PRIME NUMBERS IN TWO BASES
MICHAEL DRMOTA, CHRISTIAN MAUDUIT, AND JOEL RIVAT

ABSTRACT. If ¢; and g2 are two coprime bases, f (resp. g) a strongly ¢;-multiplicative (resp.
strongly go-multiplicative) function of modulus 1 and ¢ a real number, we estimate the sums
Y o< M) f(n)g(n) exp(2imdn) (and >, -, u(n)f(n)g(n)exp(2imin)), where A denotes the von
Mangoldt function (and g the Méobius function). The goal of this work is to introduce a new
approach to study these sums involving simultaneously two different bases combining Fourier anal-
ysis, Diophantine approximation and combinatorial arguments. We deduce from these estimates a
Prime Number Theorem (and Mébius orthogonality) for sequences of integers with digit properties
in two coprime bases.

1. INTRODUCTION

We denote by N the set of non negative integers, by U the set of complex numbers of modulus 1,
by P the set of prime numbers.

For n € N, n > 1, we denote by 7(n) the number of divisors of n, by w(n) the number of distinct
prime factors of n, by A(n) the von Mangoldt function (defined by A(n) = logp if n = p* with
k € N,k > 1and A(n) = 0 otherwise) and by p(n) the Mobius function (defined by p(n) = (—1)“™
if n is squarefree and pu(n) = 0 otherwise).

For z € R we denote by 7(z) the number of prime numbers less or equal to z, by ||z|| the
distance of z to the nearest integer, and we set e(z) = exp(2imx). If f and g are two functions
with g taking strictly positive values such that f/g is bounded, we write f < g (or f = O(g)).

In all this paper ¢ denotes an integer greater or equal to 2 and for any positive integer n,

(1) n= Zej(n) ¢’ with g;(n) € {0,...,q— 1} for all j € N

320

is the representation of n in base q.

1.1. ¢g-additive and ¢-multiplicative functions. The notion of ¢g-additive function has been
introduced independently by Bellman and Shapiro in [2] and by Gelfond in [I1].

Definition 1. A function h : N — R is g-additive (resp. strongly q-additive) if for all (a,b) €
N x {0,...,q — 1}, we have

h(aq + b) = h(aq) + h(b)
(resp. h(aq+b) = h(a) + h(b)).

It follows that any g-additive function h verifies h(0) = 0. If h is a strongly ¢-additive function
then h is uniquely determined by the values h(1),..., h(g—1) and for any positive integer n written
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in base ¢ as (1)), we have

(e ) = o
Jj=0 Jj=0
The most classical example of ¢g-additive function is the g-ary sum-of-digits function defined by
84(n) = ijo gj(n).

In a similar way we can define the notions of g-multiplicative function and strongly g-multiplicative
function:

Definition 2. A function f : N — U is g-multiplicative (resp. strongly q-multiplicative) if for all
(a,b) € Nx {0,...,q— 1}, we have

flag+b) = f(aq) f(b)
(resp. f(aq+b) = f(a) f(b)).
If h is a g-additive (resp. strongly g-additive) function then f = e(h) is g-multiplicative

(resp. strongly g¢-multiplicative). Conversely if f = e(h) is a ¢g-multiplicative (resp. strongly
g-multiplicative) function from N to U then h is g-additive (resp. strongly g-additive) modulo 1.

Definition 3. A strongly q-multiplicative function is called proper if it is not of the form f(n) =
e(In) with (¢ — 1)9 € Z.

1.2. g-additive functions and prime numbers. Bassily and Katai studied in [I7, ] the limit
distribution of ¢g-additive functions along prime numbers. It follows in particular from their results
that if A is a strongly ¢-additive function, then

1 / 2
mcard {p <z, peP, hip) < pulog,x +yy/o} logqx} = d(y) + o(1),

where . 1
Hh = azh(j)7 oh = azh(ﬁQ — Ui,
J<q J<q
and ® denotes the normal distribution function (see [6] for a generalization of this result to the
case of two g-additive functions in coprime bases).

In [19, 20, 21, 22] Martin, Mauduit and Rivat studied the exponential sums associated to ¢-
additive functions ([I9] and [20] concern a more general class of arithmetic functions called digital
functions, which include the function counting the number of occurences of the digit 0 in the g-ary
representation). In particular they defined the notion of characteristic integer as follows:

Definition 4. If h is a strongly q-additive integer valued function such that ged (h(1),...,h(q — 1))
1, the characteristic integer of h is

dp =ged (h(2) —2h(1), ..., h(¢g—1)— (¢ —1)h(1),q—1).
We have (dj, h(1)) = 1 and, for any positive integer n, h(n) = h(1)n mod dj,. It follows from Defini-
tion [3| that if h is a strongly ¢-additive integer valued function such that ged (h(1),..., k(g —1)) =
1, then f = e(ah) is proper if and only if dyo ¢ Z (in particular f = e(as,) is proper if and only
if (—1)a ¢ 7Z).
It follows from [19] 20] that

Theorem A. Ifh is a strongly q-additive integer valued function such that ged (h(1),...,h(q —1)) =
1, then for all (a, B) € R? and x > 2 we have

3" A(n)e (ah(n) + fn) < (logz) izt coMldnal,

n<x

where c,(h) > 0 is an explicit constant and the implicit constant depends only on q.
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Theorem B. If h is a strongly q-additive integer valued function such that ged (h(1),...,h(qg—1)) =
1, then for any positive integer m such that ged(dp, m) = 1, we have for all integers a

1) (g,

card{p <=z, p€ P, h(p) =amod m} = —=
m

where cq(h) is the constant from Theorem [A]

Remark 1. Without the coprimality condition ged (h(1),...,h(q¢—1)) = 1, it is still possible to

get similar results to Theorem |A|l and Theorem @ but they are more complicated to formulate (see

[20, section 6.4]).

1.3. g-additive functions in different bases. The question of the statistical independence of
sum-of-digits functions in pairwise coprime bases was first stated by Gelfond in his seminal paper
[11].

By using a general method concerning pseudorandom sequences in the sense of Bertrandias (see
[3, 4]) and generalizing previous results obtained by Mendes France (see [27]), Bésineau showed
in [5] that, if ¢1,...,q¢ are pairwise coprime bases and ay,. .. ,as, my, ..., m; are integers such that
ged(my, g — 1) =1 for any i € {1,..., ¢}, then

card{n <z, Vi€ {1,...,0}, s, (n) =a; mod m;} = T o(z).
my - My

Kamae obtained similar results when ¢ = 2 by studying the mutual singularity of the spectral
measures associated to the sum-of-digits functions (see [I4} [15], [16]). These results were extended
in [29] to multiplicatively independent bases and finally in [23] to different bases by using a slightly
different method involving the study of some class of Riesz products (see also [12] for a generali-
sation of Kamae’s result to ¢ > 2 g-additive functions in pairwise coprime bases by using ergodic
methods).

By using a different approach based on exponential sums, Kim gave in [I§] a full answer to
Gelfond’s question providing an explicit error term. It follows in particular from his result that if

Q1,- - - ,qe are pairwise coprime bases then, if for any i € {1,...,¢} h; is a strongly integer valued
¢;i-additive function such that ged (h;(1),...,h;(¢; — 1)) = 1 and m; is a positive integer such that
ged(dy,, m;) = 1, we have for all integers ay,. . . ,ay,
card{n <z, Vie {1,...,0}, hy(n) =a;, mod m;} = S — O(x'™),
mi---My
with § = ﬁ€—2 (maXlSng %’)_3 (maxlgig mi)_z .

2. STATEMENT OF THE RESULTS

Let ¢; and g2 be coprime integers greater or equal to 2. The goal of this paper is to show a
prime number theorem for sequences of integers defined by simultaneous strongly ¢,-additive and
g2-additive conditions.

Theorem 1. If f is a strongly q,-multiplicative function and g a strongly qo-multiplicative function
such that ged(q1,q2) = 1 and f or g is proper, then we have uniformly for 9 € R

log x
Lzexp| —¢c———
log log

> An)f(n)g(n) e(vn)

n<x

for some positive constant c.

Remark 2. If f and g are not proper then the sum above is of the kind ), . A(n) e(9'n) for some
V' € R for which the best known upper bound (without the Riemann Hypothesis) is only of the size
x exp (—c Vl1og x) for some positive constant c.



4 MICHAEL DRMOTA, CHRISTIAN MAUDUIT, AND JOEL RIVAT

It follows that under the conditions of Theorem [I] we have uniformly for ¥ € R

1
log log x

p<lz
pEP

for some positive constant ¢/, which means in particular (for ¥ = 0) that strongly g-multiplicative
functions in two coprime bases are statistically independent along prime numbers.

By the same method we show the following Theorem which implies that the product of two
strongly g-multiplicative functions in coprime bases is orthogonal to the Mobius function.

Theorem 2. If f is a strongly q,-multiplicative function and g a strongly qo-multiplicative function
such that ged(q1,q2) = 1 and f or g is proper, then we have uniformly for 9 € R

2_nin) )e(9n)| < wexp <_c bi)

= log log x

for some positive constant c.

The sequence (f(n)g(n))neny in Theorem [2| is produced by a zero entropy dynamical system, so
that this result can be seen as a new class of sequences verifying Mébius orthogonality in connection
with the Sarnak conjecture [30] (see [§] for a survey on the Sarnak conjecture).

As we will see in the proofs the upper bounds can be made more explicit if we restrict ourselves
to special multiplicative functions (we only state Theorem |3| for the A-function but it also holds
for the Mobius function).

Theorem 3. If fy is an integer valued strongly qi-additive function and gy is an integer val-
ued strongly go-additive function such that ged(qr,q2) = 1, ged(fo(1),..., folg1 — 1)) = 1 and
ged(go(1), ..., go(ge — 1)) = 1, then we have uniformly for (a, 3,9) € R?® such that dso ¢ Z and
dg, 3 ¢ Z

> A(n) e(afo(n) + Bgo(n) + vn)

n<x

< zexp _Cloi _|_(10gx)AxlfclIIdfOCzIIQ/logIIfflfoch‘LCzHcigoﬁl\2/10gIIngﬁll‘1
log log x

for some positive constants A, c, cq, cs.
Theorem [3| can be reformulated into a prime number theorem of the following kind.

