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Abstract
We study the total branch length Ln of the Bolthausen-Sznitman co-

alescent as the sample size n tends to infinity. Asymptotic expansions for
the moments of Ln are presented. It is shown that Ln/E(Ln) converges
to 1 in probability and that Ln, properly normalized, converges weakly to
a stable random variable as n tends to infinity. The results are applied to
derive a corresponding limiting law for the total number of mutations for
the Bolthausen-Sznitman coalescent with mutation rate r > 0. Moreover,
the results show that, for the Bolthausen-Sznitman coalescent, the total
branch length Ln is closely related to Xn, the number of collision events
that take place until there is just a single block. The proofs are mainly
based on an analysis of random recursive equations using associated gen-
erating functions.
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1 Introduction and main results

Starting from the seminal work of Kingman [13, 14], coalescent processes have
been proven to be a powerful tool in ancestral population genetics. These pro-
cesses are useful for studying the ancestral history of a sample of n particles,
individuals, genes or DNA sequences chosen from a large population. In this pa-
per we are interested in the total branch length Ln of the subclass of coalescent
processes with multiple collisions, independently introduced by Pitman [21] and
Sagitov [22]. These coalescent processes are also called Λ-coalescent processes,
because they can be characterized via a finite measure Λ on the unit inter-
val [0, 1]. For certain subclasses of measures Λ, the asymptotics of Ln are well
known. Consider for example the Kingman coalescent, where Λ is the Dirac mea-
sure in 0. For more details about the Kingman coalescent we refer to Kingman
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[13, 14]. In this case the random variable Ln/2−log n is asymptotically standard
Gumbel distributed. An elementary proof of this result and some remarks about
its history are provided in the appendix (Lemma 7.1 and the remark thereafter).
Another class are the measures Λ satisfying

∫
[0,1]

x−1Λ(dx) < ∞. In this case,
as n tends to infinity, Ln/n converges in distribution to a limiting variable L
whose distribution coincides with that of

∫∞
0

e−Xt dt, where (Xt)t≥0 is a certain
subordinator. This convergence is a slight modification of an analogous result
given in [17, Proposition 5.2] for the number of mutations (segregating sites) for
a Λ-coalescent with mutation.
Except for the Kingman coalescent, there is only little known about the total
branch length when

∫
[0,1]

x−1Λ(dx) = ∞. For example, for the case when Λ is
the beta(2 − α, α) distribution, it was shown in [1] that Ln/n2−α converges in
probability to a constant, whose value can be given explicitly in terms of gamma
functions.
We focus in this paper on the total branch length Ln of the Bolthausen-Sznitman
coalescent [5], which is the Λ-coalescent with Λ being the uniform measure on
[0, 1]. The Bolthausen-Sznitman coalescent is an important process that has
been studied extensively. For example, the process has connections to stable
subordinators [3], the genealogy of continuous-state branching processes [2],
and Derrida’s generalized random energy model [6].
Section 2 briefly recalls the definition and some basic properties of the Λ-
coalescent. In Section 3 we study the total branch length Ln of the Λ-coalescent.
The branch length Ln satisfies a specific recursion equation (see (2)), which leads
to recursions for many functionals of Ln. For example, in (8) a recursion for the
jth moments µ

(j)
n := E(Lj

n) of Ln, j, n ∈ N, is provided.
From Section 4 on we focus on the Bolthausen-Sznitman coalescent. Sections 4
and 5 contain the main results of the paper. In Section 4, we modify Panholzer’s
approach [19], based on generating functions, to derive asymptotic expansions
for the moments of Ln (see Corollary 4.3) and for the centered moments of
Ln (see Corollary 28). In particular, E(Ln) ∼ n/ log n, E(L2

n) ∼ n2/(log2 n)
and Var(Ln) ∼ n2/(2 log3 n). From these results it follows immediately that
Ln/E(Ln) converges to 1 in probability as n tends to infinity (see Corollary
4.4).
In Section 5 a weak limiting result for Ln is provided. Theorem 5.2 states that
Ln, properly normalized, converges in distribution to a stable random variable
with characteristic function t 7→ exp(− 1

2π|t| + it log |t|) (see (31)). We finally
apply these results in Section 6 to the Bolthausen-Sznitman coalescent with
mutation rate r > 0 and derive corresponding convergence results for the total
number Sn of mutations.

2 The Λ-coalescent process

Let E denote the set of all equivalence relations on N := {1, 2, . . .}. For n ∈ N
let %n : E → En denote the natural restriction to the set En of all equivalence
relations on {1, . . . , n}. For a finite measure Λ on the unit interval [0, 1] let
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R := (Rt)t≥0 be a Λ-coalescent process as introduced by Pitman [21] and Sagitov
[22]. Note that R is a Markovian process with state space E . The probabilistic
structure of R depends on the measure Λ as follows. For each n ∈ N the restricted
process (%nRt)t≥0 is Markovian with state space En and rates

qξη :=





∫

[0,1]

(1− (1− x)b − bx(1− x)b−1)x−2Λ(dx) if ξ = η,
∫

[0,1]

xb−a−1(1− x)a−1 Λ(dx) if ξ ≺ η,

0 otherwise,

where a := |η| and b := |ξ| are the number of classes (blocks) of ξ ∈ En and
η ∈ En respectively, and ξ ≺ η means (by definition) that exactly b − a + 1
equivalence classes of ξ merge together to form one class of η, while all the
other a− 1 classes of ξ remain unchanged. For Λ = δ0, the Dirac measure at 0,
the process R is the Kingman-coalescent [13]. For Λ being the uniform measure
on [0, 1], we obtain the Bolthausen-Sznitman coalescent [5]. It is well known
that the process (|%nRt|)t≥0 is a Markovian death process with rates

gba =
(

b

a− 1

) ∫

[0,1]

xb−a−1(1− x)a−1 Λ(dx), 1 ≤ a < b ≤ n,

and total rates

gb =
b−1∑
a=1

gba =
∫

[0,1]

1− (1− x)b − bx(1− x)b−1

x2
Λ(dx), 1 ≤ b ≤ n.

