 Mℓu

ℓ can
be written as uk−1N(u), where N(u) is a power series in u, and by setting
u = 0 we get M1 = zxM(1)+ zx(w− 1)Mk−1. Furthermore for ℓ ≥ 2 we have

∂ℓ

∂uℓ
u2M(u)2

∣

∣

∣

u=0
= ℓ!

ℓ−2
∑

j=0

MjMℓ−2−j

and

∂ℓ

∂uℓ

u

1− u
(M(1)− uM(u))

∣

∣

∣

u=0
= ℓ!



M(1)−
ℓ−2
∑

j=0

Mj



 .

Finally, the ℓth derivative of u−k+2M≥k−1(u) evaluated at u = 0 equals
ℓ!Mk+ℓ−2. Thus, we arrive at the relation

Mℓ = z

ℓ−2
∑

j=0

MjMℓ−2−j + zxM(1)− zx

ℓ−2
∑

j=0

Mj + zx(w − 1)Mk+ℓ−2. (5)

We consider now M(1) as an additional variable Y and the infinite system (5)
as an equation for the sequence (Mℓ)ℓ≥1. By introducing a proper functional
analytic frame it is easy to show (by a contraction argument) that the infinite
system (5) has a unique and analytic solution.

We set yℓ = Mℓ2
−ℓ and consider the ℓ1 norm ‖y‖1 =

∑

ℓ≥1 |yℓ| of y =

(yℓ)ℓ≥1. Furthermore, we define the mapping T : ℓ1(C) → ℓ1(C) by

(T(y))ℓ =
z

4

ℓ−2
∑

j=0

yjyℓ−2−j + zxY − zx

ℓ−2
∑

j=0

yj2
−ℓ+j + zx(w − 1)2k−2yk+ℓ−2.
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Then a fixed point of T is directly related to a solution of the system (5),
that is, if y = (yℓ)ℓ≥1 satisfies y = T(y) then Mℓ = 2ℓyℓ satisfies (5) with
Y = M(1).

By definition it follows directly that

‖T(y)‖1 ≤ |z|
4

(1 + ‖y‖1)2 + |zx|
(

1

2
+ |w − 1|2k−2

)

(1 + ‖y‖1) + |zx||Y |

and

‖T(y) −T(z)‖1 ≤
( |z|

4
(2 + ‖y‖1 + ‖z‖1) + |zx|

(

1

2
+ |w − 1|2k−2

))

‖y − z‖1.

Let us assume that |z| ≤ 1/10, |x| ≤ 2, |w − 1| ≤ 21−k, and |Y | ≤ 2. Fur-
thermore, set B = 15 − 4

√
13 < 1. Then we have that ‖y‖1 ≤ B implies

‖T(y)‖1 ≤ B and that T is a contraction on the set of sequences y with
‖y‖1 ≤ B. Hence, by Banach’s fixed point theorem the equation y = T(y)
has a unique solution. Moreover, if we start with y0 = 0 and yk+1 = T(yk)
(for k ≥ 0) then yk converges to y uniformly for |z| ≤ 1/10, |x| ≤ 2,
|w − 1| ≤ 21−k, and |Y | ≤ 2. By induction all components of yk are polyno-
mial in z, x, w, Y . Hence the components of the (uniform) limit y are analytic
functions in x, z, w, Y , which also implies that Mℓ, ℓ ≥ 1, can be written as an
analytic function in z, x, w and M(1). Finally setting

G(z, x, w, y, u) =

k−2
∑

ℓ=0

Mℓu
ℓ

completes the proof of the lemma. �

4 Analytic Quadratic Method

We first recall the principle of the quadratic method. Suppose that we fix
x = x0 = 1 and w = w0 = 1 in Equation (3). Furthermore, we use the abbre-
viations M(z, u) = M(z, x0, w0, u) and y(z) = M(z, x0, w0, 1). By completing
the square (3) can be rewritten as

[G1(z, u)M(z, u) +G2(z, u)]
2 = H(z, y(z), u), (6)

where the Gi and H are polynomials. More generally it is sufficient to assume
that Gi and H are analytic function and it is also possible to assume that the
Gi depend on y(z), too:

[G1(z, y(z), u)M(z, u) +G2(z, y(z), u)]
2 = H(z, y(z), u). (7)

For example, if x = x0 = 1 and w = w0 = 1 then

H = 4(u− 1)u3z2y + u4z2 − 4u4z + 6u3z − 2u2z + u2 − 2u+ 1. (8)
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The quadratic method consists in binding variables z and u, assuming that
there exists a function u(z) such that H(z, y(z), u(z)) = 0 identically. Because
of the square in the left-hand side of (6), the derivative Hu(z, y(z), u(z)) with
respect to u also vanishes. From the system of equations

H(z, y(z), u(z)) = 0, Hu(z, y(z), u(z)) = 0. (9)

one eliminates y(z) to find u(z), and then finds y(z) from H(z, y(z), u(z)) = 0.
Once we know y(z) = M(z, 1), from Equation (3) we obtain M(z, u).

