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Recursive Trees

Combinatorial Description:

e |labeled rooted tree

e labels are strictly increasing (starting at the root)

e no left-to-right order (non-planar)



Recursive Trees

Number of Recursive Trees:

number of recusive trees of size n
(n—1)!

Yn

The node with label 57 has exactly 7 — 1 possibilities to be inserted
—yp=1-2---(n—1).



Recursive Trees

Generating Functions:

™ x" 1
y(z) = > yp—= ) — =log
2 3
y'(z) =14 y(z) + y(;l) - y(;) 4= e¥(@)

A recursive tree can be interpreted as a root followed by an unordered

sequence of recursive trees. (v/'(z) = X y,+12"/n!)
n>0



Recursive Trees
Probability Model:
Process of growing trees

e [ he process starts with the root that is labeled with 1.

e At step j a new node (with label j) is attached to any previous
node with equal probability 1/(j — 1).

After n steps every tree (of size n) has equal probability (n%l),
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Recursive Trees

p=1/2

p=1/2



Recursive Trees
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Recursive Trees

Remark



Results for Recursive Trees

Depth D, of the n-th node [Devroye, 1988; Mahmoud, 1991]

E Dy,

Hy, 1 =logn+ O(1)

VarD, = H, 1— H'% =logn+ 0(1)

Central limit theorem:

D, —logn
viogn

N(0,1)

Harmonic numbers: anl—l—%-l—---—k%, H722):1_|_21_2_|_..._|_#



Results for Recursive Trees

Number L, of leaves [Najock & Heyde, 1982]

mn
7 1
Var L, = — —
b " T3
Central limit theorem:
L. 1
T2 - N(0,1)




Results for Recursive Trees

Distribution of out-degrees [Gastwirth, 1977]

Ay = nli_>moo probability that a random node of a trees of size n

has out-degree d

— expected number of nodes with out-degree d
o nI—>mOO n
1
2d—+1

E.g.. Number of leaves = number of nodes with out-degree 0 =

NIS



Results for Recursive Trees

Root degree dg

EdO,n = Hp,_1=1ogn+ O(1)

Vardp,, = logn+ O(1)

Central limit theorem:

do.n, — lOgn

viogn

N(0,1)

This result follows from the correspondance to (random) permutations.



Results for Recursive Trees

Height H,

[Pittel 1994]

Hp,
logn

»e  (a.s.)

EH, ~e-logn

Exponential tails [Drmota 2007]

Pr{|H, — EHy,| > 2} = O(e” %)

for some n > 0. (= VarH, = O(1) etc.)
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Plane Oriented Trees

p=1/3 p=1/3

p=1/3
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Plane Oriented Trees

Number of Plane Oriented Trees:

yn = number of plane oriented trees of size n
= 1-3:5.---(2n—-3) = (2n — 3)!!
_ (2n-2)!
 2n—1(p —1)!

The node with label 5 has exactly 27 — 3 possibilities to be inserted
—yp,=1-3---(2n — 3).



Plane Oriented Trees

Generating Functions:

=Yt = (T = v
S

n>1 n—1

() =1+ y(@) +y@)+y@)3+ - =

A plane oriented tree can be interpreted as a root followed by an
ordered sequence of plane oriented trees. (v/'(z) = X y,4+12"/n!)

n>0



Plane Oriented Trees

Probability Model:

Process of growing trees

e [ he process starts with the root that is labeled with 1.

e At step j a new node (with label j) is attached to any previous
node of outdegree d with probability (d+ 1)/(2j — 3).
(Barabasi-Albert model)

1
—3)n-

After n steps every tree (of size n) has equal probability on



Results for Plane Oriented Trees

Depth D, of the n-th node [Mahmoud, 1992]

1 1
ED, = Hy, 11— EHn_l — 5 logn + O(l)

1 2 1. (2
VarDn = Hzy1— JHy1 - H$ |+ ZHé_)l

— %Iogn—l—O(l)

Central limit theorem:

Dy — 3logn N0, 1)
%Iogn 7




Results for Plane Oriented Trees

Number L, of leaves [Mahmoud, Smythe & Szymanski, 1993]

2n — 1
ELn: i
1 1
Vaanzﬁ— —
9 18 6(2n—-1)

Central limit theorem:

— 3" L N(0,1)




Results for Plane Oriented Trees

Distribution of out-degrees [Bergeron, Flajolet & Salvy, 1992]

Ay = nli_)moo probability that a random node in P, has out-degree d

—  im expected number of nodes with out-degree d

n—aoeo n

4
(d+1)(d+2)(s+ 3)

Remark. \;~4d~3 as d — .



