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Abstract. If q1 and q2 are two coprime bases, f (resp. g) a strongly q1-multiplicative (resp.
strongly q2-multiplicative) function of modulus 1 and ϑ a real number, we estimate the sums∑

n≤x Λ(n)f(n)g(n) exp(2iπϑn) (and
∑

n≤x µ(n)f(n)g(n) exp(2iπϑn)), where Λ denotes the von

Mangoldt function (and µ the Möbius function). The goal of this work is to introduce a new
approach to study these sums involving simultaneously two different bases combining Fourier anal-
ysis, Diophantine approximation and combinatorial arguments. We deduce from these estimates a
Prime Number Theorem (and Möbius orthogonality) for sequences of integers with digit properties
in two coprime bases.

1. Introduction

We denote by N the set of non negative integers, by U the set of complex numbers of modulus 1,
by P the set of prime numbers.

For n ∈ N, n ≥ 1, we denote by τ(n) the number of divisors of n, by ω(n) the number of distinct
prime factors of n, by Λ(n) the von Mangoldt function (defined by Λ(n) = log p if n = pk with
k ∈ N, k ≥ 1 and Λ(n) = 0 otherwise) and by µ(n) the Möbius function (defined by µ(n) = (−1)ω(n)

if n is squarefree and µ(n) = 0 otherwise).
For x ∈ R we denote by π(x) the number of prime numbers less or equal to x, by ‖x‖ the

distance of x to the nearest integer, and we set e(x) = exp(2iπx). If f and g are two functions
with g taking strictly positive values such that f/g is bounded, we write f � g (or f = O(g)).

In all this paper q denotes an integer greater or equal to 2 and for any positive integer n,

(1) n =
∑
j≥0

εj(n) qj with εj(n) ∈ {0, . . . , q − 1} for all j ∈ N

is the representation of n in base q.

1.1. q-additive and q-multiplicative functions. The notion of q-additive function has been
introduced independently by Bellman and Shapiro in [2] and by Gelfond in [11].

Definition 1. A function h : N → R is q-additive (resp. strongly q-additive) if for all (a, b) ∈
N× {0, . . . , q − 1}, we have

h(aq + b) = h(aq) + h(b)

(resp. h(aq + b) = h(a) + h(b)).

It follows that any q-additive function h verifies h(0) = 0. If h is a strongly q-additive function
then h is uniquely determined by the values h(1),. . . , h(q−1) and for any positive integer n written
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in base q as (1), we have

h

(∑
j≥0

εj(n) qj

)
=
∑
j≥0

h(εj(n)).

The most classical example of q-additive function is the q-ary sum-of-digits function defined by
sq(n) =

∑
j≥0 εj(n).

In a similar way we can define the notions of q-multiplicative function and strongly q-multiplicative
function:

Definition 2. A function f : N→ U is q-multiplicative (resp. strongly q-multiplicative) if for all
(a, b) ∈ N× {0, . . . , q − 1}, we have

f(aq + b) = f(aq) f(b)

(resp. f(aq + b) = f(a) f(b)).

If h is a q-additive (resp. strongly q-additive) function then f = e(h) is q-multiplicative
(resp. strongly q-multiplicative). Conversely if f = e(h) is a q-multiplicative (resp. strongly
q-multiplicative) function from N to U then h is q-additive (resp. strongly q-additive) modulo 1.

Definition 3. A strongly q-multiplicative function is called proper if it is not of the form f(n) =
e(ϑn) with (q − 1)ϑ ∈ Z.

1.2. q-additive functions and prime numbers. Bassily and Katai studied in [17, 1] the limit
distribution of q-additive functions along prime numbers. It follows in particular from their results
that if h is a strongly q-additive function, then

1

π(x)
card

{
p ≤ x, p ∈ P , h(p) ≤ µh logq x+ y

√
σ2
h logq x

}
= Φ(y) + o(1),

where

µh =
1

q

∑
j<q

h(j), σ2
h =

1

q

∑
j<q

h(j)2 − µ2
h,

and Φ denotes the normal distribution function (see [6] for a generalization of this result to the
case of two q-additive functions in coprime bases).