If we carry out this program in this particular case of maps (recall that we
set x = x0 = 1 and w = w0 = 1), we find that u(z) = (5−

√
1− 12z)/2(z+2)

and

y(z) =
18z − 1 + (1 − 12z)3/2

54z2
= 1 + 2z + 9z2 + 54z3 + · · · ,

from which we can deduce the explicit form for the numbers Mn. An explicit
expression is obtained also for M(z, u), which encodes completely the distribu-
tion of the degree of the root-face. Since planar maps are closed under duality,
this is the same distribution as the degree of the root-vertex. It is an easy
exercise to derive the limiting distribution encoded in (1).

The system (9) can be also used to detect the singularity z0 = 1/12 of y(z).
We have to look at critical points (z0, y0, u0) of the system (9). Its Jacobian

∣

∣

∣

∣

Hy Hu

Huy Huu

∣

∣

∣

∣

=

∣

∣

∣

∣

Hy 0
Huy Huu

∣

∣

∣

∣

= HyHuu

must vanish, that is, HyHuu = 0 at (z0, y0, u0). It turns out that Huu = 0 and
Hy 6= 0 is the correct choice for map counting problems. The critical condition
is then

Huu(z0, y0, u0) = 0.

This condition is easy to check, since we always work in the realm of algebraic
functions and algebraic numbers. Actually the system H = Hu = Huu = 0 has
(usually) only finitely many solutions. For the running example we are using,
we have (z0, y0, u0) = (1/12, 4/3, 6/5) and a simple calculation confirms that
indeed Huu(1/12, 4/3, 6/5) = 0.

The most interesting observation in this context is that y(z) has a singular-
ity of the kind (1− z/z0)

3/2. This behavior is typical in the context of planar
map enumeration, and it turns out that there is also a universal analytic rea-
son for this behavior. This was observed recently by Drmota and Noy [8], who
proved the following lemma. For the reader’s convenience we include a proof,
since we will generalize it.1

Lemma 3 Suppose that z0, y0, u0 are complex numbers and that H(z, y, u) is
a function that is analytic at (z0, y0, u0) and satisfies the properties

H = 0, Hu = 0, Huu = 0

1 This proof is not included in the final version of the proceedings paper [8].
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and

Hy 6= 0, Huy 6= 0, Huuu 6= 0, HzHuy 6= HyHuz

for (z, y, u) = (z0, y0, u0). Then the system of functional equations

H(z, y(z), u(z)) = 0, Hu(z, y(z), u(z)) = 0 (10)

has precisely two (local) solutions u(z) and y(z) with u(z0) = u0 and y(z0) = y0
given by

u(z) = g1(z)± g2(z)

√

1− z

z0
,

y(z) = h1(z)± h2(z)

(

1− z

z0

)3/2 (11)

in a neighborhood of z0 (except in the part, where 1−z/z0 ∈ R−), where g1(z),
g2(z), h1(z), and h2(z) are analytic functions at z0 and satisfy

g1(z0) = u0,

g2(z0) =

√

2z0(HyHuz −HzHuy)

HyHuuu
6= 0,

h1(z0) = y0,

h2(z0) = g2(z0)
2z0(HyHuz −HzHuy) · B

3HuuuH2
uyH

2
y

,

where

B = HuuuH
2
uy −HyHuyHuuuu + 3HyHuuyHuuu

and all derivatives of H are evaluated at (z, y, u) = (z0, y0, u0).

Proof We solve the system (10) by first considering the equation Hu(z, y, u) =
0, where z and u are considered as independent variables and y = Y (z, u) is the
unknown function. In a second step we solve the equation H(z, Y (z, u), u) = 0,
where z is the independent variable. Then the solution u = u(z) is the function
that we are looking for and y(z) = Y (z, u(z)).