Corollary 1. If q1, q2, fo and go are given as in Theorem[3, then for any positive integers my,
my such that ged(dy,, m1) = ged(dy,, me) = 1 we have for all integers ay, as,

1 1
lim ——card{p <=z, p € P, folp) =a; mod my, go(p) = as mod my} = .
z—o0 () mimes
In order to estimate sums of the form ) A(n)F(n) by using a combinatorial identity like
Vaughan’s identity (see (13.39) of [13]), it is sufficient to estimate bilinear sums of the form

Z Z by F (M)

(this method is described in details in [25]). These sums are said of type I if b, is a smooth
function of n. Otherwise they are said of type II. The key of this approach is that for type I sums
the summation over the smooth variable n is of significant length, while for type II sums both
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summations have a significant length. It follows that in order to prove Theorem [} it is enough to
estimate these sums of type I and sums of type II, which will be done in section [7| (Proposition
and in section |8 (Proposition .

We introduce a new approach to study these sums involving simultaneously two different bases.
In order to prove Proposition [4] and Proposition [5| we will separate the contribution of the bases
q1 and ¢y by a combination of several techniques including discrete Fourier analysis, Diophantine
approximation and combinatorial arguments.

The study of type I sums leads (by carry properties) to consider periodic arithmetic functions
with period ¢}'¢3?. The first difficulty is to separate the contribution of the two bases and to
combine arguments from [10, 9] and [25] with new Diophantine and Fourier arguments.

A second difficulty arises in the study of type II sums: the separation of the contributions coming
from these two bases (by van der Corput and Cauchy-Schwarz inequalities) leads to much more
difficult Fourier estimates than in the case of one base. In the proof of Proposition [5] we use new
estimates on average of the Fourier transform of correlations of strongly g-multiplicative functions
(analogue to the U(2) Gowers norm) that are provided by combinatorial arguments in section [f]
(Proposition |I| and Proposition .

A last difficulty appears in the non-diagonal terms of the sums of type II which leads to estimate
a linear form of logarithms and which allows us to win a factor of the size exp(C'logz/loglog z).

Sections collect preliminary lemmas used in the rest of the paper.

3. NOTATIONS AND PRELIMINARY LEMMAS

The following lemma is a classical method to detect real numbers in an interval modulo 1 by
means of exponential sums. For o € R with 0 < o < 1 we denote by x, the characteristic function
of the interval [0, @) modulo 1:

(2) Xa(?) = [2] = [z —a].

Lemma 1. Foralla € R with0 < o < 1 and all integer H > 1 there exist real valued trigonometric
polynomials A i (z) and B, g (x) such that for all z € R

(3) Xa(®) = Aa,u ()] < Bau(2),
where
(4) Ao () = Z ap(ao, H) e(hz), Bau(x) = Z by (v, H) e(hz),
|h|<H |h|<H
with coefficients ap(a, H) and by(a, H) satisfying
(5) ao(a, H) = a, |ap(a, H)| < min (a, ﬁ) , |bn(a, H)| < HLH ( — %) )
Proof. This is a consequence of Theorem 19 of [31] (see [26, Lemma 1 and (17)]). O

Similarly we can detect points in a d-dimensional box (modulo 1):

Lemma 2. For all (ay,...,aq) €[0,1)% and (Hy, ..., Hy) € N® with Hy > 1,..., Hy > 1, we have
for all (zy,...,1q4) € RY

< Z Hxaj(mj)HBaﬁHj(wj)

0£IC{L,....d} 5&J el

d d
(6) H X, (25) — H Aa; 1, (25)

where Ay 1(.) and By p(.) are the real valued trigonometric polynomials defined by ().
Proof. See [T, Lemma 3]. O
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Lemma 3. If N be a finite set, fi N = R,...,fi: N =R, Uy, ..., Uy are positive integers and
g: N x{0,....,.U; =1} x---x{0,...,U;—1} = C

such that |g| < 1, then the sum

S= % o Y gnu, ) f[lej_l(fj(n)—%)

neN 0<ui <U; 0<ug<Uy J

can be approximated, for any positive integers Hy, ..., Hy, by
~ hyu hqu
B 1 1 1w dUd
S = Z ahl(Ul 7H1>"'ahd(Ud 7Hd) Z e(_ U, U, )
‘h1|SH1 OS’U,.l”<U1
|hgl <Hq 0=sug<Uq
Y g, ug) e (hfi(n) + -+ hafa(n))
neN

with the error estimate:

- U - Uy || Uy gl Us
7) 1S-5| < > (1—— S R
‘ ) (Hy+ 1) (Hat 1) |ha|<H: /U i+ 1 \ha|<Ha/Us Ha+1

(81,..-,04)€{0,1}¢
(01,---,64)#(0,...,0)

Proof. From the proof of Lemma 3 in [7], using the bound of |b,(a, H)| given by we get

- d U, - U,
‘S_S‘ = Z Z (Hj1+1>""(sz+1)

=1 1<j1<-<jpe<d

3 ALY 3 ;1 Us
Hj, +1 H;,+1

|hj1 |5HJ'1/UJ'1 |hjz|§Hje/Uje

> e (01haUifi(n) + - + 6ahaUqfa(n))
neN

Z e (hlej1fj1(n) +o Tt hszjefje(n))

neN

For all positive integers H and U we can write

()T () (2)

\h|<H/U 0<k<U |h|<H
and, since Fejer’s periodic kernel x — Z\h\gH (1 — %) e (hx) is non negative, picking just k = 0
we get
U h|U
R 2 <1_1|1| 1)’
+ |h|<H/U +

Inserting this inequality in the bound of ’S -9 ‘ above for all pairs (H;,U;) such that j €
{1,...,d}\{J1,- ., ¢} we obtain ([7)). O

The following two lemmas are useful generalizations of van der Corput’s inequality.
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Lemma 4. For all complex numbers zq,...,zx and all integers k > 1 and R > 1 we have
2
© | (S mpe 3 (0F) T Rawm).
1<n<N 1<n<N 1<r<R 1<n<N—kr

where N(z) denotes the real part of z.

Proof. See for example Lemma 17 of [24]. O
Lemma 5. For integers 1 < A < B < N and complex numbers zy,...,zy of modulus < 1, we
have for any integer R > 1,
1/2
b B—A+1 Ir| R
Sal< [T X (1-0) T osem|
n=A [r|<R 1<n<N
1<n+r<N

Proof. This is Lemma 15 of [24]. O

We will often make use of the following upper bound of geometric series of ratio e(&) for (L, L) €
ZQ, L1 S L2 and 5 € R:

(9) D e(td)| <min(Ly — Ly, [sinwé] ).

L1<t<Ls

Lemma 6. For all real numbers U > 0, £ € R with £ # 0, ¢ € R, (My, M) € Z* with My < M,
we have

(10) Y min(Ufsina(mé +¢)| ") < 3+ [(Mz = M) [I€]1]) 3U + [ og l1€] ) -

Mi<m<Ms

Proof. If ||&]| > 1/3 the result follows from the choice of an appropriate implied constant. Other-
wise, by periodicity and parity we may assume that 0 < £ < 1/3. The number of integers in the
interval (M1€ + ¢, M€ + ] is at most 1+ | (Mo — M;)E]. Tt follows that there is at most k values
of m, with k <3+ |(My — My)¢], say my < -+ < my, such that |mé& + ¢|| < /2. For the values
m; — 1, m; and m; + 1 we take the trivial bound U. Furthermore by convexity we have

mjp1—3/2
> Isin 7 (mé + )| g/ lsin 7 ||[t€ + | dt
mj+l<m<m;yi—1 m;+3/2
myp1€+p—38/2
—¢ | jsin e ull] ™ du
m;§+p+36/2

1-¢
< fl/ |sin 7|~ du < € log €71,
3
which gives the result. O

The lemmas , and |§| allow to estimate on average the minimums arising from @

Lemma 7. Let (a,m) € Z* with m > 1, § = ged(a,m) and b € R. For all positive real numbers
U we have

(11) 3 min<

0<n<m—1

2
anth|™ ) < dmin (U ‘smﬂ‘sub/é”‘ ) + —mlog(Qm).
T
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Proof. The result is trivial for m = 1. For m > 2 after using Lemma 6 of [25] it suffice to observe
that

) 2m 2m 1 2m 2m _ 2m
7T_6+—10g—5§ _+—10g—<—log(2m)
sin 2% s sin T T
[
Lemma 8. Let d, my, ..., mq be positive integers with gcd(m;,m;) = 1 for all i # j. Let
(ar,...,aq) € Z* and §; = ged(aj,m;) for j = 1,...,d. For all positive real numbers U and all

real numbers ¢ we have

(12) ﬁ oo Y min(U,

-1
: aini . agng
0<ni<mi 0<ng<mgqg

—1
my---mg 510y T 510y

Proof. Writing m/, = m;/6; and a} = a;/6; for j = 1,...,d, and using periodicity, the left hand

side of is equal to
—1
Y Y i ( )

md
0<n1<m O<nd<m
Let m = m{---m). If m = 1 then inequality is trivially satisfied, so we may assume that
m > 2. Since ged(mj, m}) = 1 for all 7 # j, by the chinese remainder theorem this is equal to

1 . . ain -1
— E min U,’smw(ﬁ—l—--- >’ .
m 1

0<n<m-—1
Observing that = S ot = A for some a’' € Z such that ged(a’,m) = 1, it follows by Lemma 6
of [25] that the left hand 81de of is at most

1 . 1 1 2m
—min | U, — : + - log—
m sin (v [mell) ) " msng

Since sinus is concave over [0, /2] we have

adnd

Slllﬂ'( LA e
my

2t p)

1
msin (72 gl ) 2 s (gl = Jsin (o)
m
and for m > 2,
1 1
- < —
m sin ﬁ — 2sin %
which completes the proof of ((12]). OJ

Lemma 9. Let m and A be positive integers and b € R. For all real numbers U > 0 we have
(13) — Z Z min (U |sin a2l |~ ) < 17(m) U+ mlogm
1<a<A 0<n<m
and if [b] < % we have the sharper bound
(14) — Z Z min (U ‘smﬂ‘m*b’ ) < 7(m) min (U, |sin7r%rl> +mlogm,
1<a<A 0<n<m

where T(m) denotes the number of divisors of m.
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Proof. Using we have for all b € R:

Z min <U |sin et | ) < ged(a,m) U +mlogm

0<n<m

while for [b] < 3, since ged(a, m) [|b/ ged(a, m)|| = |b| this can be sharpened using (11)) to

Z min (U |sin et | ) < ged(a, m) min ( L ) + mlog m.