In [19, 20, 21, 22] Martin, Mauduit and Rivat studied the exponential sums associated to q-
additive functions ([19] and [20] concern a more general class of arithmetic functions called digital
functions, which include the function counting the number of occurences of the digit 0 in the q-ary
representation). In particular they defined the notion of characteristic integer as follows:

Definition 4. If h is a strongly q-additive integer valued function such that gcd (h(1), . . . , h(q − 1)) =
1, the characteristic integer of h is

dh = gcd (h(2)− 2h(1), . . . , h(q − 1)− (q − 1)h(1), q − 1) .

We have (dh, h(1)) = 1 and, for any positive integer n, h(n) ≡ h(1)n mod dh. It follows from Defini-
tion 3 that if h is a strongly q-additive integer valued function such that gcd (h(1), . . . , h(q − 1)) =
1, then f = e(αh) is proper if and only if dhα /∈ Z (in particular f = e(α sq) is proper if and only
if (q − 1)α /∈ Z).

It follows from [19, 20] that

Theorem A. If h is a strongly q-additive integer valued function such that gcd (h(1), . . . , h(q − 1)) =
1, then for all (α, β) ∈ R2 and x ≥ 2 we have∑

n≤x

Λ(n) e
(
αh(n) + βn

)
� (log x)4x1−cq(h)‖dhα‖

2

,

where cq(h) > 0 is an explicit constant and the implicit constant depends only on q.
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Theorem B. If h is a strongly q-additive integer valued function such that gcd (h(1), . . . , h(q − 1)) =
1, then for any positive integer m such that gcd(dh,m) = 1, we have for all integers a

card{p ≤ x, p ∈ P , h(p) ≡ a mod m} =
π(x)

m
+O

(
(log x)3x1−

cq(h)

m2

)
,

where cq(h) is the constant from Theorem A.

Remark 1. Without the coprimality condition gcd (h(1), . . . , h(q − 1)) = 1, it is still possible to
get similar results to Theorem A and Theorem B but they are more complicated to formulate (see
[20, section 6.4]).

1.3. q-additive functions in different bases. The question of the statistical independence of
sum-of-digits functions in pairwise coprime bases was first stated by Gelfond in his seminal paper
[11].

By using a general method concerning pseudorandom sequences in the sense of Bertrandias (see
[3, 4]) and generalizing previous results obtained by Mendès France (see [27]), Bésineau showed
in [5] that, if q1,. . . ,q` are pairwise coprime bases and a1,. . . ,a`, m1, . . . ,m` are integers such that
gcd(mi, qi − 1) = 1 for any i ∈ {1, . . . , `}, then

card {n ≤ x, ∀i ∈ {1, . . . , `}, sqi(n) ≡ ai mod mi} =
x

m1 · · ·m`

+ o(x).

Kamae obtained similar results when ` = 2 by studying the mutual singularity of the spectral
measures associated to the sum-of-digits functions (see [14, 15, 16]). These results were extended
in [29] to multiplicatively independent bases and finally in [23] to different bases by using a slightly
different method involving the study of some class of Riesz products (see also [12] for a generali-
sation of Kamae’s result to ` ≥ 2 q-additive functions in pairwise coprime bases by using ergodic
methods).

By using a different approach based on exponential sums, Kim gave in [18] a full answer to
Gelfond’s question providing an explicit error term. It follows in particular from his result that if
q1,. . . ,q` are pairwise coprime bases then, if for any i ∈ {1, . . . , `} hi is a strongly integer valued
qi-additive function such that gcd (hi(1), . . . , hi(qi − 1)) = 1 and mi is a positive integer such that
gcd(dhi ,mi) = 1, we have for all integers a1,. . . ,a`,

card {n ≤ x, ∀i ∈ {1, . . . , `}, hqi(n) ≡ ai mod mi} =
x

m1 · · ·m`

+O(x1−δ),

with δ = 1
120
`−2 (max1≤i≤` qi)

−3 (max1≤i≤`mi)
−2 .

2. Statement of the results

Let q1 and q2 be coprime integers greater or equal to 2. The goal of this paper is to show a
prime number theorem for sequences of integers defined by simultaneous strongly q1-additive and
q2-additive conditions.