Let (J (n)
r )r∈N0 denote the jump chain of the process (|%nRt|)t≥0. Note that

J (n)
0 ≡ n. The first jump will be to the state k, 1 ≤ k < n, with probability

pnk := P (In = k) =
gnk

gn
, n, k ∈ N, k < n, (1)

where In := J (n)
1 . We think of the process (%nRt)t≥0 as a random tree with n

leaves having labels from 1 to n. With this interpretation, |%nRt| is the number
of branches of this tree at time t ≥ 0.

3 Total branch length

We are interested in the total branch length Ln, i.e. the sum of the length of all
branches of the tree (%nRt)t≥0. It is well known [17, Eqn. (10)] that Ln satisfies
the recursion L1 = 0 and

Ln = Tn + LIn = Tn +
n−1∑

k=1

1{In=k}Lk, n ≥ 2, (2)

with Tn := nτn, where τn is the amount of time for which the tree (%nRt)t≥0 has
n branches. Note that (2) holds almost surely and not only in distribution. From
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the Markov property of (%nRt)t≥0 it follows that τn is exponentially distributed
with parameter gn. Thus, Tn is exponentially distributed with parameter αn :=
gn/n. For m,n ∈ N with m < n let %nm : En → Em denote the natural restriction
from En to Em. As %mRt = %nm%nRt, the tree (%mRt)t≥0 is obtained from
the tree (%nRt)t≥0 by removing all branches of the tree (%nRt)t≥0 with labels
m + 1, . . . , n. Thus

Ln = Lm + Rnm, m, n ∈ N,m < n (3)

almost surely, where Rnm denotes the sum of the lengths of all removed
branches. In particular, P (Lm ≤ Ln) = 1 for m,n ∈ N with m < n. There
is another interpretation of Ln. It is a total cost of a one-sided destruction of
size n recursive trees when the toll variable Tn is exponentially distributed with
parameter αn for n ≥ 2 and T1 ≡ 0. Janson [11, 12], Panholzer [19, 20], and Fill,
Kapur and Panholzer [8] consider similar models with non-random toll functions
Tn.
For n ∈ N and j ∈ N0 let µ

(j)
n := E(Lj

n) denote the j-th moment of Ln. From
(3) it follows that, for each fixed j, the sequence (µ(j)

n )n∈N is non-decreasing.
Obviously, µ

(j)
1 = 0 and, by (2),

µ(j)
n =

j∑

i=0

(
j

i

)
E(T i

n)E(Lj−i
In

) =
j∑

i=0

(
j

i

)
E(T i

n)
n−1∑

k=1

pnkµ
(j−i)
k

=
n−1∑

k=1

pnkµ
(j)
k + r(j)

n , n ≥ 2, j ∈ N0 (4)

with rest term

r(j)
n :=

j∑

i=1

(
j

i

)
E(T i

n)
n−1∑

k=1

pnkµ
(j−i)
k .

For j ∈ N0 define the generating functions

µj(s) :=
∞∑

n=2

µ(j)
n sn and rj(s) :=

∞∑
n=2

αnr(j)
n sn, 0 ≤ s < 1. (5)

In the situation considered in this paper, the toll variables Tn are exponentially
distributed. In this case the generating functions µj and rj are related as follows.

Lemma 3.1 Assume that T1 ≡ 0 and that, for n ≥ 2, Tn is exponentially
distributed with parameter αn > 0. Then, for n ≥ 2 and j ∈ N,

r(j)
n = jα−1

n µ(j−1)
n (6)

and, hence,
rj(s) = jµj−1(s), j ∈ N, 0 ≤ s < 1. (7)

In particular, r1(s) = µ0(s) =
∑∞

n=2 sn = s2/(1− s), 0 ≤ s < 1.
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Proof. Induction on j. For j = 1, Eqn. (6) is obvious, as r
(1)
n = E(Tn) = α−1

n .
The step from 1, . . . , j − 1 to j works as follows. For i ∈ {2, . . . , j} it follows by
induction and from E(T i

n) = i!α−i
n that

(
j

i− 1

)
E(T i−1

n )r(j−i+1)
n =

(
j

i− 1

)
E(T i−1

n )(j − i + 1)α−1
n µ(j−i)

n

=
(

j

i− 1

)
j − i + 1

i
E(T i

n)µ(j−i)
n

=
(

j

i

)
E(T i

n)µ(j−i)
n .

Thus,

r(j)
n =

j−1∑

i=1

(
j

i

)
E(T i

n)
n−1∑

k=1

pnkµ
(j−i)
k + E(T j

n)

=
j−1∑

i=1

(
j

i

)
E(T i

n)(µ(j−i)
n − r(j−i)

n ) + E(T j
n)

=
j∑

i=1

(
j

i

)
E(T i

n)µ(j−i)
n −

j−1∑

i=1

(
j

i

)
E(T i

n)r(j−i)
n

=
j∑

i=1

(
j

i

)
E(T i

n)µ(j−i)
n −

j∑

i=2

(
j

i− 1

)
E(T i−1

n )r(j−i+1)
n

=
(

j

1

)
E(Tn)µ(j−1)

n = jα−1
n µ(j−1)

n .