Since we assume that Huy(z0, y0, u0) 6= 0 it follows from the implicit func-
tion theorem that there exists a function Y (z, u) with Y (z0, u0) = y0 that
is analytic at (z0, u0) and solves (locally) the equation Hu(z, Y (z, u), u) = 0.
Observe that (z, y, u) = (z0, y0, u0) we have the relations

Yu(z0, u0) = −Huu

Huy
= 0, Yuu(z0, u0) = −Huuu

Huy
6= 0,

and

Yuu(z0, u0) =
3HuuyHuuu −HuyHuuuu

H2
uy

,
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and

Yz(z0, u0) = −Huz

Huy
, Yuz(z0, u0) =

HuuyHuz −HuuzHuy

H2
uy

.

Next we set F (z, u) = H(z, Y (z, u), u) and solve the equation F (z, u) = 0 for
u = u(z). By assumption we have

F (z0, u0) = H(z0, y0, u0) = 0,

Fu(z0, u0) = Hy(z0, y0, u0)Yu(z0, u0) +Hu(z0, y0, u0) = 0,

Fuu(z0, u0) = Hy(z0, y0, u0)Yuu(z0, u0) 6= 0,

Fz(z0, u0) = Hy(z0, y0, u0)Yz(z0, u0) +Hz(z0, y0, u0)

=
(HzHuy −HyHuz)(z0, y0, u0)

Huy(z0, y0, u0)
6= 0.

Hence the equation F (z, u) = 0 satisfies the assumptions of a classical lemma
on the singular structure of the solution of a single equation (for example, it
can be found in [4]). Thus, the only two solutions u(z) have local expansions
of the form

u(z) = g1(z)± g2(z)

√

1− z

z0
,

where g1(z) and g2(z) are analytic and satisfy g1(z0) = u0 and

g2(z0) =

√

2z0Fz(u0, z0)

Fuu(u0, z0)
=

√

2z0(HyHuz −HzHuy)

HyHuuu
.

From a simple calculation (by using Taylor’s theorem and by comparing coef-
ficients) we also obtain an expression for

g′1(z0) =
FzFuuu − 3FuzFuu

F 2
uu

=
A

3H2
yH

2
uuu

,

where

A =− 3H2
yHuuuHuuz + 2HuuuHuyHyHuz

− 2HuuuH
2
uyHz + 3HyHuuyHuuuHz

+H2
yHuuuuHuz −HyHuyHuuuuHz.

Finally we use the expansion of u(z) to derive the local behavior of

y(z) = Y (z, u(z)) = y0 + Yz(z0, u0)(z − z0) +
Yuu(z0, u0)

2
(u(z)− u0)

2

+ Yuz(z0, u0)(z − z0)(u(z)− u0)

+
Yuuu(z0, u0)

6
(u(z)− u0)

3 +O((z − z0)
2).

Note that the property Yu(z0, u0) = 0 implies that y(z) has no
√

1− z/z0
term in its expansion. Precise expressions for the coefficients (like h2(z0)) can
be determined easily. �
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For completeness, we check all the conditions in the statement forH(z, y, u)
as in (8), evaluated at the critical point (z0, y0, u0) = (1/12, 4/3, 6/5). In ad-
dition to H , we need G1 = 2(1− u)u2z. Then

G1 = − 6

125
, Hy =

6

625
, Huy =

9

125
, Huuu = −50

9
,

HzHuy −HyHzu =
288

15625
,

HuuuH
2
uy −HyHuyHuuuu + 3HyHuuyHuuu =

43

625
.

Hence, Lemma 3 is applicable, and we obtain the singular behavior of y(z) =
M(z, 1) around z0, which is of the form (1 − z/z0)

3/2.
In general it is not immediately clear which critical point (z0, y0, u0) is

responsible for the dominating singularity on the radius of convergence of
y(z) = M(z, 1) (when there are several ones). Nevertheless in the case of
planar maps there is no doubt that we have chosen the correct critical point,
since y(z) = M(z, 1) is known explicitly in this case. Moreover, the systemH =
Hu = Huu = 0 has only the two solutions (1/12, 4/3, 6/5) and (−1/4,−4, 2),
and the latter cannot be the sought critical point since the first two components
are negative.

In addition to the above considerations we can vary the variables x and w
(at least) in a (small) neighborhood of x0 = 1 and w0 = 1 without changing
the kind of the dominating singularity. For this purpose we rewrite (3) as

(

G1(z, x, w, u)M(z, x, w, u) +G2(z, x, w, u)
)2

= H(z, x, w, y(z, x, w), u),

where y(z, x, w) abbreviates M(z, x, w, 1).2 As above we will consider the sys-
tem of equations

H = Hu = Huu = 0, (12)

and consider (if possible the solutions) y0(x,w), z0(x,w), u0(x,w).