Theorem 1. If f is a strongly q1-multiplicative function and g a strongly q2-multiplicative function
such that gcd(q1, q2) = 1 and f or g is proper, then we have uniformly for ϑ ∈ R∣∣∣∣∣∑

n≤x

Λ(n)f(n)g(n) e(ϑn)

∣∣∣∣∣� x exp

(
−c log x

log log x

)
for some positive constant c.

Remark 2. If f and g are not proper then the sum above is of the kind
∑

n≤x Λ(n) e(ϑ′n) for some
ϑ′ ∈ R for which the best known upper bound (without the Riemann Hypothesis) is only of the size
x exp

(
−c
√

log x
)

for some positive constant c.
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It follows that under the conditions of Theorem 1 we have uniformly for ϑ ∈ R∣∣∣∣∣∣∣∣
∑
p≤x
p∈P

f(p)g(p) e(ϑp)

∣∣∣∣∣∣∣∣� x exp

(
−c′ log x

log log x

)

for some positive constant c′, which means in particular (for ϑ = 0) that strongly q-multiplicative
functions in two coprime bases are statistically independent along prime numbers.

By the same method we show the following Theorem which implies that the product of two
strongly q-multiplicative functions in coprime bases is orthogonal to the Möbius function.

Theorem 2. If f is a strongly q1-multiplicative function and g a strongly q2-multiplicative function
such that gcd(q1, q2) = 1 and f or g is proper, then we have uniformly for ϑ ∈ R∣∣∣∣∣∑

n≤x

µ(n)f(n)g(n) e(ϑn)

∣∣∣∣∣� x exp

(
−c log x

log log x

)
for some positive constant c.

The sequence (f(n)g(n))n∈N in Theorem 2 is produced by a zero entropy dynamical system, so
that this result can be seen as a new class of sequences verifying Möbius orthogonality in connection
with the Sarnak conjecture [30] (see [8] for a survey on the Sarnak conjecture).

As we will see in the proofs the upper bounds can be made more explicit if we restrict ourselves
to special multiplicative functions (we only state Theorem 3 for the Λ-function but it also holds
for the Möbius function).

Theorem 3. If f0 is an integer valued strongly q1-additive function and g0 is an integer val-
ued strongly q2-additive function such that gcd(q1, q2) = 1, gcd(f0(1), . . . , f0(q1 − 1)) = 1 and
gcd(g0(1), . . . , g0(q2 − 1)) = 1, then we have uniformly for (α, β, ϑ) ∈ R3 such that df0α /∈ Z and
dg0β /∈ Z∣∣∣∣∣∑

n≤x

Λ(n) e(αf0(n) + βg0(n) + ϑn)

∣∣∣∣∣
� x exp

(
−c log x

log log x

)
+ (log x)Ax1−c1‖df0α‖

2/ log ‖df0α‖
−1−c2‖dg0β‖

2/ log ‖dg0β‖
−1

for some positive constants A, c, c1, c2.

Theorem 3 can be reformulated into a prime number theorem of the following kind.

Corollary 1. If q1, q2, f0 and g0 are given as in Theorem 3, then for any positive integers m1,
m2 such that gcd(df0 ,m1) = gcd(dg0 ,m2) = 1 we have for all integers a1, a2,

lim
x→∞

1

π(x)
card{p ≤ x, p ∈ P , f0(p) ≡ a1 mod m1, g0(p) ≡ a2 mod m2} =

1

m1m2

.

In order to estimate sums of the form
∑

n Λ(n)F (n) by using a combinatorial identity like
Vaughan’s identity (see (13.39) of [13]), it is sufficient to estimate bilinear sums of the form∑

m

∑
n

ambnF (mn)

(this method is described in details in [25]). These sums are said of type I if bn is a smooth
function of n. Otherwise they are said of type II. The key of this approach is that for type I sums
the summation over the smooth variable n is of significant length, while for type II sums both
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summations have a significant length. It follows that in order to prove Theorem 1 it is enough to
estimate these sums of type I and sums of type II, which will be done in section 7 (Proposition 4)
and in section 8 (Proposition 5).