From the definition (5) of rj(s) the formula (7) follows immediately. 2

Remark. The recursion (4) thus becomes µ
(j)
1 = 0, j ∈ N, and

µ(j)
n = jα−1

n µ(j−1)
n +

n−1∑

k=2

pnkµ
(j)
k , j ∈ N, n ≥ 2. (8)

With this recursion it is possible to compute µ
(j)
n numerically. First, compute

µ
(1)
1 , . . . , µ

(1)
n via the recursion µ

(1)
1 = 0 and

µ(1)
n = α−1

n +
n−1∑

k=2

pnkµ
(1)
k , n ≥ 2.

After these first moments are computed, use µ
(2)
1 = 0 and

µ(2)
n = 2α−1

n µ(1)
n +

n−1∑

k=2

pnkµ
(2)
k , n ≥ 2

to compute the second moments µ
(2)
1 , . . . , µ

(2)
n . Repeat this procedure (using

(8)) until µ
(j)
n is computed.
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4 Total branch length of the Bolthausen-Sznitman coales-
cent

In the following we focus on the Bolthausen-Sznitman coalescent [5], i.e. the
Λ-coalescent, where Λ is the Lebesgue measure on [0, 1]. A straightforward com-
putation shows that gnk = n/((n−k)(n−k+1)), k, n ∈ N with k < n, and that
gn = n− 1, n ∈ N. Thus, the jump chain (J (n)

r )r∈N0 has transition probabilities

pnk = P (In = k) =
gnk

gn
=

n

(n− 1)(n− k)(n− k + 1)
, 1 ≤ k < n. (9)

These transition probabilities coincide with those obtained by Meir and Moon
[15] for the subtree size of a random recursive tree of size n, when an edge is
removed at random. For n ∈ N let hn :=

∑n
i=1 1/i denote the nth harmonic

number. Note that, for n ≥ 2, E(n − In) = n(hn − 1)/(n − 1) ∼ log n and
E((n − In)2) = n(n − hn)/(n − 1) ∼ n. As n tends to infinity, the random
variable n−In converges in distribution to a limiting variable I with distribution
P (I = k) = 1/(k(k + 1)), k ∈ N.
In this section we study, for arbitrary but fixed j ∈ N, the asymptotics of
the moments µ

(j)
n = E(Lj

n) as n tends to infinity. Of course (see Lemma 7.2
and Lemma 7.3 in the appendix) Karamata’s Tauberian theorem yields µ

(1)
n ∼

n/ log n and µ
(2)
n ∼ n2/ log2 n, but we will not use Tauberian theorems in this

section. Instead, we adapt Panholzer’s [19] approach to derive (see Corollary
4.3 and the examples thereafter) asymptotic expansions for µ

(j)
n . We start with

providing a recursion for the generating functions µj defined in (5).

Lemma 4.1 (Recursion for the generating functions µj)
For j ∈ N and 0 ≤ s < 1

µj(s) =
∞∑

n=2

µ(j)
n sn =

js

s− 1

∫ s

0

µ′j−1(t)
log(1− t)

dt. (10)

In particular,

µ1(s) =
s

s− 1

∫ s

0

t(2− t)
(1− t)2 log(1− t)

dt, 0 ≤ s < 1. (11)

Proof. Fix j ∈ N. For 0 ≤ s < 1 define the auxiliary function

g(s) :=
∞∑

k=1

sk

k(k + 1)
= 1 +

log(1− s)
s

− log(1− s).

It is convenient to rewrite the recursions (4) for (µ(j)
n )n∈N in the form

n− 1
n

µ(j)
n =

n− 1
n

r(j)
n +

n−1∑

k=1

µ
(j)
n−k

k(k + 1)
, n ≥ 2. (12)
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Multiplication by sn and summation over n = 2, 3, . . . leads to

µj(s)−
∫ s

0

µj(t)
t

dt =
∞∑

n=2

n− 1
n

µ(j)
n sn

=
∞∑

n=2

n− 1
n

r(j)
n sn +

∞∑
n=2

sn
n−1∑

k=1

µ
(j)
n−k

k(k + 1)

= rj(s) +
∞∑

k=1

sk

k(k + 1)

∞∑

n=k+1

µ
(j)
n−ksn−k

= rj(s) + g(s) µj(s).

Taking the derivative with respect to s yields

µ′j(s)−
µj(s)

s
= r′j(s) + g′(s)µj(s) + g(s)µ′j(s),

or, equivalently, µ′j(s)(1− g(s)) = µj(s)(g′(s) + 1/s) + r′j(s). Now plug in g(s)
and g′(s) = −1/s− (log(1− s))/s2 to conclude that

µ′j(s) =
µj(s)

s(1− s)
− sr′j(s)

(1− s) log(1− s)
. (13)

Solutions of the homogeneous differential equation f ′(s) = f(s)/(s(1−s)) are of
the form f(s) = cs/(1− s), c ∈ R. Returning to the inhomogeneous differential
equation (13) with initial value µj(0) = 0 we see that µj(s) = cj(s)s/(1 − s)
with

cj(s) := −
∫ s

0

r′j(t)
log(1− t)

dt, (14)

and (10) follows from (7). We have µ0(s) =
∑∞

n=2 sn = s2/(1− s), i.e. µ′0(s) =
s(2− s)/(1− s)2, and (11) follows from (10). 2

For x > 0 let Ψ(x) = Γ′(x)/Γ(x), where Γ denotes Euler’s gamma function.
Write [sn]f(s) = fn, if f(s) =

∑∞
n=n0

snfn. In order to derive asymptotic expan-

sions for the j-th moment µ
(j)
n = E(Lj

n), it is helpful to analyze the asymptotics
of the coefficients [sn]cj(s) of the function cj defined in (14).