0<n<m
Now
A
(15) S ged(am) =Yd Y 1gzdzlzzdegm<m)
1<a<A dlm  1<a<A dlm 1<a<A d|m
d<A ged(a,m)=d d<A d|a d<A
which implies and when |b] < % O
The following lemma is a classical application of the large sieve inequality.
Lemma 10. For all (z1,...,2x) € CV and all positive integers Q we have
2 N
(19 9D o) SRR CO [IETENRRE) oiStl
q<@Q a= 1 n=1 n=1
(a,9)=1
Proof. See Theorem 3 and Section 8 of [2§]. O

The following lemma gather some well known useful properties of Fejer’s Kernel.

Lemma 11. Let K denote Fejer’s (non periodic) kernel and K its Fourier transform:

(17) K(t) = (Si“t> /K ut) du = max (0,1 — [£])

it

for allt € R we have
. t
(1) Rit) <K (—)
and for all integers N > 2, we havem
1 n ~
(19) N%ZZK (N) e(nt) = K(N|[]).

Proof. We have cosx <1 — %2 + ’5—1 for all 2 € R hence for [t] < 1 we have

— 242 2
i t :2(1 cos t) 1_7Tt 21_7r|t|21_|t|'
2 (mt)2 12 12

Observing that both sides of ([19)) are 1-periodic even functions we may assume that 0 < ¢ < 5, SO
that ¢ = ||¢||. By Poisson’s surnmatlon

%HEZZK(%) e(n|lt]) = Y K(N(lt] - s)) = K(N|Jt]]).

SEZL
since for |s| > 1 and N > 2 we have |N(||t]| — s)| > 2(|s| — [|t||) > 1, thus [A((N(HtH —s5))=0. O

1 does not hold for N =1
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4. CORRELATIONS AND DISCRETE FOURIER TRANSFORMS
For any function 1 : Z — C and any d € Z we denote by 19 the function defined by
(20) v € Z, Y9(n) = p(n)(n + d)

and for any function ¢ : Z?> — C and any (dy,d») € Z? we denote by 1)<%:%> the function defined
by

(21) V(ni,no) € Z2, =% (ny,ns) = (ny, na)b(ng + di,n2)¥(n1, ng + do)¥o(ng + di, na + da).

For any function f : N — C and any A € N, let us denote by fy the ¢*-periodic function defined
by

(22> VHE{O,...,qA—l}, VkEZ, fA<n+kq/\):f(n)
The Discrete Fourier Transform of f, is defined for ¢t € R by

L5 ()b ()

0<u<q 0<u<q?

With this definition, the Fourier inversion formula gives for any n € Z:
(21) - ¥ Ate().
0<h<g*
and by Parseval’s formula for any A € N and t € R we have
~ 2 1 )
(25) > |RAe+n| =5 3 IA@P
0<h<g? q 0<u<qgr

For A € N and d € 7Z the function f/{d] defined by is ¢*-periodic function so that for any t € R
we have

i _

Ao =% 3 nwh+ae(-5).
q 0§u<q>‘

Applying the Fourier inversion formula with n = u + d we get for any t € R

= Y Alh+tf(h)e ( hf)

0<h<g? q

which permits to interpret d — ¢~ [d]( t) as the Discrete Fourier Transform of h — j/’:\(h +1) A)\(h)
Apply (25 . ) to the summation over d we obtain for any ¢t € R

~ 21~ |2
(26) = X | EDINIAGI
0<d<g* 0<h<g>
By the Cauchy-Schwarz inequality
1/2 1/2
~ 4 4
5 2 | A+1) > |hm
0<d<g* 0<h<g* 0<h<g*

As for any t € Z, in the summation above h + t reach exactly once each residue class modulo ¢,
thus by periodicity we get

(27) =¥

q 0<d<q?

ol < 3 R

0<h<g?
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Remark 3. By we observe that the upper bound in s attained for t = 0.
Iterating we consider now
a [a] — —
(28) 19 m) = (A1) () = Fa()Ta(n + 0)Fa(n + @) fa(n + a + ).

Applying with f\ replaced by f;b] we get forany b€ Z and t € Z

Ly e[ <k v 2

0<a<g? q 0<a<g? 0<h<g?

4
ab]

0) |

so that for any t € Z

(29) = DY

0<a<qg* 0<b<g?

[a b [a b]

P IPIK

0<b<g* 0<h<g?

_AZZ

0<a<qg* 0<b<g?

5. CARRY PROPERTY
We recall Definition 1 of [26].

Definition 5. A function f : N — U has the carry property if, uniformly for (\, k,p) € N3 with
p < A\, the number of integers 0 < £ < ¢ such that there exists (ky, ko) € {0,...,q¢% — 1}* with

(30) JUG" + ki + k2) f(lg™ + k1) # furp(€q" + ki + k2) furp(lg® + K1)

is at most O(q*=*), where the implied constant may depend only on q and f.

Lemma 12. If f : N — U satisfies Deﬁmtion@ then for (p,v,p) € N* with 2p < v the set £
of (m,n) € {g"1,...,¢" — 1} x {¢"71,...,q¢" — 1} such that there exists k < ¢"™° with f(mn +

k) f(mn) 7£ f,u+2p(mn + k) fu+2p<mn) Satisﬁes
(31) card £ < (logq) ¢"™~*,

where the implied constant may depend only on q and f.
Proof. This is Lemma 8 of [20]. O
Lemma 13. Any strongly g-multiplicative function has the carry property (see Definition () ).

Proof. Let f be a strongly g-multiplicative function and (\, s, p) € N® with p < A. Considering
frtp in , the inequality may occur only by carry propagation when the digits of ¢¢" + ki of
indexes k,...,k+ p—1 are equal to ¢ — 1, 7.e. for integers ¢ with > ¢” least significant digits equal
to g — 1. It follows that f has the carry property. O

6. FOURIER TRANSFORMS OF STRONGLY ¢-MULTIPLICATIVE FUNCTIONS

The main purpose of this section is to prove Proposition [I] and Proposition [2]

Proposition 1. If f is a proper strongly q-multiplicative function, then there exist constants ¢; > 0,
co > 0 such that for all A € N we have

TS

0<b<g* 0<h<g?

By and Proposition |1| we obtain

< g

[b] ‘
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Proposition 2. If f is a proper strongly q-multiplicative function, then there exist constants ¢y > 0,
co > 0 such that for allt € Z and A € N we have

(32) 2 DY

0<a<g* 0<b<g*

[a b < Clq—cg)\

The proof of Proposition [1]is divided into several Lemmas.

Lemma 14. Suppose that b = j mod q (with 0 < j < q). Then

T%):g S HOTTT R e(—htg™) f2T (h)
0<t<q—1—j
F2OY FOTEET =0 el—hta ) A )
q—j<t<qg—1

Proof. We write b = qb’ 4 j and split up the sum over 0 < u < ¢ into ¢ according to the residue
class of u: u = qu'+¢,0 < { < q—1,0 < ' < ¢*1, and use the property fr(gm+7r) = fr_1(m)f(r)
(for 0 <r < q):

Ph) = = ST Alad + Ofa(qu + q/ + 0+ e (—hu'qg D — thg™)

q =0 0<u/<g*~1
1

= i)\ ) Z Hoa() o + ) FOF(+ g) e (—hu'g P V) e (—Lhg™)

(W) Ho W Y+ D FOfC+ 5 —q)e(—hu'qg M) e (—Lhg™)

+
le —_
I M

—

:g S° HOTE+7) e(—htg™) £ (k)
0<(<g—1—j

+§ S HOTETT =) e(—htg™) [ n).
q—j<t<q—1

For any (), h) € N? let us consider

T\(h) = max |fU(h)].

0<b<g?

We have I')(0) = 1 and it follows from Lemma [14] that for all h > 1 we have
(33) Ia(h) < Taoa(h).
Lemma [15] will give a better estimate of I'y(h) in terms of Ty_1 (k) (or Ix_2(h) in the case ¢ = 2).

Lemma 15. If ¢ = 2 then we have

h
cos ,sin —) [y_o(h)

(34) ['\(h) < max ( o
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whereas for ¢ > 3 we have

Ia(h) < max{ max LHFla—g+ V) Fq =) e(—hg™)| +q—2

2<j<q q
e 1L OIS ;) e(=hg )| +q~2 } LB,

Proof. Suppose that ¢ = 2. This implies that f(h) = ¢*2(", where |¢| = 1 and s5(n) denotes the
binary sum-of-digits function. In particular this simplifies the recurrence relation in Lemma [T14}
FOf(C+7) =¢7 and f(Of(E+)—2) =7

If b is even, that is 7 = 0, then we get
1+e(—h27%)

7h 7h

1 (n)) < ‘ . Paca(h) = cos gy | Taca (k) < fcos | Taca(h).
If b is odd then either |b/2] or [b/2] 4+ 1 is even. In both case
I A2 )]+ 1A ()]
A < P
1 1 mh
S (5 + 5 COSF ) F)\,Q(h)

wh wh
< max (0052 o sin? 2—/\> Cy_a(h).
Putting these two estimates together we derive

h h h
coS ™ , COS> ™ sin? L) [y_a(h)

F/\(h‘) S max ( 2A 9\ ) N

which completes the proof of .
If g>3and 0 < j < q—1 then we either have j > 2 or ¢ — 5 > 2. Suppose first that ¢ — j > 2.
Then by Lemma

Af’]w‘ < |1+f(j>f(1)f(j+1);<—hq”)| +tg—j—2
I FOWFG+ 1) e(=hg™)| + g =2
B q

~Tlb/a]] J
A+

AP )

Ty (h).