We introduce a new approach to study these sums involving simultaneously two different bases.
In order to prove Proposition 4 and Proposition 5 we will separate the contribution of the bases
q1 and q2 by a combination of several techniques including discrete Fourier analysis, Diophantine
approximation and combinatorial arguments.

The study of type I sums leads (by carry properties) to consider periodic arithmetic functions
with period qλ11 q

λ2
2 . The first difficulty is to separate the contribution of the two bases and to

combine arguments from [10, 9] and [25] with new Diophantine and Fourier arguments.
A second difficulty arises in the study of type II sums: the separation of the contributions coming

from these two bases (by van der Corput and Cauchy-Schwarz inequalities) leads to much more
difficult Fourier estimates than in the case of one base. In the proof of Proposition 5 we use new
estimates on average of the Fourier transform of correlations of strongly q-multiplicative functions
(analogue to the U(2) Gowers norm) that are provided by combinatorial arguments in section 6
(Proposition 1 and Proposition 2).

A last difficulty appears in the non-diagonal terms of the sums of type II which leads to estimate
a linear form of logarithms and which allows us to win a factor of the size exp(C log x/ log log x).

Sections 3–5 collect preliminary lemmas used in the rest of the paper.

3. Notations and preliminary lemmas

The following lemma is a classical method to detect real numbers in an interval modulo 1 by
means of exponential sums. For α ∈ R with 0 ≤ α < 1 we denote by χα the characteristic function
of the interval [0, α) modulo 1:

(2) χα(x) = bxc − bx− αc .

Lemma 1. For all α ∈ R with 0 ≤ α < 1 and all integer H ≥ 1 there exist real valued trigonometric
polynomials Aα,H(x) and Bα,H(x) such that for all x ∈ R
(3) |χα(x)− Aα,H(x)| ≤ Bα,H(x),

where

(4) Aα,H(x) =
∑
|h|≤H

ah(α,H) e(hx), Bα,H(x) =
∑
|h|≤H

bh(α,H) e(hx),

with coefficients ah(α,H) and bh(α,H) satisfying

(5) a0(α,H) = α, |ah(α,H)| ≤ min
(
α, 1

π|h|

)
, |bh(α,H)| ≤ 1

H+1

(
1− |h|

H+1

)
.

Proof. This is a consequence of Theorem 19 of [31] (see [26, Lemma 1 and (17)]). �

Similarly we can detect points in a d-dimensional box (modulo 1):

Lemma 2. For all (α1, . . . , αd) ∈ [0, 1)d and (H1, . . . , Hd) ∈ Nd with H1 ≥ 1,. . . , Hd ≥ 1, we have
for all (x1, . . . , xd) ∈ Rd

(6)

∣∣∣∣∣
d∏
j=1

χαj(xj)−
d∏
j=1

Aαj ,Hj(xj)

∣∣∣∣∣ ≤ ∑
∅6=J⊆{1,...,d}

∏
j 6∈J

χαj(xj)
∏
j∈J

Bαj ,Hj(xj)

where Aα,H(.) and Bα,H(.) are the real valued trigonometric polynomials defined by (4).

Proof. See [7, Lemma 3]. �
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Lemma 3. If N be a finite set, f1 : N → R, . . . , fd : N → R, U1, . . . ,Ud are positive integers and

g : N × {0, . . . , U1 − 1} × · · · × {0, . . . , Ud − 1} → C

such that |g| ≤ 1, then the sum

S =
∑
n∈N

∑
0≤u1<U1

· · ·
∑

0≤ud<Ud

g(n, u1, . . . , ud)
d∏
j=1

χU−1
j

(
fj(n)− uj

Uj

)
can be approximated, for any positive integers H1, . . . , Hd, by

S̃ =
∑
|h1|≤H1
···

|hd|≤Hd

ah1(U
−1
1 , H1) · · · ahd(U−1d , Hd)

∑
0≤u1<U1
···

0≤ud<Ud

e

(
−h1u1

U1

− · · · − hdud
Ud

)
∑
n∈N

g(n, u1, . . . , ud) e (h1f1(n) + · · ·+ hdfd(n))

with the error estimate:∣∣∣S − S̃∣∣∣ ≤ U1 · · ·Ud
(H1 + 1) · · · (Hd + 1)