Proposition 4.2 (Asymptotics of cj) Fix j ∈ N. As n →∞,

[sn]cj(s) = j
nj−1

logj n
+ jκj

nj−1

logj+1 n
+ O

( nj−1

logj+2 n

)
, (15)

where the sequence (κj)j∈N is recursively defined via κ1 := Ψ(2) = 1 − γ (γ ≈
0.577216 denotes Euler’s constant) and

κj+1 := κj + (j + 1)Ψ(j + 2)− j

j + 1
(jΨ(j + 1) + Ψ(j)), j ∈ N.
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Remark. Using the identities Ψ(x + 1) = Ψ(x) + 1/x, x > 0, and Ψ(j + 1) =
hj − γ, j ∈ N, where hj denotes the jth harmonic number, an induction on j
yields

κj = (j + 1)hj − jγ − 1, j ∈ N. (16)

Proof. The proof goes a similar path as the proof of Theorem 2.1 of Panholzer
[19]. We will use, for α, p > 0, the asymptotic growth of the coefficients (Pan-
holzer [19, Eqn. (19)])

[sn]
1

(1− s)α(− log(1− s))p
=

nα−1

Γ(α) logp n

(
1 +

p Ψ(α)
log n

+ O
( 1

log2 n

))
(17)

and the effect on the growth of the coefficients [19, Eqn. (20)] when integrating
and differentiating the generating function F (s) =

∑∞
n=2 snnα/(logp n), α, p >

0,

[sn]
∫ s

0

F (t) dt =
nα−1

logp n

(
1+O

( 1
n

))
, [sn]F ′(s) =

nα+1

logp n

(
1+O

( 1
n

))
. (18)

We additionally use Panholzer’s [19, Lemma 4.1, Eqn. (16)] summation expan-
sion: For α, β > −1 and p, q ≥ 0

n−2∑

k=2

kα(n− k)β

logp k logq(n− k)
=

Γ(α + 1)Γ(β + 1)
Γ(α + β + 2)

nα+β+1

logp+q n
× (19)

×
(

1 +
(p + q)Ψ(α + β + 2)− p Ψ(α + 1)− q Ψ(β + 1)

log n
+ O

( 1
log2 n

))
.

We now verify (15) by induction on j. We have (see Proof of Lemma 4.1) c1(s) =∫ s

0
t(2− t)/((1− t)2(− log(1− t))) dt. By (17),

[sn]c′1(s) = [sn]
(

2s− s2

(1− s)2(− log(1− s))

)

= 2[sn−1]
1

(1− s)2(− log(1− s))
− [sn−2]

1
(1− s)2(− log(1− s))

=
n

log n
+ Ψ(2)

n

log2 n
+ O

( n

log3 n

)

and (18) yields [sn]c1(s) =
1

log n
+

Ψ(2)
log2 n

+ O
( 1

log3 n

)
.

Thus, (15) holds for j = 1. Assume now that (15) holds for some j ∈ N. Then,
by (18),

[sn]c′j(s) = j
nj

logj n
+ jκj

nj

logj+1 n
+ O

( nj

logj+2 n

)
. (20)

From µj(s) = cj(s)s/(1−s), i.e. µ′j(s) = c′j(s)s/(1−s)+cj(s)/(1−s)2 it follows
that

− µ′j(s)
log(1− s)

=
sc′j(s)

(1− s)(− log(1− s))
+

cj(s)
(1− s)2(− log(1− s))

.
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We have, by (17),

[sn]
1

(1− s)(− log(1− s))
=

1
log n

+
Ψ(1)
log2 n

+ O
( 1

log3 n

)
.

From (20) and (19) it follows that

[sn]
sc′j(s)

(1− s)(− log(1− s))

= j

n−2∑

k=2

kj

logj k log(n− k)
+ j

n−2∑

k=2

kjΨ(1)
logj k log2(n− k)

+

+jκj

n−2∑

k=2

kj

logj+1 k log(n− k)
+ O

( nj+1

logj+3 n

)

=
j

j + 1
nj+1

logj+1 n

(
1 +

(j + 1)Ψ(j + 2)− jΨ(j + 1)−Ψ(1)
log n

+ O
( 1

log2 n

))

+
j

j + 1
(Ψ(1) + κj)

nj+1

logj+2 n

=
j

j + 1
nj+1

logj+1 n

(
1 +

(j + 1)Ψ(j + 2)− jΨ(j + 1) + κj

log n
+ O

( 1
log2 n

))
,

and (18) yields

[sn]
∫ s

0

tc′j(t)
(1− t)(− log(1− t))

dt (21)

=
j

j + 1
nj

logj+1 n

(
1 +

(j + 1)Ψ(j + 2)− jΨ(j + 1) + κj

log n
+ O

( 1
log2 n

))
.

By (17),

[sn]
1

(1− s)2(− log(1− s))
=

n

log n
+ Ψ(2)

n

log2 n
+ O

( n

log3 n

)
.