Similarly if 7 > 2 we obtain

/@(h)‘ - q%j ’@<h)‘ N |1+f(q—j+1)f(1)f(q2j)e(—hq4)! tq—j—2 'f@u(h)‘
N fla—i+ DFWflg—d)e(=hg™)+q -2
a q

and consequently,

F)\(h> S max{ max |1 + f(q _]+ 1)me<_hq—)\)| +q _9

2<j<q q

o L TGFO)TG + 1) e(=hg )|+ -2 } Taca(h)

0<j<g—1 q
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which completes the proof of the lemma. O

Lemma 16. Suppose that ¢ > 2. Then for every strongly q-multiplicative function f there exist
L > 2, a proper subset S C {0,1,...,q— 1}* and a constant ¢ = (q, f, L, S) > 0 such that

—

D) <,

where J(h) denotes the number of sub-blocks of length L in the q-ary expansion of h = Zj‘;& g;(h)

that are not contained in S.

Moreover, the set S can be chosen in a way that all prefixes of length L — 1 from the elements
of S are different.

Proof. If ¢ = 2 let us consider S = {(0,0,0),(0,1,1),(1,0,0),(1,1,1)} C {0,1}3. For any j €
{3,..., A} we have

h _gja(h) | gj-a(h) eo(h)
%~ 2 1 Tty

so that 2 € [£,2] U [2,I] if and only if (gj_1(h),ej—2(h),g;_3(h)) ¢ S and in this case we have

< T
max cos —.
- 8

This gives Lemma [16/in the case ¢ = 2 with ¢’ = —log(cos §)/log2 > 0.

In the case ¢ > 3 the situation is slightly different. In some sense it simplifies because I'y(h)
is directly related with I'y_;(h) (and not with I'y_5(h), see Lemma but on the other hand we
have to be more careful with the values hqg™>.

For 2 < j < qlet a; € [0,1) be defined by e(o;) = f(q¢— 7+ 1)f(1)f(¢— 7). Similarly for
0<j<g—1let § €[0,1) be given by e(8;) = f()f()FG T 1). Set T={a;:2 < j < ghU{B :
0<j<q—1}.

By Lemma |15 we have to specify conditions for A that ensure that hg= is different from (and
even not too close to) a; and 3;. The idea is to cover T with g-adic intervals [mg~*, (m + 1)¢~%)
that we encode with the g-adic digits of m. It is clear that hg=* mod 1 € [mq~ %, (m + 1)¢~ L) if
and only if the digits of m = mg + myq + -+ + mp_1q%"* coincide with the last L digits of h:
mp—j = ex—j(h), 1 < j < L. In particular we can find a collection Z of g-adic intervals with a
sufficiently large (and common) length ¢~ with the following two properties:

7h
2%

. mh
COS s SIHQ—)\

(1) T is contained in the interior of the union of all intervals of Z, where we assume that we
work on the torus, that is, 0 and 1 are identified.

(2) The digit blocks (mq,ms,...,my_1) of length L — 1 corresponding to those m = mg +
miq + -+ - +mp_1q¥~t for which the interval [mq=t, (m + 1)¢~%) is contained in Z are all
different.

Both conditions are very easy to satisfy if the elements of T" are not ¢-adic rational numbers. In
the case of ¢g-adic rational numbers we can increase the value of L in order to satisfy the conditions.

Let 7 be the minimal distance of an element of 1" to the boundary of the union of all intervals
of Z. By the first property it follows that 7 > 0. Furthermore we let S be the set of all g-ary digit
blocks of m for which [mq~=t, (m + 1)¢~) is contained in Z. Now suppose that h < ¢* has the
property that the digit block (ex_r(h),...,ex_1(h)) is not contained in S. Then hg~ mod 1 is not
contained in the union of intervals of Z which implies that

(35) lhg ™ — oyl > 7 and |lhg™* = Byl > 7
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for all (5,7") €{2,...,q—1} x{0,...,q— 2}. Consequently we have

< I1+e(r)+q—2
q

L (h) Ty_1(h).

Of course this implies by induction that
Ta(h) < g7,

with
/ 1 q

= lo > 0.
log ¢ & 1+e(r)|+qg—2

C

0

Remark 4. Note that replacing T by 7/2 we can keep the same L and S in order to obtain
for any slight pertubation of a; and B; (slight pertubation of the strongly q-multiplicative function

f).

Lemma 17. Let J(h), 0 < h < ¢ be a function of the form given in Lemma that is, it counts
the number of blocks of length L in the q-ary expansion of h that are not contained in S, where all
prefizes of length L — 1 from the elements of S are different.

Then for every e > 0 there exist constants n = n(e,q,L,S) > 0 and ¢ = c(e,q,L,S) > 0 such
that

|h < q*:J(h) <el}| <cq™.
Moreovever we have

limn(e) = 0.

e—0

Proof. Let €;(h) denote the j-th binary digit of h. Furthermore for every block B € {0,1,...,q —

11 et
D= X ew
h<g*,(ex—L-1(h),...ex—1(h)=B
Then we have agB)(x) =1 for all B €{0,1,...,q— 1}*71. Now for every block B of length L — 1
let B’ be the prefix of B of length L — 2, that is, B = (B'0(B)), where §(B) denotes the last digit

of B and denote by B” the suffix of B of length L — 2. With the help of this notation we get the
recurrence relations

B c c
dh@= Y d@wre Y @
C:C"=B',(C,5(B))€S C:C"=B',(C,5(B))&S
Iterating this recurrence we obtain

(a1 — a5

(:E)>B€{0,1 ..... q—1}L—1

where the matrix A(z) = (ap,c())p,cefo,1,.q-132-1 is given by

1 if "= B and (C,§(B)) € 5,
apc(x) =< =z if C"=B"and (C,0(B)) € 5,
0 otherwise.
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If # > 0 then A(x) is a positive irreducible matrix. By Perron-Frobenius theory there exists a
unique dominating eigenvalue p(z) of A(x) so that

3 20— 3 o)
B

h<q?,

=(1 - 1)A@™" | :
1
~ D(@)pla)* +0 (pla) )
< E(w)p(x)*™
for some real number v = ~(z) > 0 and certain positive functions D(x) and E(z).
By assumption all prefixes of length L — 1 of elements of S are different. Hence, every row of

A(x) contains at most one 1. This implies that the largest eigenvalue of A(0) is at most 1. Since
the largest eigenvalue is a continuous function in the entries of a matrix it follows that

1 <
(36) Jim p(z) < 1.

Now suppose that 0 < x < 1. Then we have

DR AR S

h<g* h<g*, J(h)<eX
> |{h < ¢ : J(h) < eM}l.

Hence, be choosing © = ¢ we obtain

[{h < ¢*: J(h) <er}| <

[\
je
o
VR
=
o
N~
>

This proves the lemma with

E(e) { 1 p(ﬁ)}
cle) = and ) =max< 0, — log —= 7,
©="0 and 0o orton 2
since (36 implies lim._,o7(e) = 0. O

Lemma 18. Suppose that f is a proper strongly q-multiplicative function. Then there exist con-
stants C, = Cy(q) > 0 and

4
= <
(37) 0<Co=Culfq) < o
such that
(38) IA(@0)] < Crg=@?

uniformly for allt € R and A € N.

Proof. As f is strongly ¢-multiplicative, for any ¢t € R we have

(30) Ao =TI (g S fl)e (‘q—ﬂ)> .

(=1 0<j<q
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If we put (g, ..., as-1) € R? such that f(j) = e(«; ) for j € {0,...,¢— 1} and

Z e(a; — jt)

0<j<q

p(t) =

and if we define v,(f) by

g = max /o(t)p(gt)

it follows from that for any t € R we have

A
‘fA(t)‘ <qg M Jetta < [ elta®D)p(tg ) < gt A2M2u0)
=1 1<0<A/2

so that for any t € R,
‘ ﬁ(t)‘ < P OalD=D+1,

As in [19 (8)], let o,(f) be defined by

o . o o s 2
r(f) =min 3 oy —ay — (i -
0<j<i<q
If o,(f) > 0 it follows from [19, Lemme 8] that v,(f) < 1— maq(f) so that holds with

C7 = q and
16
2a—Dlogg”")
which satisfies by observing that o,(f) < ¢(q — 1)/4.
If o,(f) = 0 it follows from [19, Lemme 1] that ag, a1, ..., o, form an arithmetic progression
modulo 1 (note that ap = 0 mod 1) thus for any integer n we have f(n) = e(ays,(n)). Since f is

proper and s,(n) = n mod ¢ — 1 for any integer n, it follows that (¢ — 1)a; ¢ Z so that we can
apply [19, Lemme 11] to obtain (38) with C} = ¢ and

Al (g — Doy ||?
q(qg+ V2 —1)2logq
which satisfies . O

Cg -

Cg —

Proof of Proposition [1, By applying ) Lemma [16] and (26 @ we have

I ONDY SAZZ

0<a<q* 0<b<q? 0<b<q* 0<h<g?

S )\ Z Z —2c' J(h)

0<b<q* 0<h<g

DI e Dl N TAT
q A A
0<h<g* 0§k<qA

= 5+ 5

[ab

Po|

with ) )
Si= > Y AR B

0<h<g?*, J(h)>eX 0<k<g?
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and

S, = S e Y ‘fA(h + lc)’2 ‘ﬁ(kr) :

0<h<q*, J(R)<eA 0<k<g*

The first sum can be directly estimated:

/ - 2 - 2 /
Si<a S R+ R)] )| =g
0<h,k<g*

For the second sum we apply Lemma for the term ‘ fa(h + k:)) and obtain with the help of
Lemma [

S < Cig 2 Y E:’h

0<h<q?, J(h)<eX 0<k<g*
= Cig 2 {h < ¢ J(h) < el
S Cqu_(2C2_n)>\-

Finally we obtain

(40) 3 Z Z 4 72 £ Cyeqm B0
0<b<g> 0<h<g?

and if we choose £ > 0 such that n(e) < Oy,

(41) c1=cq, f,L,S) =1+ Cse

and

(42) c2 = c2(q, f, L, S) = min{2c, Cy},

this completes the proof of Proposition

In special cases we can be more precise, and in particular if f = e(afy), where @ € R and fj
is an integer valued strongly g-additive function with ged(fo(1),..., fo(¢ — 1)) = 1 we have the
following Proposition.