∑
|h1|≤H1/U1

(
1− |h1|U1

H1 + 1

)
· · ·

∑
|hd|≤Hd/Ud

(
1− |hd|Ud

Hd + 1

)
(7)

∑
(δ1,...,δd)∈{0,1}d
(δ1,...,δd)6=(0,...,0)

∣∣∣∣∣∑
n∈N

e (δ1h1U1f1(n) + · · ·+ δdhdUdfd(n))

∣∣∣∣∣ .
Proof. From the proof of Lemma 3 in [7], using the bound of |bh(α,H)| given by (5) we get∣∣∣S − S̃∣∣∣ ≤ d∑

`=1

∑
1≤j1<···<j`≤d

Uj1 · · ·Uj`
(Hj1 + 1) · · · (Hj` + 1)∑

|hj1|≤Hj1/Uj1

(
1− |hj1|Uj1

Hj1 + 1

)
· · ·

∑
|hj`|≤Hj`/Uj`

(
1− |hj` |Uj`

Hj` + 1

)
∣∣∣∣∣∑
n∈N

e (hj1Uj1fj1(n) + · · ·+ hj`Uj`fj`(n))

∣∣∣∣∣ .
For all positive integers H and U we can write∑

|h|≤H/U

(
1− |h|U

H + 1

)
=

1

U

∑
0≤k<U

∑
|h|≤H

(
1− |h|

H + 1

)
e

(
kh

U

)
,

and, since Fejer’s periodic kernel x 7→
∑
|h|≤H

(
1− |h|

H+1

)
e (hx) is non negative, picking just k = 0

we get

1 ≤ U

H + 1

∑
|h|≤H/U

(
1− |h|U

H + 1

)
.

Inserting this inequality in the bound of
∣∣∣S − S̃∣∣∣ above for all pairs (Hj, Uj) such that j ∈

{1, . . . , d} \ {j1, . . . , j`} we obtain (7). �

The following two lemmas are useful generalizations of van der Corput’s inequality.
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Lemma 4. For all complex numbers z1, . . . , zN and all integers k ≥ 1 and R ≥ 1 we have

(8)

∣∣∣∣∣ ∑
1≤n≤N

zn

∣∣∣∣∣
2

≤ N + kR− k
R

( ∑
1≤n≤N

|zn|2 + 2
∑

1≤r<R

(
1− r

R

) ∑
1≤n≤N−kr

< (zn+krzn)

)
,

where <(z) denotes the real part of z.

Proof. See for example Lemma 17 of [24]. �

Lemma 5. For integers 1 ≤ A ≤ B ≤ N and complex numbers z1, . . . , zN of modulus ≤ 1, we
have for any integer R ≥ 1,∣∣∣∣∣

B∑
n=A

zn

∣∣∣∣∣ ≤
B − A+ 1

R

∑
|r|<R

(
1− |r|

R

) ∑
1≤n≤N

1≤n+r≤N

zn+rzn


1/2

+
R

2
.

Proof. This is Lemma 15 of [24]. �

We will often make use of the following upper bound of geometric series of ratio e(ξ) for (L1, L2) ∈
Z2, L1 ≤ L2 and ξ ∈ R:

(9)

∣∣∣∣∣ ∑
L1<`≤L2

e(`ξ)

∣∣∣∣∣ ≤ min(L2 − L1, |sin πξ|−1).

Lemma 6. For all real numbers U > 0, ξ ∈ R with ξ 6= 0, ϕ ∈ R, (M1,M2) ∈ Z2 with M1 ≤ M2

we have

(10)
∑

M1<m≤M2

min
(
U, |sin π(mξ + ϕ)|−1

)
� (3 + b(M2 −M1) ‖ξ‖c)

(
3U + ‖ξ‖−1 log ‖ξ‖−1

)
.