Hence, by (19) and (15) (for j)

[sn]
cj(s)

(1− s)2(− log(1− s))
= j

n−2∑

k=2

kj−1(n− k)
logj k log(n− k)

+

+j

n−2∑

k=2

kj−1Ψ(2)(n− k)
logj k log2(n− k)

+ jκj

n−2∑

k=2

kj−1(n− k)
logj+1 k log(n− k)

+ O
( nj+1

logj+3 n

)

=
1

j + 1
nj+1

logj+1 n

(
1 +

(j + 1)Ψ(j + 2)− jΨ(j)−Ψ(2)
log n

+ O
( 1

log2 n

))

+
1

j + 1
(Ψ(2) + κj)

nj+1

logj+2 n

=
1

j + 1
nj+1

logj+1 n

(
1 +

(j + 1)Ψ(j + 2)− jΨ(j) + κj

log n
+ O

( 1
log2 n

))
,

9



and (18) yields

[sn]
∫ s

0

c(t)
(1− t)2(− log(1− t))

dt (22)

=
1

j + 1
nj

logj+1 n

(
1 +

(j + 1)Ψ(j + 2)− jΨ(j) + κj

log n
+ O

( 1
log2 n

))
.

Summation of (21) and (22) yields

[sn]
∫ s

0

µ′j(t)
− log(1− t)

dt

= [sn]
∫ s

0

tc′j(t)
(1− t)(− log(1− t))

dt + [sn]
∫ s

0

cj(t)
(1− t)2(− log(1− t))

dt

=
nj

logj+1 n


1 +

(j + 1)Ψ(j + 2)− j2

j+1Ψ(j + 1)− j
j+1Ψ(j) + κj

log n

+O
( 1

log2 n

))

and multiplication by j + 1 leads to

[sn]cj+1(s)

= [sn]
∫ s

0

r′j+1(t)
− log(1− t)

dt = (j + 1)[sn]
∫ s

0

µ′j(t)
− log(1− t)

dt

=
(j + 1)nj

logj+1 n

(
1 +

κj + (j + 1)Ψ(j + 2)− j
j+1 (jΨ(j + 1) + Ψ(j))

log n
+ O

( 1
log2 n

))

= (j + 1)
nj

logj+1 n
+ (j + 1)κj+1

nj

logj+2 n
+ O

( nj

logj+3 n

)
.

Thus, (15) is valid for j + 1 and the induction is finished. 2

Corollary 4.3 (Asymptotics of the moments of Ln)
Fix j ∈ N. For n →∞, the jth moment of Ln has the asymptotic expansion

E(Lj
n) =

nj

logj n

(
1 +

mj

log n
+ O

( 1
log2 n

))
, (23)

where mj := κj + 1 = (j + 1)hj − jγ.

Proof. We have E(Lj
n) = µ

(j)
n = [sn]µj(s) = [sn](cj(s)s/(1− s)). From Propo-

sition 4.2 and (19) it follows that

[sn]
(
cj(s)

s

1− s

)
=

n−1∑

k=0

[sk]cj(s)

10



= j

n−2∑

k=2

kj−1

logj k
+ jκj

n−2∑

k=2

kj−1

logj+1 k
+ O

( nj

logj+2 n

)

=
nj

logj n

(
1 +

jΨ(j + 1)− jΨ(j)
log n

+ O
( 1

log2 n

))
+ κj

nj

logj+1 n

=
nj

logj n

(
1 +

jΨ(j + 1)− jΨ(j) + κj

log n
+ O

( 1
log2 n

))
.

The corollary follows from Ψ(j + 1)−Ψ(j) = 1/j and from (16). 2

Corollary 4.4 (Weak law of large numbers for Ln)
As n tends to infinity, n−1(log n)Ln converges in probability to 1. Moreover,
Ln →∞ almost surely as n →∞.

Proof. Fix ε > 0. Define µn := E(Ln) for convenience. Tschebyscheff’s inequal-
ity yields

P
(∣∣∣Ln

µn
− 1

∣∣∣ ≥ ε
)

= P (|Ln − µn| ≥ εµn) ≤ Var(Ln)
ε2µ2

n

=
1
ε2

(E(L2
n)

µ2
n

− 1
)
.

The convergence Ln/µn → 1 in probability follows from µn ∼ n/ log n and
E(L2

n) ∼ n2/ log2 n. There exists a subsequence (nk)k∈N with Lnk
/µnk

→ 1
almost surely. In particular, Lnk

→ ∞ almost surely. Thus, Ln → ∞ almost
surely as P (Ln ≤ Ln+1) = 1 for n ∈ N. 2

Remarks. It is remarkable that (23) coincides with the asymptotic expansion
for the jth moment of the number Xn of collision events that take place until
there is just a single block (Panholzer [19], p. 277 or Theorem 2.1. with α = 0,
Goldschmidt and Martin [9], Theorem 2.4.). Corollary 4.3 therefore indicates
that, for the Bolthausen-Sznitman coalescent, the total branch length Ln is
closely related to Xn. We will exploit this fact in more detail in Section 5.
Corollary 4.3 shows that limn→∞ E((Ln/E(Ln))j) = 1, j ∈ N. The same result
holds for the sequence (Xn)n∈N (see Panholzer [19]). The expansions for the
first four moments are

E(Ln) =
n

log n
+ (2− γ)

n

log2 n
+ O

( n

log3 n

)
, (24)

E(L2
n) =

n2

log2 n
+

(9
2
− 2γ

) n2

log3 n
+ O

( n2

log4 n

)
, (25)

E(L3
n) =

n3

log3 n
+

(22
3
− 3γ

) n3

log4 n
+ O

( n3

log5 n

)
, (26)

and

E(L4
n) =

n4

log4 n
+

(125
12

− 4γ
) n4

log5 n
+ O

( n4

log6 n

)
. (27)
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The same argument as given in [19, p. 277] yields the asymptotic expansion