Lemma 4 There exist complex neighborhoods X and W of x0 = 1 and w0 = 1
such that the system (12) has a unique solution y0(x,w), z0(x,w), u0(x,w)
with y0(x0, w0) = y0, z0(x0, w0) = z0, u0(x0, w0) = u0. Furthermore, the
function y(z, x, w) = M(z, x, w, 1) has a local representation of the form

y(z, x, w) = h1(z, x, w) + h2(z, x, w)

(

1− z

z0(x,w)

)3/2

, (13)

where h1(z, x, w) and h2(z, x, w) are non-zero analytic functions. Moreover,
there exists an analytic continuation to

∆ = {z : |z| < |z0(x,w)| + η, |arg(z/z0(x,w) − 1)| > δ},
for some real numbers η > 0 and 0 < δ < π/2.

2 As in previous case the same approach applies if the functions Gi depend on y(z, x,w),
too.
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Proof The first step is to show that the system of equation (12) has a proper
solution in a neighborhood of x0 = 1 and w0 = 1. Actually we know that it
has a solution for x = 1 and w = 1. Furthermore, note that the Jacobian

∣

∣

∣

∣

∣

∣

Hy Hz Hu

Huy Huz Huu

Huuy Huuz Huuu

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

Hy Hz 0
Huy Huz 0
Huuy Huuz Huuu

∣

∣

∣

∣

∣

∣

.

If we set x = x0 = 1 and w = w0 = 1, then this expression becomes

Huuu

(

HyHuz −HzHuy

)

6= 0.

Hence, the implicit function theorem asserts that there exists a neighbor-
hood X of x0 = 1 and neighborhood W of w0 = 1 such that the system
(12) has an analytic solution y0(x,w), z0(x,w), u0(x,w) with y0(x0, w0) = y0,
z0(x0, w0) = z0, u0(x0, w0) = u0. By continuity we can choose X and W also
in a way that the non-zero conditions (Hy 6= 0 etc.) of Lemma 3 are satisfied
in X and W .

By checking the proof of Lemma 3 it follows that it generalizes to x ∈ X and
w ∈ W so that all appearing functions are analytic in x and w. In particular,
we use the fact that this is true for equations of the form F (z, x, w, u) = 0,
where we observe that the solution u = u(z, x, w) can be locally represented as

u(z, x, w) = g1(z, x, w)± g2(z, x, w)

√

1− z

z(x,w)

with analytic functions g1(z, x, w) and g2(z, x, w) (for details see [4]). This
leads to (13), where we have chosen the “+” sign since y has non-negative
coefficients.

Finally we have to check that y(z, x, w) has a proper analytic continuation
to the region ∆. For this purpose we have to study y(z) not only around
z = z0. Since we know y(z) and u(z) explicitly it is easy to check that
Huu(z, y(z), u(z)) 6= 0 if z 6= z0 and Hy(z, y(z), u(z)) 6= 0 if z 6= 0. Hence
the Jacobian

∣

∣

∣

∣

Hy Hu

Huy Huu

∣

∣

∣

∣

=

∣

∣

∣

∣

Hy 0
Huy Huu

∣

∣

∣

∣

= HyHuu

is non-zero for |z| = z0 but z 6= z0. Now suppose that x and w vary in
properly chosen neighborhoods of x0 = 1 and w0 = 1. If |z − z0(x,w)| < ε
we use the local representation (13) and obtain an analytic continuation. If |z|
is close to |z0(x,w)| but |z − z0(x,w)| ≥ ε we obtain by continuity that the
JacobianHuuHy stays non-zero (if x and w are sufficiently close to x0 = 1 and
w0 = 1). Hence, by the implicit function theorem y(z, x, w) and u(z, x, w) can
be analytically continued. By compactness it is sufficient to continue y(z, x, w)
and u(z, x, w) only at finitely many points. Hence, there exist δ > 0 and η > 0
such that y(z, x, w) continues analytically to ∆. �
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5 The Central Limit Theorem

It is now easy to complete the proof of Theorem 1. For this purpose we use
the following transfer principle by Flajolet and Odlyzko [9] (see also the book
of Flajolet and Sedgewick [10] and many references therein).