Results for Plane Oriented Trees

Root degree dg, [Bergeron, Flajolet & Salvy, 1992]

. . (277, —3 - k)' 2 —k2/(4n)
Pridon =k} = on=1-k(n—1— k) \7n'

Edy,, = Vvmn + O(1)



Results for Plane Oriented Trees

Height H,

[Pittel 1994]

H 1
n = 1.79556... (a.s.)|
logn  2s

where s = 0.27846 ... is the positive solution of sestl = 1.
1
2s

Exponential tails [Drmota 2007]

Pr{|H, — EHyp| > 2} = O(e” %)

for some n > 0. (= VarH, = O(1) etc.)



Results for Plane Oriented Trees

Distance F,, between 2 random points

[Bollobas & Riordan, 2007; Morris, Panholzer & Prodinger, 2004]

E E, = logn + O(1)

Var E, = logn + O(1)

Central limit theorem:

En, —logn
viogn

> N (0, 1)




General Increasing Trees

[Bergeron, Flajolet & Salvy, 1992]
Pr: set of all plane oriented trees of size n

¢o0, ¢1,. ... weight sequence (¢g > 0, ¢; > 0 for some j > 2)

o(t) = ¢o + p1t + Pt + -

Weight of a tree T € Py:

~

w(T) = H qu\f](T)

720

where N;(T) = the number of nodes in T with outdegree ;.



General Increasing Trees

w(T) = $3363




General Increasing Trees

Generating Functions:

Yn — Z w(T)
TecPn

xn

n>1

y'(z) = dg + b1 y(x) + poy(x)? + - - = (y(x))

B = 8+ T a 75+ 75 w=
A R R RAR



General Increasing Trees

Probability distribution on P,

For T € P,, set:

Remark. In general it is not clear whether m,, is induced by a tree
evolution process. It is just a sequence of probability measures.



General Increasing Trees

Examples

_ tJ
e Recursive Trees: |¢(1) = Y — =¢l| ¢j = —
— 7! 71

720

The factor 1/j5! “reduces” planar trees to non-planar ones.

e Plane Oriented Trees: |¢p(t) =1+t+t°+. . = | ¢; =1

e Binary Search Trees: (1) = (1 4+ )%, g =1, ¢p1 =2, ¢ = 1.

For all these three examples, m,, is induced by a tree evolution process.



General Increasing Trees

Theorem [Panholzer & Prodinger, 2007]
The sequence m,, of probability measures on P,, is induced by a tree

evolution process if and only if ¢(¢) has one of the three forms:

D
o o(t) = ¢g (1 —|—%t> for some D € {2,3,...} and ¢g > 0, ¢1 > 0.
0

¢
o O(t) = qboe%t with ¢g > 0, ¢1 > 0.

®0

(1=t

o ¢o(t) = = for some r» > 0 and ¢g > 0, ¢1 > O.



General Increasing Trees

Probabilistic tree evolution model
e [ he process starts with the root that is labeled with 1.

e At step 5 a new node (with label j) is attached to any previous
node (with out-degree d) with probability proportional to

(d~+ 1)pg+190
bd

In order to obtain all possible 7, it is sufficient to work with ¢g = ¢1 = 1:

o) = (1 +)P, o) =€, o@t)=1/1—-1t)"



General Increasing Trees

Recursive Trees: ¢(t) = et

1 d+1
b=t —s (d+1)pat100 _

d! Pd

1

A new node is attached to previous nodes with equal probability.



General Increasing Trees

Generalized Plane Oriented Trees: ¢(t) = 1/(1—t)" for some r > 0

d-+r

r+d—1 (d~+ 1)pg4190

¢Cl = ( ) p— + =
d ¥

A new node is attached to a previous nodes with probability propor-

tional to |d + r|, where d is the out-degree.

For r = 1 this these are (usual) plane oriented trees.



The Degree Distribution

T heorem

Let ¢(t) =1/(1 —t)" for some r > 0 and set

Ag = nli_)moo probability that a random node in P, has out-degree d
— i expected number of nodes with out-degree d
o TL|—>mOO n
Then

_ (r+1)r(2r+1)r(r +d)
C(r)F(2r +d—+ 2) '

d

In particular

N (T + 1)|_(27° + 1) -d_Q_T

5 "(r)




The Degree Distribution

Remark 1

There is also a central limit theorem for each d.