E((Ln − E(Ln))j) =
(−1)j

j(j − 1)
nj

logj+1 n
+ O

( nj

logj+2 n

)
, j ≥ 2, (28)

for the centered moments of Ln. In particular, Var(Ln) ∼ n2/(2 log3 n). The
recursion presented at the end of Section 3 yields the following table.

n E(Ln) E(L2
n) Var(Ln)

1 0 0 0
2 2 8 4
3 3 15 6
4 34

9 = 3.777778 590
27 ≈ 21.851852 614

81 ≈ 7.580247
5 40

9 = 4.444444 6 205
216 ≈ 28.726852 5 815

648 ≈ 8.973765
6 2 269

450 = 5.042222 963 571
27 000 ≈ 35.687815 4 156 843

405 000 ≈ 10.263810
10 ≈ 7.057879 ≈ 64.777011 ≈ 14.963347

100 ≈ 32.441693 ≈ 1183.288479 ≈ 130.825020
∞ ∼ n/ log n ∼ n2/ log2 n ∼ n2/(2 log3 n)

First moment, second moment, and variance of Ln

From (28) it follows that it is impossible to choose a sequence of positive real
numbers (bn)n∈N such that all the moments E(((Ln − E(Ln))/bn)j), j ∈ N,
converge as n tends to infinity. These facts indicate that the moments of Ln

(and as well of Xn) do not ‘encode’ a possible limiting distribution in a proper
way.

5 A weak convergence result for the total branch length

In the following we would like to find sequences (an)n∈N and (bn)n∈N of real
numbers with bn > 0 for sufficiently large n, such that L∗n := (Ln−an)/bn has a
non-degenerate weak limit as n tends to infinity. At a first glance it seems to be
tempting to work with an := µn := E(Ln) and bn := σn :=

√
Var(Ln). Then,

by (2), an = E(Tn) + E(aIn) for n ≥ 2. Thus, the sequence (L∗n)n∈N, with the
so defined an and bn, would satisfy

L∗n =
LIn + Tn − µn

σn
=

σIn

σn
L∗In

+
Tn − E(Tn) + µIn − E(µIn)

σn
, n ≥ 2.

For n → ∞, this recursion for (L∗n)n∈N leads to a degenerate equation which
does not give any hint on the limiting behavior of the sequence (L∗n)n∈N. Re-
cursions with degenerate limiting equation are well known from the literature.
Neininger and Rüschendorf [18] study a class of such recursions with normal
limiting behavior. Theorem 2.1 in [18] is not directly applicable in our situation
as the condition (10) in [18] is not satisfied. It turns out that another scaling is
needed. In order to see this we have to study the random variables Xn, n ∈ N,
recursively defined via X1 := 0 and

Xn := 1 + XIn , n ≥ 2, (29)

12



where In is independent of X1, . . . , Xn−1 with distribution (9). The variable Xn

can be interpreted in different ways.

(i) In the language of coalescent processes, Xn is the number of collision
events that take place until there is just a single block.

(ii) In the language of random recursive trees (Panholzer [19]), Xn counts the
number of removed edges (in a so-called one-sided edge-removal procedure)
until the root is isolated.

(iii) In the language of Markov chains, Xn is the absorbtion time, i.e. the num-
ber of steps to reach the absorbing state 1, of the Markov chain (D(n)

r )r∈N0 ,
recursively defined via D

(n)
0 := n and D

(n)
r := Ir(D

(n)
r−1), r ∈ N, where

I1(k), I2(k), . . . are independent copies of Ik, k ∈ {1, . . . , n}, with the con-
vention I1 := 1.

The recursion (29) is again of the form (8) in [18], but the results in [18] are
not directly applicable, because In takes large values (close to n) with high
probability. Define a1 := 0, b1 := 1, and, for n ≥ 2,

an :=
n

log n
+

n log log n

log2 n
, and bn :=

n

log2 n
. (30)

An analytic proof of the following convergence theorem is given in [7]. A prob-
abilistic proof of the same result was found shortly later [10].

Theorem 5.1 (Weak convergence of normalized Xn)
As n tends to infinity, (Xn−an)/bn converges in distribution to a stable random
variable X with characteristic function

E(eitX) = exp(− 1
2π|t|+ it log |t|), t ∈ R. (31)

Remark. The distribution of −X is the standard continuous Luria-Delbrueck
distribution (see [16, Theorem 4.1.]).

We now present the weak convergence result for the total branch length Ln.

Theorem 5.2 (Weak convergence of normalized Ln)
As n tends to infinity, (Ln−an)/bn converges in distribution to a stable random
variable X with characteristic function given in (31).

Proof. Obviously, (Ln − an)/bn = (Ln −Xn)/bn + (Xn − an)/bn. By Theorem
5.1, it suffices to verify that (Ln − Xn)/bn → 0 in probability. We even show
that (Ln −Xn)/bn → 0 in L2. For n ≥ 2 it follows from (2) that

Ln =
n∑

k=2

Tk

∞∑
r=0

1{D(n)
r =k} =

∞∑
r=0

T
D

(n)
r

n∑

k=2

1{D(n)
r =k} =

Xn−1∑
r=0

T
D

(n)
r

,
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as D
(n)
r = 1 for r ≥ Xn and D

(n)
r ∈ {2, . . . , n} for 0 ≤ r < Xn. For k ∈ {1, . . . , n}

and i = (i0, . . . , ik) with n = i0 > i1 > · · · > ik−1 > ik = 1 define the events
Ak,i := {Xn = k, (D(n)

0 , . . . , D
(n)
k ) = i}. We have

E((Ln −Xn)2) = E
(( Xn−1∑

r=0

(T
D

(n)
r
− 1)

)2)

=
∑

k,i

P (Ak,i) E
(( k−1∑

r=0

(Tir
− 1)

)2)

=
∑

k,i

P (Ak,i)
( k−1∑

r=0

E((Tir
− 1)2) +

k−1∑
r,s=0
r 6=s

E((Tir
− 1)(Tis

− 1))
)
.