Proof. If ‖ξ‖ > 1/3 the result follows from the choice of an appropriate implied constant. Other-
wise, by periodicity and parity we may assume that 0 < ξ ≤ 1/3. The number of integers in the
interval (M1ξ +ϕ,M2ξ +ϕ] is at most 1 + b(M2 −M1)ξc. It follows that there is at most k values
of m, with k ≤ 3 + b(M2 −M1)ξc, say m1 < · · · < mk such that ‖mξ + ϕ‖ < ξ/2. For the values
mj − 1, mj and mj + 1 we take the trivial bound U . Furthermore by convexity we have∑

mj+1<m<mj+1−1

|sinπ(mξ + ϕ)|−1 ≤
∫ mj+1−3/2

mj+3/2

|sin π ‖tξ + ϕ‖|−1 dt

= ξ−1
∫ mj+1ξ+ϕ−3ξ/2

mjξ+ϕ+3ξ/2

|sin π ‖u‖|−1 du

≤ ξ−1
∫ 1−ξ

ξ

|sin πu|−1 du� ξ−1 log ξ−1,

which gives the result. �

The lemmas 7, 8 and 9 allow to estimate on average the minimums arising from (9).

Lemma 7. Let (a,m) ∈ Z2 with m ≥ 1, δ = gcd(a,m) and b ∈ R. For all positive real numbers
U we have

(11)
∑

0≤n≤m−1

min
(
U,
∣∣sin π an+b

m

∣∣−1) ≤ δmin

(
U,
∣∣∣sin π δ ‖b/δ‖m

∣∣∣−1)+
2m

π
log(2m).
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Proof. The result is trivial for m = 1. For m ≥ 2 after using Lemma 6 of [25] it suffice to observe
that

δ

sin πδ
2m

+
2m

π
log

2m

πδ
≤ 1

sin π
2m

+
2m

π
log

2m

π
≤ 2m

π
log(2m).

�

Lemma 8. Let d, m1, . . . , md be positive integers with gcd(mi,mj) = 1 for all i 6= j. Let
(a1, . . . , ad) ∈ Zd and δj = gcd(aj,mj) for j = 1, . . . , d. For all positive real numbers U and all
real numbers ϕ we have

1

m1 · · ·md

∑
0≤n1<m1

· · ·
∑

0≤nd<md

min

(
U,
∣∣∣sin π (a1n1

m1
+ · · ·+ adnd

md
+ ϕ

)∣∣∣−1)(12)

≤ min

(
δ1 · · · δd
m1 · · ·md

U,

∣∣∣∣sin π(m1 · · ·md

δ1 · · · δd
ϕ

)∣∣∣∣−1
)

+
2

π
log

(
2
m1 · · ·md

δ1 · · · δd

)
,

Proof. Writing m′j = mj/δj and a′j = aj/δj for j = 1, . . . , d, and using periodicity, the left hand
side of (12) is equal to

1

m′1 · · ·m′d

∑
0≤n1<m′1

· · ·
∑

0≤nd<m′d

min

(
U,
∣∣∣sin π (a′1n1

m′1
+ · · ·+ a′dnd

m′d
+ ϕ

)∣∣∣−1)
Let m = m′1 · · ·m′d. If m = 1 then inequality (12) is trivially satisfied, so we may assume that
m ≥ 2. Since gcd(m′i,m

′
j) = 1 for all i 6= j, by the chinese remainder theorem this is equal to

1

m

∑
0≤n≤m−1

min

(
U,
∣∣∣sin π (a′1nm′1 + · · ·+ a′dn

m′d
+ ϕ

)∣∣∣−1) .
Observing that

a′1
m′1

+ · · ·+ a′d
m′d

= a′

m
for some a′ ∈ Z such that gcd(a′,m) = 1, it follows by Lemma 6

of [25] that the left hand side of (12) is at most

1

m
min

(
U,

1

sin
(
π 1
m
‖mϕ‖

))+
1

m sin π
2m

+
2

π
log

2m

π
.