Proposition 3. If fy is an integer valued strongly q-additive function such that ged(fo(1), ..., fo(q1—
1))=1and f = e(afo), then uniformly for a € R such that djo ¢ Z we have

(43) 2 SDY

2
< Cloq—cglldfoall /og(1/lldoaxll) A
0<a<g* 0<b<g*

First it follows from the proof of Lemma [18| that

[ab

|FA(R)] < g - g e3lalefo)tlila=Dfoal®)A

for some constant ¢z = ¢3(fo,q) > 0. However, by (19) and (20) from [20] we have
ay(afo) + (g = Dfo(Dall* = ealldy

for some constant ¢4 = ¢4(fo,¢q) > 0. Hence we have

(44) |j/7:\(h)| <q q_c5”dfoo‘||2>\

for some constant c5 = ¢5(fo,q) > 0.
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Due to periodicity and symmetry we only have to consider the interval 0 < o < 1/(2dy,). Let
us put

1
2¢ max;{|fo(qg — 7 + 1) — fo(1) — folg — 5)|, 1 fo(G) + fo(1) = fo(j + 1)[}
and start with the case 0 < a < A, which means that a; = a(folq — 7+ 1) — fo(1) — folg — J))

and f; = a;(fo(J )+f0( ) — fo(4 +1)) satisty |a;| <1/(2¢%) and |5;] < 1/(2¢*). We choose L = 2,
S ={(00),(11),...,(¢—1,¢g — 1)} and obtain by Lemma [L§]

A:

fi“(h)' <q .

We have
3™ = g1+ (¢ D),

h<q*

so that, we can take in the proof of Lemma [I7]

1 1+ (g—1
log tlg—1e

E(e) =q, p(e) =1+ (¢ —1)e and 1(e) = e -

By choosing & = cg||ds,||?/log(1/||ds,|) for some cg = c4(q, f) such that n(e) < Co = c5||dyy]|?,
we obtain by the upper bound

(45) o DD

0<b<g> 0<h<2?

4

[b] < qu*07||df0a||2/IOg(l/”dfoa”))\

with some positive constant cg = cs(q, fo).
If A<a<1/(2dy,), then it follows from that we have uniformly

" o
)] < g qrelindin

When « varies in the compact set [A, 1/(2dy,)] it is enough by Remark 4] to consider only finitely
many different L and S in the construction used in the proof of Lemma [16, If we take for ¢; the
maximum over L and S of all the ¢;(q, afy, L, S) defined by and for ¢ the minimum over L

and S of all the ¢3(q, afo, L, S) defined by then we obtain

(46) ) DD

b ~ /7
[ ] < ciq C2A
0<b<g> 0<h<2X

uniformly for a € [A,1/(2dy,)].
Putting together and it follows that

Y X

O<b<qA 0<h<2X

_ 2
< 104 colldgyall®/log(1/lldgyall) A

with some positive constants cg = ¢o(q, fo) and c19 = c10(q, fo) holds uniformly for all « and
Proposition |3 follows from ([29)).
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7. SUMS OF TYPE [

Let
(47) I1<M<N
be integers. Let p; and v be the unique integers such that
(48) ¢" <M < g and ¢"' <N < g
and assume that
(49) pn < &ip + 1)
where
(50) 0<&<1/3
will be fixed in .
Similarly let ps and v5 be the unique integers such that
(51) ¢ <M< g and ¢! <N <gp

and assume that

(52) o < &i(po + ).

For any v € R, any interval I(M,N) C [@,M N], f and g two strongly g-multiplicative
functions we consider

Sr(v) = Z Z f(mn)g(mn)e(Imn)| .

M n
T <m=M | pner(M,N)

Proposition 4. For any integers M and N satisfying , , , and we have
uniformly for 9 € R

(53) S(9) < (log MN)z(@)+3e(@) (N N)I-olae)
for some explicit o(q1,q2) > 0.
Proof. By Cauchy-Schwarz

STUESIEDS Flmn)g(mn) e(dmn) |

and by Lemma [f], for any integers

(54) R>1
and N
L >
iy 4 )
we have

reZ M <M
where K is the Fourier transform of the Fejer kernel defined by and
Sra(r,m, A, B) = Z f(mn +mr) f(mn)g(mn + mr)g(mn).

A<n<B
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Let D > 0 be a parameter to be chosen later (in (62))) which will represent a margin in the carry
propagation and let d; and d, be the unique integers such that
q‘fl_l <D< q ! and qé2 <D< q‘QSQ.

Combining Lemma and Lemma , applied to f (with (i1, v1,d1) in place of (u, v, p)) and to g
(with (u2, 1o, 02) in place of (u, v, p)), for

(55) @' < MRD < ¢
and
(56) ' < MRD < ¢

we can replace f by fy, and g by gy, in S;; introducing an admissible error term O(M?N?/D).
We obtain

M?N?
(57) S <<—ZK< ) Y Sua(rm |5+ L[5 + L) e@mr) + MPR? + =——
rel M<m<M
with
Sra(r,m, A, B) Z o, (mn + mr) fr, (mn) gy, (mn + mr) gy, (mn).
A<n<B
Observing that n — fy, (mn 4+ mr) fx, (mn)gx, (mn + mr) gy, (mn) is periodic of period ¢}"¢y* we
choose
7N A1 s
L= [W—‘ 417437,
so that
Spa(rom, [ Z]+1,[§]+L) = —4q Sra(r,m,0,q ¢y — 1)
Smce n runs over all residue classes modulo q1 q2 and ged(qr,q2) = 1, we may replace n by

n1gy? + nagyt with 0 < ny < ¢ and 0 < ny < ¢32. Thus by periodicity
Satrm 0.0 1) = 3 fulmmamr) fumma?) S ga(mnag +mr)g (mnagl),
O§n1<q1\1 O§n2<q§\2
and again since ged(qq, g2) = 1,
Spalr,m, 0,13 =1) = > fr(mny+mr)fi,(mny) D ga,(mna + mr)gy, (mny).
0<ni<q;! 0<na<qy?

We apply Cauchy-Schwarz as follows:
yx (sl ery)) < (Txaly ) (TTas

ni no
~ 1/2 1/2
with A, = R"'K (r/R). Observing that {f-‘ < (1 + %) <1 + %) it suffice to esti-
a1 93 @ 92

marte

o\ 1/2 o\ 1/2

2

(58) (1 i qi) SRS S oty +me oG

rek ™ |o<ni<ayt
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and

(59) (1 + ]2\;2) }%Zf( (%) Z Z gro (mng +mr)gx, (mno)

ds
re€L ™ 10<ng <<12A2

We will focus on (58)) (the case of is similar).
Writing m = dym/ with ged(m’, ¢}*) = 1 and observing that for any u € Z, ny — fi, (dym/ni +u)

A1
. ql . .
is I—perlodlc, we get

( %£)§: CYRE) S | X Suldimm + don's) o)

dll reZ /<M/d1 >‘1
d1<M ged(m ’,qi\l) 1 0<n1<—

By Fourier inversion the inner sum over n; is equal to

DD IND SN OATEIN G Cealiy )

q
qll O<h<q11 0<I<:<q 1

0<ni<

Since ged(m/, ¢;') = 1 we may replace h by hm/ and k by km’ where m’'m/ = 1 mod ¢}, and this
gives

> X oy Exm%ﬂiah—kﬁme(@ﬂ@;¥@ﬁ),

q
A1 < A1 <
0< <CI] 0 /L<q 0 k‘<q

which is equal to

Z Z f/\l(hn?)f/\\l((h e (%f) |

4
0<h<q1 k=0 mod 4

A
Writing h = b/ + E% we obtain

~ o~~~ [(Wdir
Z Z Z f/\l (h’m —|—€m )fh (h’m’—l—fm’% _ k’m’%) e( )\1 ) 7

1 0<E<dy 0<K/ <dy 1 1 @
0<h/< 1

and if we put ¢/ = ¢ — k' by periodicity we get for the estimate

(1+2_A) o Z >

dl\ m <M/d1
d1<M ged(m ,q1 H=1

2
1 ~ /T —~ q h/dﬂ’
= K<_> Z > fAl( m’+€’m’1>|e( N
R reZ B — S lose<ds dy q’
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By we have [A((T/R) < K(r/2R) and expanding the square, permits to obtain
2
A1
~ (1=
CFOLI D o DR R )

d1 | ’<M/d1 >‘1 0<t/ <dy
d1<M ged(m’ g3 1)=1"° <

2
S f h"w?w'ﬁﬁ .
1 d]_

0<0" <dy

~ d
Y K (QRH(h” — W)
A a4
0<h <

The last sum over h” is equal to

> K <2R
>\1
—W <R <—h/+ T

~ d,
h// Tl

1

)

)\
is - perlodlc and since f>\1 is q1 -periodic, we observe that

>\1 1 !
, ” / _ —~ Py S " A_;ql
E f,\l(hm+(h d)erf d1>_ g f,\1<hm+hm+(€ +1)m—d)

0<0<d; 1 0<0<dy 1

1
= > I (hm + B+ )
4

0<t"<dy

2
> I (h’m’—i—h”m’—i—é”m’%)‘ .

0<t"<dy 1

The function A" — ‘

ndi
q1

ql——perlodlc in 7. We deduce that the sum over h” may be written

2
5 i (ot e
dy

04" <dy

so that this quantity is

dy
E K<2Rh” )
A1 )\1 ql

ql <h"_

)

2d

which by Cauchy-Schwarz (for the sum over ¢”) and interverting the summations is at most

(60) d Y > K(2Rh” ) 2

O<€”<d1 q>\1

1 BT < ql
<h <347

dy

f)\l (h/m +h//m +£”qu )

~ ~ A1
As the support of K is [—1,1] (see (L7)) the length of the summation over A" is < 1+ Iq%l <gh "
where p/ = p — 2 and p € N is defined by

(61) q{H <R<q.

As f is strongly ¢;-multiplicative, by (39) and Lemma |18 we obtain for any t € R,
— >\ —
B )] = [ A ]fp (t ™) <™ [Fm ).