The random variables Tir , r ∈ {0, . . . , k−1}, are independent and exponentially
distributed with mean E(Tir

) = ir/(ir − 1). Moreover, ir ≥ k − r + 1. Thus,

k−1∑
r=0

E(Tir − 1) =
k−1∑
r=0

1
ir − 1

≤
k−1∑
r=0

1
k − r

≤ 1 + log k ≤ 1 + log n.

Furthermore, E((Tir − 1)2) ≤ E((T2 − 1)2) = 5. Therefore,

E((Ln −Xn)2) ≤
∑

k,i

P (Ak,i)
( k−1∑

r=0

E((Tir − 1)2) +
( k−1∑

r=0

E(Tir − 1)
)2)

≤
∑

k,i

P (Ak,i) (5k + (1 + log n)2) = 5E(Xn) + (1 + log n)2.

Therefore, E((Ln − Xn)2) = O(n/ log n), as E(Xn) ∼ n/ log n (see Panholzer
[19], p. 277 or Theorem 2.1. with α = 0). From the definition of bn it finally
follows that (Ln −Xn)/bn → 0 in L2. 2

6 Application: Mutations

Assume that mutations occur on each branch of the coalescent tree according to
a homogeneous Poisson process (Mt)t≥0 with rate r > 0, which is independent
of the coalescent (Rt)t≥0. Let Sn denote the total number of mutations on the
branches of the tree (%nRt)t≥0. For t > 0, the variable Mt is Poisson distributed
with parameter rt and has, hence, descending factorial moments E((Mt)j) =
(rt)j , j ∈ N0, where (x)0 := 1 and (x)j := x(x− 1) · · · (x− j + 1) for j ∈ N and

x ∈ R. From Sn
d= MLn it follows that Sn has factorial moments

E((Sn)j) = E(E((MLn)j |Ln)) = E((rLn)j) = rjµ(j)
n , j ∈ N0,

and, hence, moments

E(Sj
n) =

j∑

k=0

S(j, k)E((Sn)k) =
j∑

k=0

S(j, k)rkµ(k)
n , j ∈ N0,

14



where the S(j, k) denote the Stirling numbers of the second kind. In particular,
E(Sn) = r E(Ln) and

Var(Sn) = E(Var(MLn |Ln)) + Var(E(MLn |Ln))
= E(rLn) + Var(rLn) = rE(Ln) + r2Var(Ln).

Corollary 6.1 (Weak law of large numbers for Sn)
As n tends to infinity, n−1(log n)Sn converges in probability to r.

Proof. We have Ln → ∞ almost surely by Corollary 4.4. Thus, MLn
/Ln → r

almost surely and
Sn

E(Sn)
d=

MLn

rLn

Ln

E(Ln)
→ 1

in probability by Lemma 4.4. The corollary follows from E(Sn) = r E(Ln) ∼
rn/ log n. 2

Corollary 6.2 (Weak convergence of Sn)
Let (an)n∈N and (bn)n∈N be the sequences defined in (30). As n tends to infinity,
(Sn − ran)/(rbn) converges in distribution to a stable random variable X with
characteristic function given in (31).

Proof. We have

Sn − ran

rbn
=

Sn/r − Ln

bn
+

Ln − an

bn
.

Thus, by Theorem 5.2, it is sufficient to verify that Yn := (Sn/r − Ln)/bn

converges to zero in probability. From E(Sn/r − Ln) = 0 and

Var
(Sn

r
− Ln

)
= Var

(
E

(MLn

r
− Ln

∣∣∣Ln

))
+ E

(
Var

(MLn

r
− Ln

∣∣∣Ln

))

= 0 + E
(
Var

(MLn

r

∣∣∣Ln

))

=
E(Var(MLn |Ln))

r2
=

E(rLn)
r2

=
E(Ln)

r

it follows that E(Yn) = 0 and that Var(Yn) = E(Ln)/(rb2
n) ∼ n/(rb2

n log n) →
0 by assumption. The convergence Yn → 0 in probability follows from
Tschebyscheff’s inequality. 2

7 Appendix

In this appendix, some useful results on the total branch length Ln are collected.

Lemma 7.1 For the Kingman coalescent (Λ = δ0), as n tends to infinity,
Ln/2 − log n converges in distribution to a standard Gumbel distributed ran-
dom variable.
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Proof. For the Kingman coalescent, Ln = T2 + · · · + Tn, where the random
variables T2, . . . , Tn are independent and Ti is exponentially distributed with
parameter αi = gi/i = (i − 1)/2, i ∈ {2, . . . , n}. Thus, Ln has distribution
function

P (Ln ≤ t) = 1−
n∑

i=2

exp(−αit)
n∏

j=2
j 6=i

αj

αj − αi
, t ≥ 0.

From
n∏

j=2
j 6=i

αj

αj − αi
=

n∏
j=2
j 6=i

j − 1
j − i

= (−1)i

(
n− 1
i− 1

)
and αi = (i− 1)/2 it follows

that

P (Ln ≤ t) = 1−
n∑

i=2

(exp(−t/2))i−1(−1)i

(
n− 1
i− 1

)
= (1− exp(−t/2))n−1.