Lemma 5 Let W be a compact set and assume that there exist functions
C(w), z0(w), α(w), β(w) such that β(w) > R(α(w)), α(w) ∈ C \ N0 and
z0(w) > 0 for all w ∈ W with the following property. Suppose that f(z;w) is
a power series in z and a parameter w ∈ W such that there is an expansion
of the form

f(z;w) = C(w)

(

1− z

z0(w)

)α(w)

+O

(

(

1− z

z0(w)

)β(w)
)

that is uniform for w ∈ W and z ∈ ∆, where

∆ = {z : |z| < |z0(w)| + η, |arg(z/z0(w)− 1)| > δ},

for some real numbers η > 0 and 0 < δ < π/2. Then, uniformly for w ∈ W

[zn]f(z;w) = (1 + o(1)) · C(w)
n−α(w)−1

Γ (−α(w))
z0(w)

−n.

With the help of this lemma we can prove the following property.

Lemma 6 Let k ≥ 2 and X
(k)
n as in Theorem 1. Then there exists a neigh-

bourhood W of w0 = 1 such that

E

(

wX(k)
n

)

= (1 + o(1))C(w)

(

z0
z0(x0, w)

)n

uniformly for w ∈ W , where C(w) is a non-zero analytic function.

Proof We apply Lemma 5 for f(z;w) = y(z, x0, w) − h1(z, x0, w), which can
be rewritten as

f(z;w) = h2(z0(x0, w), x0, w)

(

1− z

z0(x0, w)

)3/2

+O

(

(

1− z

z0(x0, w)

)5/2
)

.

The additive term h1(z, x0, w) is analytic in a larger region and, thus, provides
a negligible contribution. Consequently we obtain

[zn]y(z, x0, w) = (1 + o(1))h2(z0(x0, w), x0, w)
n−5/2

Γ (−3/2)
z0(x0, w)

−n.

and also

E

(

wX(k)
n

)

=
[zn]y(z, x0, w)

[zn]y(z, x0, 1)
= (1 + o(1))

h2(z0(x0, w), x0, w)

h2(z, x0, 1)

(

z0
z0(x0, w)

)n

.

�
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The final step of the proof is to apply Hwang’s Quasi-Power-Theorem (see
[10] or [4]). The central limit theorem and the exponential tail estimates follow
immediately. For the reader’s convenience we state a proper version of it.

Lemma 7 (Quasi-Power-Theorem) Let Xn be a sequence of random vari-
ables with the property that

EwXn = eλn·A(w)+B(w)

(

1 + O

(

1

φn

))

(14)

holds uniformly in a complex neighborhood of w = 1, where λn and φn are
sequences of positive real numbers with λn → ∞ and φn → ∞, and A(w)
and B(w) are analytic functions in this neighbourhood of w = 1 with A(1) =
B(1) = 0. Then Xn satisfies a central limit theorem of the form

1√
λn

(Xn − EXn) → N
(

0, σ2
)

(15)

and we have

EXn = λnµ+O (1 + λn/φn)

and

VarXn = λnσ
2 +O

(

(1 + λn/φn)
2
)

,

where µ = A′(1) and σ2 = A′′(1) + A′(1). Finally, if we additionally assume
that λn = φn there exist positive constants c1, c2, c3 such that

P

{

‖Xn − EXn‖ ≥ ε
√

λn

}

≤ c1e
−c2ε

2

(16)

uniformly for ε ≤ c3
√
λn.

6 Two-Connected Planar Maps

The analysis of 2-connected planar maps is similar to that of connected ones.
However, the combinatorial part is slightly more involved. We first recall a
method by Brown and Tutte [3] to obtain a functional equation for the count-
ing generating function, where the quadratic method can be applied. The
second step is to extend this procedure in order to take faces of degree k into
account. The analytic part is then (almost) a direct application of the methods
developed above.

The following lemma goes back to Brown and Tutte [3] and provides a
proper functional equation representation of the trivariate generating function
for 2-connected maps. Since we will generalize this result in Lemma 9 we first
give a proof.
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Lemma 8 Let B(z, x, u) be the ordinary generating function enumerating 2-
connected maps with respect to edges and non-root faces, where additionally u
marks the valency of the root face. Then

B(z, x, u)2 + ((1− u)(1− zu) + zxu− uB(z, x, 1))B(z, x, u)

−zu2x(z(1− u) +B(z, x, 1)) = 0.
(17)

Proof Set Bℓ(z, x) = [uℓ]B(z, x, u) and consider the rooted edge e of the root
face of the 2-connected map. Of course, e belongs to the root face and to
another face f . Denote by γ1 the remaining edges on the root face and by γ2
the remaining edges on the face f . If one deletes e, then M \ e might have
ℓ ≥ 0 cut-vertices a1, . . . , aℓ that are exactly the common points of γ1 and γ2
(except from the two vertices incident to e, see Figure 2). A careful look at

e

a1

a2

aℓ

Fig. 2 The decomposition of 2-connected maps.

this recursive structure leads to the relation

B(z, x, u) = zxu
∑

ℓ≥0





∑

m≥2

Bm(z, x)(u + u2 + · · ·um−1) + zu





ℓ+1

.