Since 0 < K <1, the sum is at most

— N2
20! —2C
Bmax S |F (0| € g max S ,\fM (0 mym?) | = i,
0<h<g) ™" 0<h<g)1™"
where the last equality is obtained by , observing that since gcd(% qi\l ’ ) = 1, in the last

. A —p
sum hm’ runs over a complete set of residues modulo ¢;' " .
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Therefore again by Cauchy-Schwarz (for the sum over ¢') we obtain that is bounded by

q1—202p (1+2_A) 221 Z dl y max Z dy Z
1

meL S 0sU<d
ged(m’,q11)=1 0<h/ <

d1<M
—~ 2
<<q12CQPM(2/\1 —|—N Z d2 Z ‘f)\l(h)‘ 7
dy gt 0<h<q!
di1<M

and finally by and is
< R72%M? (M?R?D? + N) 7(¢").

We choose

(62) D =N’

with 0 < § < 1/6 and

(63) R=|N"M'D™
with

(64) M < N27°

so that is satisfied. Assuming also

(65) M < (NY2M~1p~1)Ce/2,

we obtain that is
< R“MN7(q) < R-EMN X 7(q).
The condition (65) is ensured if

i (H(S—a) %) < (i1 + ) (1—5> (/;2

which is the case if is restricted to
(1—20)Cy

(66) V<< Eowa

It follows from and (66) that & < ; (which implies (50))), so that p; <

— >\1
A m’ +
f ) <h/ El )
d1

(1 + 1) which

implies that 3,u1 < v and M < N3 < N279 50 that holds. Since 2 —§ >0, M < (MN)'/4

and N > (M N)** we have

Co | 36CH

RO <« (MN) TG0 = (M N) =+

so that finally is

< (MN)= 8069 (165 M NY@) 7(g,).
In the same way is

< (MN)'= 52069 (log MN)“@) 7(gy).
It follows from that

C s C s
)27 2 (f ‘H);’é 2(9,92) (1765) (

S?(9) < (MN

log MN)%w(ql)Jr%w(qz) + M2R% +

M?*N?
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By (63), M?R* < ND2 = N2 < (MN)'=% and N — M°N* < ()[N)2~F Choosing
Co(f,q1) + C2(Q7 "y

"= 6@t Glfoa) + Colr )
we obtain (H3)) with (g, ¢2) = %5. O
8. SuMS OF TYPE II
Let
(67) I1<M<N
be integers. Let u; and vy be the unique integers such that
(68) ¢S M< g™ and ¢T'<N <
and assume that
(69) &l + 1) < < 3+ 1)

where & satisfies .

Similarly let po and 5 be the unique integers such that

(70) G <M <gh? and ¢! <N < g
and assume that
(71) (2 + 12) < o < 5(pp + 1),

We assume also that the multiplicative dependence of the variables in the type II sums has been
removed by the classical method described (for example) in section 5 of [25].

For any ¥ € R, (am)men and (b,)nen two sequences of complex numbers of modulus at most 1
and f and g two strongly g-multiplicative functions we consider

Sr(9) = Z Z by f(mn)g(mn) e(Imn).

M<m<M ﬂ<n<N

Proposition 5. For any integers M and N satisfying ., . , , we have uniformly

for (am)men and (by)nen two sequences of complex numbers of modulus at most 1 and ¥ € R

log(MN) )

(72) |S11(¥)| < MN exp (—C Tog log (M V)
for some explicit constant C = C(f, g,&1,&) > 0.

As often in this approach, getting an upper bound for the sums of type II is the most difficult
part. The proof is quite long and complicated and will be developped over several sections and
completed at formula . By the Cauchy-Schwarz inequality we have

1S (9] < M Z Z b, f(mn)g(mn)e(Imn)

M<m§M %<n§N
Let Ry be an integer to be defined later (by (92))) such that
(73) 1< Ry < N.

Applying Lemma {4 to the summation over n with £ = 1 and then summing over m we get

M?2N? MN o
1S (9)]? < + (1 - —> R(S1(ro)),
Ry Ry 1§;R0 Ry
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with

Z Z Do On f (M + mrg) f(mn) g(mn 4+ mrg)g(mn) e(Imrg).

M am<M & <n<N-ro

Let p; and ps be the unique integers such that

(74) ¢ < Ry<qf' and ¢ < Ry < ¥
and
(75) paz = p1+2p1 and  pieg = po + 2ps.

If f and g have the carry property explained in Definition [5 then by Lemma [12] the number
of (m,n) for which f(mn + mro)f(mn) # fu.,(mn +mrg)fu,(mn) is O(MN/Ry), and similarly

the number of (m,n) for which g(mn+mro)g(mn) # g,,,(mn+mrg)g,,,(mn) is also O(MN/Ry).
Hence

Sl(To) = Si(?"o) + O(MN/R()),
where
S/ TO Z Z bn—l—?"oaf#lz (mn + mro)f/ilz (mn)g#m (mn + mro)gum (mn) e<79mro)’
f<m§M <n<N-—rg

Using the Cauchy-Schwarz inequality, this leads to
M*N*  MZ?N? 2
R2 + R2 Ry Z ‘Si(f‘o)‘ :
0 0

1<ro<Ro

(76) S (9)]* <

We reverse the order of summation in S7(r¢) and obtain:

’Si (TO) | < Z Z f,ulz (mn + mrU)f,ulz (mn)guzz (mn + TTLT())gMQ (mn) e(ﬂm’ro) .

J<n<N-ro | <m<Mm

We may extend the summation over n to (N/2, N] and apply the Cauchy-Schwarz inequality:
2

’Si (TU) ’2 <N Z Z f,ulz (mn + mro)f,ulz (mn)g#m (mn + mro)guzz (mn) e(ﬁmro)

Nan<N | <m<m

Applying to the summation over m the Lemma {4 with positive integers k = ¢{"' and R; such that

(77) M< @R < M

and then summing over n and rq we get
1 2 n\72

(78) 7 D Si0)f < =+ MN R(S),
0 1<ro<Ro !

with

2

ROR1 Z Z (1——) e(q{™ror9) Sh(ro,r1)

1<ro<Rop 1<ri<Ri1

m
55(7’0,7”1) _ Z Z 1<q111r1,ro><m7n>
r1

%<n§N M/2<m§M—qf11

and

using notation with
Uy (m, n) = f,u12 (mn> Gpaz (mn)
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Using and we obtain uniformly for ¥ € R:

4 4 4 4 3 3
(79) S < 2 M M s s g

+ + 5(70,71)
2 )
R Ry Rolty 1<ro<Ro 1<ri<Ri
Using the Cauchy-Schwarz inequality we get
MBN®  MBN® M 6 NG
(80) OIS r TR T RR RoRy > > [Sh(ro,m)]

1<ro<Ro 1<ri<Ri1

We have

"
1Sy(ro, )P < NN 3 ST () )

N <n<N |M/2<m<M—q{*'ry

and applying to the summation over m the Lemma |4 I with positive integers k = ¢4*' and Ry such
that

(81) M < ¢y Ry < M
we obtain
M?N? MN T9
S5 (ro,m)|° < + RO (1 - —)
Ry Ry 1<ra<Ro R
Z Z 1<Q§L11r1,7"0>(m_’_q5217,2, ) 1<f1f11r1,r0>(m7n)‘

%<n§N M/2<m§M—qfll'r1—qg21 ro

Writing fu, = fui fuinme @04 Guay = Guoy Guor s> Using the periodicity and then summing over r
and r; we get

M2N2
82 T'() 7“1 << Sg To, 71,72
8 pr 3 Y IS e 2D DD DD DI A oS
1<T‘0<R0 1<7‘1<R1 1<T0<R0 1§7‘1<R1 1§7‘2<R2
with
H11 H11
- <qy " T1,70> 21 <gy " T1,m0>
SS(TO>T1ar2) - § E % (m +qy7 T2, ) 2 (m7n)7

—<n<N M/2<m<M— qHll qgmrg

using notation (21f) with

¢2(m7 n) - fu11,u12 (mn) Gpo1,p22 (mn)
For i € {1,2}, we filter the variables in the expressions f,, ,,,(.) (for i = 1) and gy, 4., (.) (for
i = 2) in terms of variables vy, vi2, w1, W2, w3, Uy (We denote by 7 the permutation on {1,2}
exchanging 1 and 2) as follows:

Tzn = U'Ll mod qHZZ :uzl 0 < U@l < qllf7,2 H'Ll
riro = Vg mod ¢t 0 < vy < iR
mn = uzqu’/zl _|_ W; il mod ql"/z2 0 < Uzl < qM12 le 0 < wz]_ < q,ule
( + ) — il + d Mz2 0 < < Hi2— le 0 < < ,uu
mn —+ 7o) = Ui2g; W2 Mod g; Uiz < q; Wiz < q;
rT(l)qu ( ) = uzgq:’/zl _|_ W; i3 mod quz2 0 < U13 < qM12 /1/11 0 < wzd < q,ule

TGy = i@ + wig mod @', 0 <y < @0 < wyy < ¢
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with auxiliary variables w1, wj2, w3, w;y (which do not influence the corresponding values of

fﬂllaﬂ12(') a’nd gN217M22('))' USlng Wlth

_ M11—p12 _ H21—p22
(83) a1 =q ) Q2 = (5 )

since f is strongly g;-multiplicative and g is strongly go-multiplicative, using notation (28) we can
write

S3<T07T17T2> - Z Z Z Z

u11,%12,413,U14 V11,012 U21,U22,U23,U24 V21,V22

[v11+v12,u13+U14] [v11,u14] [uaz+uaq,v21 +v22] W
f#12—,u11 (u ) f/.tlg—pll (u11> G199 — o1 (u22) oo o (u21)
Z Z 1r1n5v11 mod g2 711 17617"051,12 mod ¢/12 711

%<n§N M/2<m§M—q’f11T1 —q'ng’r‘g

mn Ui m(n + o) U2
X niz _ Xou - —
H12—H11 12 H12—H11
a1 1 a;

0

(T2T0€I§L2l U13 ) (7’27161521 U14 )

Xay qu? q{uz*ull Xa QiLm qiiu*#ll
ron=va1 mod gy 22~ #21 1r2r05v22 mod ¢h22 21

(mn Uy ) (m(n +79) Ugo )
Xaz qé@? q/2122—u21 Xaz qg22 q522—,u21

(TlToq/f“ U23 ) (Tlmﬁm U24 )
Xao q522 qggg—ugl Xasz q522 q522*#21 :

Let
— —
F(h,a,b) = fi, (), Glhya,b) =gl (h).