Since sinus is concave over [0, π/2] we have

m sin

(
π

1

m
‖mϕ‖

)
≥ sin (π ‖mϕ‖) = |sin (πmϕ)|

and for m ≥ 2,
1

m sin π
2m

≤ 1

2 sin π
4

<
2

π
log π,

which completes the proof of (12). �

Lemma 9. Let m and A be positive integers and b ∈ R. For all real numbers U > 0 we have

(13)
1

A

∑
1≤a≤A

∑
0≤n<m

min
(
U,
∣∣sin π an+b

m

∣∣−1)� τ(m) U +m logm

and if |b| ≤ 1
2

we have the sharper bound

(14)
1

A

∑
1≤a≤A

∑
0≤n<m

min
(
U,
∣∣sin π an+b

m

∣∣−1)� τ(m) min
(
U,
∣∣sin π b

m

∣∣−1)+m logm,

where τ(m) denotes the number of divisors of m.
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Proof. Using (11) we have for all b ∈ R:∑
0≤n<m

min
(
U,
∣∣sinπ an+b

m

∣∣−1)� gcd(a,m) U +m logm

while for |b| ≤ 1
2
, since gcd(a,m) ‖b/ gcd(a,m)‖ = |b| this can be sharpened using (11) to∑

0≤n<m

min
(
U,
∣∣sin π an+b

m

∣∣−1)� gcd(a,m) min
(
U,
∣∣sinπ b

m

∣∣−1)+m logm.

Now

(15)
∑

1≤a≤A

gcd(a,m) =
∑
d |m
d≤A

d
∑

1≤a≤A
gcd(a,m)=d

1 ≤
∑
d |m
d≤A

d
∑

1≤a≤A
d | a

1 =
∑
d |m
d≤A

d

⌊
A

d

⌋
≤ A τ(m)

which implies (13) and (14) when |b| ≤ 1
2
. �

The following lemma is a classical application of the large sieve inequality.

Lemma 10. For all (z1, . . . , zN) ∈ CN and all positive integers Q we have

(16)
∑
q≤Q

q∑
a=1

(a,q)=1

∣∣∣∣∣
N∑
n=1

zn e

(
an

q

)∣∣∣∣∣
2

≤ (N − 1 +Q2)
N∑
n=1

|zn|2 .

Proof. See Theorem 3 and Section 8 of [28]. �

The following lemma gather some well known useful properties of Fejer’s Kernel.

Lemma 11. Let K denote Fejer’s (non periodic) kernel and K̂ its Fourier transform:

(17) K(t) =

(
sinπt

πt

)2

, K̂(t) =

∫
R
K(u) e(−ut) du = max (0, 1− |t|) ,

for all t ∈ R we have

(18) K̂(t) ≤ K

(
t

2

)
and for all integers N ≥ 2, we have 1

(19)
1

N

∑
n∈Z

K
( n
N

)
e(nt) = K̂(N ‖t‖).

Proof. We have cosx ≤ 1− x2

2
+ x4

24
for all x ∈ R hence for |t| ≤ 1 we have

K

(
t

2

)
=

2(1− cosπt)

(πt)2
≥ 1− π2t2

12
≥ 1− π2 |t|

12
≥ 1− |t| .

Observing that both sides of (19) are 1-periodic even functions we may assume that 0 ≤ t ≤ 1
2
, so

that t = ‖t‖. By Poisson’s summation,

1

N

∑
n∈Z

K
( n
N

)
e(n ‖t‖) =

∑
s∈Z

K̂(N(‖t‖ − s)) = K̂(N ‖t‖),

since for |s| ≥ 1 and N ≥ 2 we have |N(‖t‖ − s)| ≥ 2(|s| − ‖t‖) ≥ 1, thus K̂(N(‖t‖ − s)) = 0. �

1(19) does not hold for N = 1
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4. Correlations and discrete Fourier transforms

For any function ψ : Z→ C and any d ∈ Z we denote by ψ[d] the function defined by

(20) ∀n ∈ Z, ψ[d](n) = ψ(n)ψ(n+ d)

and for any function ψ : Z2 → C and any (d1, d2) ∈ Z2 we denote by ψ<d1,d2> the function defined
by

(21) ∀(n1, n2) ∈ Z2, ψ<d1,d2>(n1, n2) = ψ(n1, n2)ψ(n1 + d1, n2)ψ(n1, n2 + d2)ψ(n1 + d1, n2 + d2).

For any function f : N → C and any λ ∈ N, let us denote by fλ the qλ-periodic function defined
by

(22) ∀n ∈ {0, . . . , qλ − 1}, ∀k ∈ Z, fλ(n+ kqλ) = f(n).