Summing up the geometric series yields

zxu

∑

m≥2 Bm(z, x)(u+ u2 + · · ·um−1) + zu

1−∑m≥2 Bm(z, x)(u + u2 + · · ·um−1)− zu
= zxu

uB(1)−B(u)
1−u + zu

1− uB(1)−B(u)
1−u − zu

that rewrites to (17). �

It is clear that the equation (17) can be handled with the help of the (ana-
lytic) quadratic method. We just have to set x = 1 and to choose (z0, y0, u0) =
(4/27, 1/27, 3/2), where the corresponding function H is given by

H = zu2(z(1− u) + y) +
1

4
((1 − u)(1− zu) + zu− uy)2.

Next we adapt the previous lemma in order to take into account the number
of faces of degree k.
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Lemma 9 Let k ≥ 2 be a fixed integer and let B(z, x, w, u) be the ordinary
generating function enumerating general maps with respect to edges and non-
root faces, where additionally u marks the valency of the root face and w the
number of non-root faces of valency k. Then

B(z, x, w, u)2 + ((1− u)(1− zu) + zxu− uB(z, x, 1))B(z, x, w, u)

− zu2x(z(1− u) +B(z, x, w, 1)) (18)

= zx(w − 1)u−k+2G (z, x, w,B(z, x, w, u), B(z, x, w, 1), u) ,

where G(z, x, w, y1, y2, u) is a polynomial of degree k − 2 in u and of degree k
in y1 with coefficients that are analytic functions in (z, x, w, y2) for |z| ≤ 1/6,
|x| ≤ 2, |w − 1| ≤ C8−k, and |y2| ≤ 2 (where C > 0 is a sufficiently small
constant).

Proof For the sake of brevity let us write B(u) (or just B) for B(x, z, w, u) and
Bℓ = Bℓ(x, z, w) for the coefficient [uℓ]B(u). By using the same decomposition
as in the proof of Lemma 8 we obtain

B(z, x, w, u) = zxu

∑

m≥2 Bm(z, x, w)(u + u2 + · · ·um−1) + zu

1−∑m≥2 Bm(z, x, w)(u + u2 + · · ·um−1)− zu
(19)

+ (w − 1)[vk]zxuv

∑

m≥2 Bm(z, x, w)(uvm−1 + u2vm−2 + · · ·um−1v) + zuv

1−∑m≥2 Bm(z, x, w)(uvm−1 + u2vm−2 + · · ·um−1v)− zuv

= zxu

uB(1)−B(u)
1−u + zu

1− uB(1)−B(u)
1−u − zu

+ (w − 1)P (z, x, u,D1(u), D2(u), . . . , Dk−1(u)),

where P is an appropriate polynomial and Dℓ(u) abbreviates

Dℓ(u) =
1

uℓ



B(u)−
∑

j≤ℓ

Bju
ℓ



 =
∑

j>0

Bj+ℓu
j. (20)

Note that the (total) degree of P in D1, . . . , Dk−1 equals k − 1. For example,
for k = 4 we have

P (z, x, u,D1, D2, D3) = xzu
(

D3 + 2D2(D1 + zu) + (D1 + zu)3
)

.

From this it is possible to obtain explicitly the coefficient of uℓ. For example,
for k = 4 we have

[uℓ]P (z, x, u,D1(u), D2(u), . . . , Dk−1(u)) = zxBℓ+2 + 2zx
∑

ℓ1+ℓ2=ℓ−1

Bℓ1+2Bℓ2+1

+ 2xz2Bℓ+1 + xz
∑

ℓ1+ℓ2+ℓ3=ℓ−1

Bℓ1+1Bℓ2+1Bℓ3+1

+ 3xz2
∑

ℓ1+ℓ2=ℓ−2

Bℓ1+1Bℓ2+1 + 3xz3Bℓ−2 + xz4δℓ,4
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where δi,j denotes the Kronecker delta. Next we rewrite the above equation to

B = −B2 + (u(1− xz) + zu2 − zu3 + uB(1))B + xzu2B(1) + xz2u2 − yz2u3

+ (w − 1)P (z, x, u,D1(u), . . . , Dk−1(u))(1 − u(1 + z +B(1)) + zu2 +B).