We observe that F' and G satisfy for all (a,b) € Z*:

> |F(hab) =1, > G(ha b)) =1,

0§h<q§‘127:"'11 0§h<q£“227”’21

and for all (h,a,b) € Z3:

1 if h =0 mod g2 1,
F(h,a,0) = F(h,0,b) = { 0 otherwise B

1 if h =0 mod gk,
G(h,a,0) = G(h,0,b) = { 0 otherwise. B

Applying Lemma to Ss(ro,r1,72) (we have d = 6) we obtain by
(84) Ss(ro,71,72) = Sa(ro, 71, 72) + O(Es(ro,71,72))

with, for any integer H > 1,
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54(7'0771177"2) = Z ahu(alaH>ah12(a17H)ah14(a17H)
hi1,h12,h14

Z (haoy (052, H)ahm (OQ? H)ah24 (an H)
ha1,h22,h24

g Y Se(omm) %

0<k11<q“12 K11 V11 H12—H11

v12=7170 mod q;

Sy (7"27“0(12 g ) S e (_ higuiy )
al H12 H12— 11 H12—H11
5l 5l

u13 U4 il

Qf(um_“n)F(hm, U11 + V12, Wiz + tia) F(—har, vin, wig)

g Y Ye(zEE) %

0<k21<q“22 K21 V21 H22 —H21

v22=r210 Mod g5

riroq)" Uss hastog
Z XQQ ( q§22 o quzz/tm) Z € (_ N22/¢21>

u23 2 u24 7

G543 ) G (hay, Vo1 + vz, s + tna) G(—har, Vo, Uza)

2 2.

M/2<m<M-— q“llqugmrz %<n§N

. ((h11 + hig)mn + hiamrg + higrangh® + k’llrlnq’f“>

H12
q1

o ((h21 + hgz)mn + hQQmTO + h24r1an“ -+ k21r2nq§‘21 )

122
ds

and

3(pu12—p11) 3(pe2—po1)

E4(7“0,7‘1,7"2) == HQ62 Z Z

[h11],|h12], \h14|<Hq“11_H12 |ho1l,|haal,|hoa| < Hgh?' ~#22

S Y (e
Xon 512 H12—pH11

KH12—H11 u13 gl

V12=T1T0 mod q

S Y (M
Xaz 522 22 —pH21

K22 —H21 U23 D)

v22=7270 Mod gy

2. 2. 2.

(811,012,014,021,022,024)€{0,1}° M/2<m<M—qi 1 r1—gh? ry F<n<N
(011,012,014,621,022,624)7#(0,...,0)

Z ron=ve1 mod gh22 " "21 Z rarg=ves mod gh22 " H21

V11 v21
011h11 + d12h12)q “12 Mrimn + 512}112(]“12 Mrmrg + 514h14qM12 hrongh®
o 2
H12
q1

H22

o ((521h21 + 522h22) 12272 + 522]12261#22 “2177””"0 + 524h24qu22 “217“17%1{“1)
qs .
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8.1. Estimate of FE,(rg,r1,72). Observing that in Ey(rg,71,72) there is only one contributing
value for vi9, V99, V11, V21, u13 and us3 wWe can write:

3(p12—p11) 3(po2—po1)

Ey(ro,m1,72) _4 Hq62 Z Z

|R1t]s|hazl, | hia| SH G TH12 (ot || oo, hoa | < H gy 2t~ H22

2 2 2

(011,012,014,021,022,024)€{0,1}° M/2<m<M—g} 11 r1—gh? ry K <n<N
(911,012,014,021,022,024)#(0,...,0)

((511h11 + d12h12)mn + d1ohiamry + O14h14rangh™ )

£l
91

o ((521h21 + daghag)mmn + daghaamrg + daghogring)™ )

H21

qs

Let Eyo(ro,r1,72) be the contribution of the terms for which (d11, d12, 021, d22) = (0,0,0,0), and
E41(ro,71,72) be the contribution of the terms for which (81, d12, da1, d22) # (0,0,0,0).
In Ey(ro,m1,72) we have (14, d24) € {(1,1),(1,0),(0,1)} so that

qi’/IQ N11q522 H21 qMIQ_Mll qMZQ_//’/Ql
2 Eaoi(r1,72) + M= 17 Eaoa(r1,72) + M=

where Fyo1(71,72), Fa02(r1,72) and Ey3(ry, 2), defined below, can be estimated by Lemma :

h H21 h Hn11 —1
Bl = Y S i (N, o (P e )

M1l H21
|h14‘§Hqi‘11*l"12 |h24‘§Hq;"21*l"22

Ey(ro,r1,m2) < M Eyo3(r1,72),

q1 ds

< ) (ged(rmgh™, )N + ¢h* log ¢b*)

|h14‘§Hqi"11*N12

<< Hq/fll_/JdZ (ng<T1q/fll7 q521)N + q521 log q/i21) ,

H21
7rh14r2q

sin
H11
q1

E402<7’1, 7”2) = Z min (N,

‘h14|SHq/"‘117“12

)
)

Since ged(q1, ¢2) = 1, ¢ < M < N and ¢4*' < M < N (by (67))), using we get uniformly for
o € {1,,R0—1}

R'Ry! Z Z Eyo(ro,7m1,72)

1<T‘1 <R1 1<T2<R2
M12—H11

q1

< (ged(ragy™, i N + g1 log i)

and
11
mhoar 191

sin
H21
'p)

E403<7’1, 7’2) = Z min (N,

‘h24|SHq/"‘217“22

< (ged(mar™, @™ )N + ¢;* log ™) -
1 2

H22— 21

(r(qi™) +log gf"") + MNE—

< MN ( ( #21)+10gqu21).
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We may estimate Ey(ro,71,72) by
3(#12—#11)q3(lt22—lt21)

4 H62 Z Z

|h11],|hial,|h1a| SHG M TH12 |hoy |, | hool,|hoa| <Hgh?' ~#22

2. 2

(611,012,014,021,022,0624)€{0,1}% M/2<m<M—¢} 1 r1 —gh?'ry
(611,012,021,022)#(0,0,0,0)

min (N sin 7 ((511h11 + O12h12)m + S14h14T2gh™! (521h21 + 890hgo )M + Soghoyri i )

M11 H21
The contribution of the terms for which d;; = 1 is estimated by
1)

a1 43
qulz—un
1T Z rggéc Z min [ N,

M/2<m<M qH11 q521T2 ‘h11|§qufll*H12

)

. hiym
s o TP
0

which by Lemma [7]is at most

M12—H11

q
— > (ged(m, ¢ )N + ¢ log ¢i™)

M/2<m<M-— qMll q521r2

and by (15), since by (67) we have ¢{"" < M < N and ¢5* < M < N, we obtain uniformly over
To, T1, T2 that the contribution of the terms for which d;; = 1 is estimated by

M12—H11

< MNT—— (r(gf™) +log gi™)

We may argue similarly if 615 = 1, if d9; = 1 and if d95 = 1. Therefore we obtain

q,u12 H11 qﬂ22 H21
: (T(g™) +log gi"") + MN =

Eq(ro,r1,re) < MN (7(g5*") +log ¢4™") ,

and finally, uniformly for ro € {1,..., Ry — 1}:

RU'RyY > > Eulro,rira)

1<ri<R; 1<re<R2
H12—p11 H22—H21

<« MNT—— (r(q}™) +log ¢f") + MNE

((g5™") +log ¢,™')
which, if we choose

(85) H = Rimax(Ry, R,),

by , , gives

(86) RI'Ry' Y ) Eu(ro,ri.mo)

1<r1<Ri 1<r2<Ra

< MNR;' (14 p11)*“) +log ™ + (1 + p21)“®) + log ') .



32 MICHAEL DRMOTA, CHRISTIAN MAUDUIT, AND JOEL RIVAT

8.2. Estimate of Sy(rg,71,72)-

Sa(ro,r1,m2) < 27" > min(ay, |hn|™h) min(ay, [hio] ) min(an, [l )

hi1,hi2,h14
¢ Y " min(ag, [ha| ) min(ag, |hee| ) min(as, [hay| )
ha1,ho2,h24
Z <r27“0q§21 U13 ) Z
Xai qi'd? Qitm_ﬂn

V12=T1T0 mod q/f‘lQ_Hll

Z Z |F(h12, V11 + V12, U13 + U14) F(_hlh V11, U14)|

u13

ul4 V11
H11
T1Toqy U23
ZXO‘? q#22 q#22—#21 z :
u23 2 2 22— H21

v22=7270 mod gy

Z Z |G(h22, Va1 + Vo2, Ug3 + U24) G(_h217 Vo1, U24)|

u24 V21
M/2<m<M—g{" " r1—qgh? ro %<n

0<k11 <g!12 711 0<ky, <gh227H21

o ((hn + hlg)mn -+ hlngo + h14r2nq§21 + ku’f’lanll

H12
a1

o ((hm + hog)mn + hogmrg + hogring)™ + koirangy™

122
ds

\/v‘é

By Cauchy-Schwarz and Proposition [2| we have uniformly for u;3 and v;s:

(87) Z Z |F'(hi2, 011 + V12, U13 + u1a) F(hag, vin, uig)]

V11 U14

1/2 1/2
< (Z Z |F'(h12, v11 + V12, u13 + U14)|2> (Z Z |F(hi2, v11, u14)\2>

V11 U14 Vi1 U4

< (f) q;02(f)(/t12*u11)

Y

and uniformly for usz and wvqs, similarly:

Z Z |G(h22, Vg1 + Vg2, Ug3z + U24) G(h22, Va1, U24)| < 01(9) CI2_62(9)(M22_M21)-

V21 U24

Furthermore by

H11

H21
Z 27005 U13 _ 1= 17041 U23
X (]?12 piz—p11 | T z :Xa? H22 paz—p21 |

s 4 s b ds
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Observing that the summations over v, and vyy take each only one value, this gives

Sa(ro,r1,7m2) < ea(f)gs' 2T N min(ay, [y |7 min(ag, [hie| ) min(ag, [l )

h11,h12,h14
C1 (9)@51762(9))(M227#21) Z min(az, ‘hzlrl) min(az, ’h22’71) min(a, ‘h24‘71)
ha1,h22,h24

2. 2

ngll<q/i“127:u'11 ng21<q5227:u'21

Z Z o <(h11 + h12)mn -+ hlngQ + h147"2nq521 + knrlnq’f”)

Hi12
M/2<m<M—g{ " r1—gh? ry Z<n<N

a7
o ((h21 + hgg)mn + hQQmTQ + h24r1nq§“1 + kglrgnqém)

122 ’

’p)

and by @ we get

Si(ro, 11,73) e (f) gft e rzmr) Z min(ay, [hyy| ™) min(ay, [hy| ™) min(ay, [hig| )
hii,hi2,h14

c1(9) qglicQ(g))(MTWI) Z min(az, |h21’71) min (o, ’h22‘71) min(az, ‘h24’71)

ha1,h22,h24

2. 2 2

ng11<q§t12*u11 O§k21<q5227”21 M/2<M§qulfll7“17q521r2

h h h h h H21 h H11
min (N, Sin7r<< 11 + a2 21 + 22>m+ 147245 n 24T1q}

H12 H22 H12 H22
0 q> 0 )

1)
Let us write
(88) Sy(ro,71,72) K Ss0(ro, 71, 72) + S41(r0, 71, 72)

where Syo(ro, 71,72) denotes the contribution in the right hand side above of the terms for which
hi1 + hia = hoy + hos = 0 and Sy (79,71, 72) denotes the contribution of the remaining terms.