(32)
Therefore, for x ∈ R and n ∈ N such that x + log n ≥ 0,

P (Ln ≤ 2x + 2 log n) = (1− exp(−x)/n)n−1 → exp(− exp(−x))

as n tends to infinity. The proof is complete, as x 7→ exp(− exp(−x)), x ∈ R, is
the distribution function of the standard Gumbel distribution. 2

Remark. The above proof is similar to that given in [25, Chapter 3]. A proof
based on a coupling argument appeared in [24, pp. 21–23]. The Gumbel distri-
bution arises because Ln has the same distribution as the maximum of n − 1
independent and exponentially distributed random variables with parameter
1/2, as can be seen from (32). This fact previously appeared in [26, pp. 255-
257], and also implicitly in [23, p. 153]. The following explanation is given in
[25]. Suppose we have n−1 exponential clocks, each going off at rate 1/2. When
there are k exponential clocks that have not yet gone off, the time one has to
wait for the next one is exponential with rate k/2. The maximum of the n− 1
exponential random variables is the time one has to wait for all n− 1 clocks to
go off, which is T2 + · · ·+ Tn = Ln.

For the Bolthausen-Sznitman coalescent, the following lemma provides an ex-
plicit formula for µn := E(Ln) in terms of the absolute Stirling numbers of
the first kind. The strict monotonicity of (µn)n∈N follows immediately. We also
provide an alternative proof for the asymptotics of µn based on Tauberian the-
orems.

Lemma 7.2 (Explicit formula and asymptotics of µn)
For the Bolthausen-Sznitman coalescent,

µn = 2
n−1∑

i=1

ci

i!
, n ∈ N, (33)
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where

ci :=
[(i−1)/2]∑

j=0

s(i, 2j + 1)
2j + 1

> 0, i ∈ N, (34)

and s(i, j) denote the absolute Stirling numbers of the first kind. The sequence
(µn)n∈N is strictly increasing with asymptotic behavior µn ∼ n/ log n for n →∞.

Proof. Substituting t = 1− e−u in (11) yields

µ1(s) =
s

1− s

∫ − log(1−s)

0

eu − e−u

u
du, 0 ≤ s < 1. (35)

The Taylor expansion (eu − e−u)/u = 2
∑∞

j=0 u2j/(2j + 1)! leads to

µ1(s) =
2s

1− s

∞∑

j=0

(− log(1− s))2j+1

(2j + 1)(2j + 1)!
.

Let s(i, j) denote the absolute Stirling numbers of the first kind. From

(− log(1− s))j =
( ∞∑

i=1

si

i

)j

=
∞∑

i=j

si
∞∑

i1,...,ij=1
i1+···+ij=i

1
i1 · · · ij = j!

∞∑

i=j

si

i!
s(i, j)

we conclude that

µ1(s) =
2s

1− s

∞∑

j=0

1
2j + 1

∞∑

i=2j+1

si

i!
s(i, 2j + 1)

=
2s

1− s

∞∑

i=1

si

i!

[(i−1)/2]∑

j=0

s(i, 2j + 1)
2j + 1

= 2
( ∞∑

k=1

sk
) ∞∑

i=1

si

i!
ci = 2

∞∑
n=2

sn
n−1∑

i=1

ci

i!
,

with ci defined in (34). Comparing the coefficient in front of sn with that in
µ1(s) =

∑∞
n=1 µnsn yields the explicit solution (33). In particular, the sequence

(µn)n∈N is strictly increasing. From (35) and
∫ x

1
eu/u du ∼ ex/x for x → ∞ it

follows with x = − log(1− s) that

µ1(s) ∼ 1
1− s

ex

x
= − 1

(1− s)2 log(1− s)
= (1− s)−2l(1/(1− s))

for s ↗ 1, where l(x) := 1/ log(x), x > 0, is slowly varying. Karamata’s Taube-
rian theorem for power series [4, Corollary 1.7.3], applied with ρ := 2 and c := 1
in the notation of that corollary, yields µn ∼ cnρ−1l(n)/Γ(ρ) = n/ log n for
n →∞. 2
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The same method leads to the asymptotics of µ
(2)
n = E(L2

n).

Lemma 7.3 (Asymptotics of µ
(2)
n ) µ

(2)
n ∼ n2/ log2 n.

Proof. For s ↗ 1 we have, by (13) and (7),

µ′1(s) =
µ1(s)

s(1− s)
− s2(2− s)

(1− s)3 log(1− s)

∼ − 1
(1− s)3 log(1− s)

− 1
(1− s)3 log(1− s)

= − 2
(1− s)3 log(1− s)

,

or, equivalently, µ′1(1− e−u) ∼ 2e3u/u for u →∞. Thus,

µ2(s) =
2s

s− 1

∫ s

0

µ′1(t)
log(1− t)

dt

=
2s

1− s

∫ − log(1−s)

0

µ′1(1− e−u)
u

e−u du

∼ 2
1− s

∫ − log(1−s)

1

2e2u

u2
du

for s ↗ 1. From
∫ x

1
e2u/u2 ∼ e2x/(2x2) for x →∞ it follows with x = − log(1−

s) that

µ2(s) ∼ 2
1− s

e2x

x2
=

2
(1− s)3 log2(1− s)

= 2(1− s)−3l(1/(1− s))

for s ↗ 1, where l(x) := 1/ log2 x is slowly varying. From Section 3 we know
that the sequence (µ(2)

n )n∈N is non-decreasing. Karamata’s Tauberian theorem
for power series [4, Corollary 1.7.3], applied with ρ := 3 and c := 2 in the
notation of that corollary, yields µ

(2)
n ∼ cnρ−1l(n)/Γ(ρ) = n2/ log2 n. 2
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