As indicated above it is easy to compute the ℓ-th coefficient

Qℓ = [uℓ]P (z, x, u,D1(u), . . . , Dk−1(u))(1− u(1 + z +B(1)) + zu2 +B)

as a polynomial in x, z, B(1) and B
(r)
ℓ+j, where j is contained in {−(k−1),−(k−

2), . . . , k − 2, k − 1} and r is contained in {1, 2, . . . , k − 1}; here B
(r)
ℓ denotes

the r-fold convolution of the sequence Bℓ.
As in the proof of Lemma 1 the above relation gives rise to an infinite

system of equations for Bj :

Bℓ = −B
(2)
ℓ + (1 − xz +B(1))Bℓ−1 + zBℓ−2 − zBℓ−3

+ (xzB(1) + xz2)δℓ,2 − yz2δℓ,3 + (w − 1)Qℓ, (21)

Following the concept of the proof of Lemma 2 we consider B(1) as an
additional variable Y and the infinite system (21) as an equation for the se-
quence (Bℓ)ℓ≥1 and show (again by a contraction argument) that the infinite
system (21) has a unique and analytic solution. We set yℓ = Bℓ8

1−ℓ and
consider the ℓ1 norm. Then the system (21) rewrites to a fixed point equa-
tion that turns out to be a contraction on the set of sequences y = (yℓ)ℓ≥1

for ‖y‖1 ≤ 2, |x| ≤ 2, |Y | ≤ 2, |z| ≤ 1
6 and |w − 1| ≤ C8−k (for a sufficiently

small C > 0):

yℓ = −1

8
y
(2)
ℓ +

1

8
(1 − xz + Y )yℓ−1 +

z

64
yℓ−2 −

z

256
yℓ−3

+
1

8
(xzY + xz2)δℓ,2 −

1

64
yz2δℓ,3 + (w − 1)Q̃ℓ,

where Q̃ℓ is a polynomial in x, z, Y and y
(r)
ℓ+j, j is contained in {−(k−1),−(k−

2), . . . , k−2, k−1} and r is contained in {1, 2, . . . , k−1}. Hence, we can rewrite
(19) in the form (18), where Dℓ(u) is as in (20). �

Now we are almost in the same situation as in the case of connected pla-
nar maps. The main difference is that the function G on the right hand side
depends also polynomially on B = B(u). This means the final equation is not
a quadratic polynomial in B any more, except if w = 1. Nevertheless it is just
a pertubation of a quadratic equation. Actually we can rewrite it as

(B −G2(z, x, w, u))
2 = H1(z, x, w,B(1), u) + (w − 1)H2(z, x, w,B,B(1), u)

for proper (analytic) functions G2, H1, H2. We consider this equation locally
at (z, x, w, u) = (4/27, 1, 1, 3/2), B(1) = 1/27, and B = G2(4/27, 1, 1, 3/2) =
1/9.
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Note that the right hand side vanishes at this point and that all derivatives
with respect to B are zero, too. Furthermore, the left hand side as well as the
the first derivative with respect to B are equal to zero whereas the second
derivative is non-zero. Consequently, by the Weierstrass preparation theorem
the above equation is locally equivalent to an equation of the form

(B −G2(z, x, w,B(1), u))2 = H(z, x, w,B(1), u),

where the right hand side H satisfies (again) the necessary conditions H =
Hu = Huu = 0 (and the other regularity conditions at the critical point).

Now we are precisely in the same situation as in connected case. We can

apply the analytic quadratic method to obtain asymptotics for E(wX(k)
n ). Fi-

nally the Quasi-Power-Theorem applies to obtain the central limit theorem
(and the corresponding exponential tail estimates).

7 Fixed Vertex Density

In this final section we indicate that Theorem 1 can be generalized to the
situation that the numbers m of vertices and n of edges has a fixed ratio µ.

Theorem 2 Let k ∈ N. Furthermore, let µ ∈ (0, 1) be a fixed number and
let (mn) be a sequence of positive integers with limn→∞ mn/n = µ. Then, the

number X
(k)
n,mn of vertices of degree k in a random planar map with n edges

and mn vertices satisfies a central limit law, i.e.,

X
(k)
n,mn − E[X

(k)
n,mn ]

(Var[X
(k)
n,mn ])

1/2
→ N(0, 1),

where E[X
(k)
n,mn ] = µkn + O(1) and Var[X

(k)
n,mn ] = σ2

kn + O(1), and µk =
µk(µ), σk = σk(µ) > 0 are computable constants that depend on µ. Moreover,

X
(k)
n,mn has exponential tails, i.e., there is an ε0 > 0 and a ck > 0 (depending

on µ) such that for any 0 < ε < ε0

Pr
[

|X(k)
n,mn

− E[X(k)
n,mn

]| ≥ εE[X(k)
n,mn

]
]

≤ e−ε2ckn.