Remark 2

This result is in accordance to [Dorogovtsev, Mendes & Samukhin,

2000] and [Buckley & Osthus, 2004].
(r=A m=1)



The Degree Distribution

Generating Functions

number of nodes of 1" with out-degree d
(random) number of nodes in P, with out-degree d

Yn ko = > w(T) = yn - Pr( = k)
TEPn, =k



The Degree Distribution

Generating Functions

Oy(x,u)

o = o(y(w,u)) + 64 ( —1) - y(z,u)?

d = 3:

d(y) +bg- (u—1)-y' =g+ d1y+ b2y +udzy® + day* +---



The Degree Distribution

Expected value of nodes of degree d

denotes the random variable that counts the number of nodes in
Pn with out-degree d.

x
= y(z, u)—zynk—u > Yn- o
n,k n>1 n:

Oy(x,u) x"

ou B Z Jn nl



The Degree Distribution

Expected value of nodes of degree d

 Oy(e,u) i

Set S(x) = ou |, = ngl Yn, - e

Recall that ayg’"’“) = by, 1)) + by — Dy, u)?
€T

—  §'(2) = ¢'(y(@))S(x) + pqy(x)*

y(t )d

= [5G) = o/ @) || s




The Degree Distribution

Singular behaviour of y(x)

o(t) =1/(1—1)",

y'(z) = ¢(y(z))

— |y(z)=1-(1—-(r+ 1);U)H+1

ro = =7 is the (only) singularity of y(x).

— y—n:
n!

1

—1

<—n”4w+1wvgw~r(

1

rd1

)

_r+2
(r + 1)"n r 1




Algebraic Singularities

Lemma

Suppose that

y(z) = (1 —xz)~

Then

n

= (D" )= +0 (7).




Algebraic Singularities

Proof.

Cauchy’'s formula:

(—1)”(_n ) = i/7(1 —z) Yz " g

271




Algebraic Singularities

More precisely ...

Yy=71Ur2Ur3U94:

71:{3::14—% |t|=1,§Rt§O}
fmz{x=1+£o<%ugw%m&=1}

Y3 =2

74:{3: ]:r;|:‘1—|—|092n+i ,arg(1+|092§+i)§|arg(m)|§7r}.




Algebraic Singularities

Substitution for x € v U vo U ~3:

L= =t 1o (D))
r=14+ - —= =z — e 14+0O(—

— tery ={t||t|=1,Rt<0}U{t|0< Rt <log?n,t = +1}:

-
N




Algebraic Singularities

With Hankel's integral representation for 1/I(«)

—1

1
—/ (1—2) "z " ldy = /(—t)_ e dt
2T Y1 Uy U3 2T ~!
—2
n —o_—t 2
—1 O (t7) dt
+ " L,( )t 0 (12)

1 1 _
n 1ﬁ—|—0(n 2).



Algebraic Singularities

Lemma [Flajolet and Odlyzko, 1992]

Let
y(z) = ) yna”

n>0
be analytic in a region

A ={x:|zr|<xg+mn,|arg(x—xg)| > I},
xg>0,1n>0 0<d0<m/2.

Suppose that for some real

y(x) =0 ((1-x/z0)™")  (z€d),

T hen

yn = O (acann _1> :




Algebraic Singularities

Proof

Cauchy’s formula:




Algebraic Singularities

Asymptotic Transfer

Suppose that a function y(x) is analytic in a region of the form A and
that it has an expansion of the form

y(az)ZC(l—i)_ —I—O<<1—x>> (x € A),
L0 L0

where . Then we have (as n — 00)

no—1

= )xan e (xannmax{ -2, —1}>.

yn = [2"]y(z) = C




The Degree Distribution (cont.)

xn

£\d
Singular behaviour of S(z) = ) ynENdn = ¢qy (:C)/ yf(z)
n>1 |

1
(1= (r+ D)t 1

e y(z) =

/O Z(Zj /01/(7“-|—1) yyggj ((1 i 1)x)r-+1)

1/(r+1) ()4
y'(t)

— S(x) = gbd/O

0 ((1 ~(r+ 1)96)?%—1)



The Degree Distribution (cont.)

dt -

/[1/(T-F1) y ()
0 y' (1)

+o( )

Yy
— n_?'ENd,n = qﬁd

1
Recall: " ~ :

n! F(—r 1)

1/(r+1) y(t)4
y' (1)

—> ENg, = ¢ (r+1) [

o ()

dt -



The Degree Distribution (cont.)

EN
— )y = lim — 4"

1/(r+1) y(¢)4

y' (1)

(r+1)r2r+ I (r + d)
F(r)r(2r+d+ 2)

(r+DrEr+1) o,
m(r)

dt

da-(r+1) |




Conclusion

General Plane Oriented Trees (defined by &(t) = rlt)r) have the
following properties:

e Average distance between 2 nodes is of order logn
(+ central limit theorem)

e Height is order logn (+ exponential tails)
e Degree distribution is of the form \; ~ ¢cd~2~" (scale free)

There is no clustering (it is a tree !ll) but these kind of trees can
be used as a prototype for scale free random graphs (trees) where
several asymptotic properties can be proved rigorously.



T hank You!