H12—pH11 H22—H21

ky17m1 ka1mo
¢ qs

8.3. Diagonal part.
We handle here Sy(r9,71,72) for which hyy + hig = hoy + hee = 0. We have

540(7’0, 7"177“2) <<01(f) Q%licQ(f))(mrun) Z min(CYl, \h12|71)2 miﬂ(@b ‘h14!71)
hi2,h14

61(9) qélftZz(g))(Mzz*uzl) Z min(ag,\hm]—l)Q min(a2,|hg4]_1)
ha2,h24

M Sin (7”1; 9, hia, h24)7

where Syo1(71, 72, hi1s, hag) is equal to

> > min (N,

OSk11<qi‘12_Hll O§k21<q522_”21

H22

h M21 k M11 h M11 k, 21
sinﬁ( 147245 :2 117141 n 24T1q1 + K2172Q5 )
q1 qs

)
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Since ged (g1, g2) = 1, by Lemma |8 we have uniformly in hyy and hay:
8401 (Tla T, h14, h24) < Nng(?“l, qitm—#u) ng(TQ, q§t22—u21) + qitlz—unqgm—#m 10g (qitu—ltqum—uzl)

By (7). (81). (75).(74) we have ¢{"*™""* < R3R; and ¢,** "*' < RZR, and if we assume that

4
(89) R¢R\Ry < N5

then
Sa01(r1, 72, h1a, hog) < N ged(ry, ¢ "") ged(rq, gh> ).

Since

Z (min(ay, |h12|_1>)2 < ag; Zmin(al, lhia| ™) < 1+ 1log H,
h12 h14

Z (min(as, \h22|_1))2 < a; Zmin(o@, |hoa) ") < 1+ log H,

h22 h24

this leads to
5'40(7“0,7“1,7“2) < qgl—cz(f))(um—un)qgl—cz(g))(um—um)alaQ(1 +log H)2
MN ged(ry, ¢ ") ged(ra, ¢ 71),
which by and gives uniformly for ro € {1,..., Ry — 1}:
(90) Ry'Ry! Z Z Sao(r0,71,72)

1<ri1 <Ry 1<ra< Ry

< MNP e i) (14 Jog YR (gf 0 ) (gh ),

Remark 5. The existence of two conditions (h1; + h12 = 0 and hoy + hey = 0) in this diagonal

part provided the factor ayag which was crucial to permit to eliminate the factor ¢ "¢y~

and get a satisfactory upper bound.

8.4. Non diagonal part.

We handle here Sy (rg,71,72) for which hyjy + his # 0 or hgy + hoe # 0. After making the
summation over n and extending the summation over m (in order to remove its dependence on r4
and 15), we apply Lemma . We distinguish three cases:

o if hyy + his # 0 and hoy + hes = 0, by Lemma m, remembering that M R2 =< ¢/"?, uniformly

@
< N ged (hay + hag, i) + ¢ log ¢i**
< HN + MRZlog(MN).
o if hy; + hio = 0 and hoy + hos # 0, by Lemma m remembering that M R2 =< ¢4, uniformly

q522
< N ged (hoy + hag, ¢4%°) + ¢4 log ¢h*
< HN + MR:log(MN).

> min (N,

M/2<m<M

> min (N,

M/2<m<M
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6 = 112 122
By [32, Corollary 9.22] (see also [0, p. 30]) there exist an absolute constant C' > 0 such
for some C; > 0 depending only on ¢; and ¢s, so that by

ay P
By (10), uniformly for ¢ € R, we get the estimate
that
‘_hll — s —pa2 p22
1€]] = |ha1 + haz| g5 *** exp (—C1 log log (M N) log(2H))
> MRy %exp (—C) loglog(MN)log(2H)) .

h h h h
Z min (N, sin (( 1 :2 2y 2—22 22) m—i—go)
1 a3
-1
ho1 + has b '
Since ||€|| < 4H/M, this leads to
_1>

o if hyy + hiz # 0 and hay + hag # 0, in order to apply Lemma [6] we introduce
M/2<m<M
> exp (—C'log ¢ log qo log max(fu12, p122) log max(|hi1 + haa| , [hor + hasl))
h h h h
Z min <N, sin (( 11 :2 12 ha 2‘22 22) m—l—go)
< MR exp (C loglog(MN)log(2H)) log(MN) + HN + M log(MN).

hir 4+ hia hoy + ha
_1>
< [l€l™ log I~ 4+ N + MN [¢]| + Mlog ||¢]| ™" .
> exp (—C loglog(MN)log(2H))
M/2<m<M ! 2

It follows that

Sui(ro,m1,7r2) <Lca(f) Q?_CQU))(MU_HH) Z min(ay, |h11|71) min (o, ’h12|71) min(ay, |hy| )
hi1,h12,h14

ci(g) gD N min(ay, [ho |7 min(as, [hes] ") min(ag, [ha| )
hat,ha2,h2q
(MR} exp (Cy loglog(M N)log(2H)) log(MN) + HN + M log(MN)) ,
and by , , ,
(91)  Sui(ro,m1,7m9) <er(f) ei(g) Ry Ry Ry (1+1log H)®
(MR} exp (Cy loglog(MN) log(2H)) log(MN) + HN + M log(MN)) .

If we choose

log(MN)
2 =
(92) Ro = exp <21 Ch loglog(MN)) ’
(93) R, = R,
and
(94) Ry = Ry,

the conditions , , and are satisfied and by we have
H =R},
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and log( )
og(MN
log H = .
%85 = 3¢ Tlog log(MN)
It follows from (91)) that
log(MN) 1
M(MN)Y? 4+ N+ M) .
9)  Sulnrr) <elh) alge (e S ) (IO 4N + )

8.5. Completion of the estimate of the sums of type II.
By (89), and we conclude that

(96) Rl_lel Z Z 54(7“0,7‘1,7“2)

1<r1<R1 1<r2<R2

< Mgy 200 g2 O0r) (1 log F)2r (g )7(gf )

log(MN)
+c1(f) ei(g) exp (01 log log(M N)
By (B0). (82) we have

1Srr(9)° <.

> (M(MN)Y*+ N+ M).

M8N®  MSN®  MBN®
rRTTR TR

TN
+}é\jRiVR2 Z Z Z S5(ro, 71, 72)]

1<ro<Ro 1<r1<R1 1<ra<R2
and it follows from and that
MEN®  MEN®  MBN®
4 + 2 +
+ M8N8q1—02(f)(Mlz—Mn)qgcz(g)(uzz—uzl)(1 + log H)ZT(q;luz—uu)T(quz—MM)

log(MN)
+a(f)elg) exp ((11 log log(MN)

observing by and that (MN)& < M < (MN)2 we obtain
MBEN®  MSN®  MENS
rRTTR TR
+ M8N8q1—02(f)(um—u11)q2—02(9)(u22—#21)(1 + log H)QT(qf”_“”)T(qgm_“m)
log(MN)
Falfalgexp <Cl log log(MN)
with & satisfying (66]), which gives (72).

9. PROOF OF THEOREMS [I], 2] AND [3]

1S (9)[* <

) MBN® (M(MN)™# + M~' + N7,

(97) 1S1(9)]° <

) (MN)S—min(é,fl)’

By Proposition [] we have uniformly for ¢ € R
S1(1) < (log MN)z<@)+30(@) (pfN)l-olanae)
and by Proposition [5| we have uniformly for ¢ € R

|S11(¥)] < M N exp (—C M)

log log(M N)
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so that applying [25, Lemma 1], or its analogue in the case of p obtained using (13.40) instead of
(13.39) from [13] we obtain uniformly for ¢ € R

ME;LIAOOfOUQOUe@M)<<xem)(_cﬁg%é;)

and

ST un) F(m)g(n) e(on)| < wexp (—L) |

x/4<n<w IOg log t

log ©
2log4

Applying these two inequalities with 2 replaced by z/4* for 0 < k < K = L J and observing
that log(z/4%) log ©

loglog(xz/4%) = 2loglogz we have

D A f(mgn)e@n)| <> | D Aln)f(n)g(n)e(vn)

n<x

> (‘C 1olgoi(§</aj2k>>

log K
S rew (_C 210g10g:17> ; 4k

< log x
rexp | —¢c——
P 2loglogx

and similarly for u, which completes the proofs of Theorems [1] and
Theorem 3| follows from the proof of Theorem [I| where by Cauchy-Schwarz and Proposition |3| we

have to replace by
Z Z ‘F(hu, V11 + V12, U13 + U14) F(h127 V11, U14)|

Vi1 U4
—colqr,fo)llds.al|?/ log(1/||d -
< Clo(th(ﬁ a co(q1,fo)lldsyall?/log(1/l|d sy exll) (1212 Hu)7

and similarly for ¢» and go.
Finally Corollary [I] can be deduced from Theorem [3| by an argument similar to the proof of
Theorem 3 of [25] (see Section 11).
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