The proof is an extension of the proof of Theorem 1. For the sake of simplicity
we only discuss the case of connected planar maps. The proof of for the 2-
connected case follows exactly the same lines.

First, observe that the variable x takes into account the number of vertices.
In the proof of Theorem 1 we have set x = 1 in oder to discount the number of
vertices. However, we can use it as a parameter. In particular, if x is positive
(or sufficiently close to the positive real axis), we observe that the generating
function M(z, x, w, 1) can be represented as

M(z, x, w, 1) = h1(z, x, w) + h2(z, x, w)

(

1− z

z(x,w)

)3/2
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with analytic functions h1, h2 and z.
Let us first discuss the counting problem of planar maps with n edges and

m vertices, that is, we set w = 1. We will consider x as a parameter; the
case x = 1 corresponds to the classical map enumeration problem discussed in
Section 4. By completing the square in (2) we obtain the equation

[G1(z, x, u)M(z, x, u) +G2(z, x, u)]
2 = H(z, x,M(z, x, 1), u),

where, by abbreviating M(z, x, 1) = M ,

H = 4(u−1)u3z2xM−4 zu2+8zu3−4zu4−2u+2xzu2+u2−2xzu3+x2z2u4+1,

and G1 and G2 are also given explicitly. We are now in a situation where we
can apply Lemma 3. Consider the solutions (z0, y0, u0) = (z0(x), y0(x), u0(x))
to the system

H(z0, x, y0, u0) = Hu(z0, x, y0, u0) = Huu(z0, x, y0, u0) = 0.

Using resultants this system can be solved, and a rational parametrization of
the solution can be computed. Set

x(t) =
93312t3

(27t+ 8)(8− 9t)3
(22)

and

z(t) =
(27t+ 8)(8− 9t)3

4(243t2 + 64)2
, y(t) =

243t2 + 64

108t2 + 32
, u(t) =

243t2 + 64

81t2 + 64
. (23)

If t is chosen such that x(t) = x then z0(x) = z(t), y0(x) = y(t) and u0(x) =
u(t). Moreover, the higher order conditions in Lemma 3 can be easily verified
with this explicit parametrization.

With those facts at hand and a similar reasoning as in the proof of Lemma 4
it follows that we can apply the transfer principle, c.f. Lemma 5, to obtain

[zn]M(z, x, 1, 1) = (1 + o(1))
h2(z0(x), x, 1)

Γ (−3/2)
n−5/2z0(x)

−n.

This bound holds uniformly for x is a compact set that is sufficiently close to
the positive real axis. Next, by Cauchy’s formula

[znxm]M(z, x, 1, 1) =
1

2πi

∫

|x|=x0

[zn]M(z, x, 1, 1)
dx

xm+1
,

where we choose the radius x0 of the circle of integration in a way that

m

n
= −x0

∂
∂xz0(x0)

z0(x0)
.

Note that x0 is just the saddle point of the function x 7→ z0(x)
−nx−m. Hence,

it follows that

[znxm]M(z, x, 1, 1) ∼ C(x0)n
−3z0(x0)

−nx−m
0 ,
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(where we have to use proper upper bounds for [zn]M(z, x, 1, 1) if x is away
from the real axis, but they are standard). Furthermore, since

−x0
∂
∂xz(x0, 1)

z(x0, 1)
= −x0(t)z

′
0(t)

z0(t)x′
0(t)

=
5184t2

(9t+ 8)(243t2 + 64)

it is easy to relate the ratio m/n ∈ (0, 1) bijectively with the parameter t ∈
(0, 8/9). For example, if t = 8/27 then x0(t) = 1 and z0(t) = 1/12.

Finally, we can use a similar procedure if w is close to 1 and we obtain

E

(

wX(k)
n,m

)

=
[znxm]M(z, x, 1, w)

[znxm]M(z, x, 1, 1)

= (1 + o(1))
h2(z0(x0, w), x0, w)

h2(z0(x0), x0, 1)

(

z0(x0, 1)

z0(x0, w)

)n

.

Again, by Hwang’s Quasi-Power-Theorem the central limit theorem (and also
the exponential tail estimates) follow. We just add that all these estimates
are uniform if the ratio m/n varies is a compact interval that is contained in
(0, 1) (compare with Lemma 5). Thus we have also covered the situation where
mn/n → µ for a fixed constant µ ∈ (0, 1).
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