The Discrete Fourier Transform of fλ is defined for t ∈ R by

(23) f̂λ(t) =
1

qλ

∑
0≤u<qλ

fλ(u) e

(
−ut
qλ

)
=

1

qλ

∑
0≤u<qλ

f(u) e

(
−ut
qλ

)
.

With this definition, the Fourier inversion formula gives for any n ∈ Z:

(24) fλ(n) =
∑

0≤h<qλ
f̂λ(h) e

(
hn

qλ

)
,

and by Parseval’s formula for any λ ∈ N and t ∈ R we have

(25)
∑

0≤h<qλ

∣∣∣f̂λ(h+ t)
∣∣∣2 =

1

qλ

∑
0≤u<qλ

|fλ(u)|2 .

For λ ∈ N and d ∈ Z the function f
[d]
λ defined by (20) is qλ-periodic function so that for any t ∈ R

we have

f̂
[d]
λ (t) =

1

qλ

∑
0≤u<qλ

fλ(u)fλ(u+ d) e

(
−ut
qλ

)
.

Applying the Fourier inversion formula (24) with n = u+ d we get for any t ∈ R

f̂
[d]
λ (t) =

∑
0≤h<qλ

f̂λ(h+ t)f̂λ(h) e

(
−hd
qλ

)
,

which permits to interpret d 7→ q−λf̂
[d]
λ (t) as the Discrete Fourier Transform of h→ f̂λ(h+ t)f̂λ(h).

Apply (25) to the summation over d we obtain for any t ∈ R

(26)
1

qλ

∑
0≤d<qλ

∣∣∣∣f̂ [d]
λ (t)

∣∣∣∣2 =
∑

0≤h<qλ

∣∣∣f̂λ(h+ t)
∣∣∣2 ∣∣∣f̂λ(h)

∣∣∣2 .
By the Cauchy-Schwarz inequality

1

qλ

∑
0≤d<qλ

∣∣∣∣f̂ [d]
λ (t)

∣∣∣∣2 ≤
 ∑

0≤h<qλ

∣∣∣f̂λ(h+ t)
∣∣∣4
1/2 ∑

0≤h<qλ

∣∣∣f̂λ(h)
∣∣∣4
1/2

.

As for any t ∈ Z, in the summation above h + t reach exactly once each residue class modulo qλ,
thus by periodicity we get

(27)
1

qλ

∑
0≤d<qλ

∣∣∣∣f̂ [d]
λ (t)

∣∣∣∣2 ≤ ∑
0≤h<qλ

∣∣∣f̂λ(h)
∣∣∣4 .
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Remark 3. By (26) we observe that the upper bound in (27) is attained for t = 0.

Iterating (20) we consider now

(28) f
[a,b]
λ (n) =

(
f
[b]
λ

)[a]
(n) = fλ(n)fλ(n+ b)fλ(n+ a)fλ(n+ a+ b).

Applying (27) with fλ replaced by f
[b]
λ we get for any b ∈ Z and t ∈ Z

1

qλ

∑
0≤a<qλ

∣∣∣∣f̂ [a,b]
λ (t)

∣∣∣∣2 ≤ 1

qλ

∑
0≤a<qλ

∣∣∣∣f̂ [a,b]
λ (0)

∣∣∣∣2 =
∑

0≤h<qλ

∣∣∣∣f̂ [b]
λ (h)

∣∣∣∣4 ,
so that for any t ∈ Z

(29)
1

q2λ

∑
0≤a<qλ

∑
0≤b<qλ

∣∣∣∣f̂ [a,b]
λ (t)

∣∣∣∣2 ≤ 1

q2λ

∑
0≤a<qλ

∑
0≤b<qλ

∣∣∣∣f̂ [a,b]
λ (0)

∣∣∣∣2 =
1

qλ

∑
0≤b<qλ

∑
0≤h<qλ

∣∣∣∣f̂ [b]
λ (h)

∣∣∣∣4 .
5. Carry property

We recall Definition 1 of [26].

Definition 5. A function f : N → U has the carry property if, uniformly for (λ, κ, ρ) ∈ N3 with
ρ < λ, the number of integers 0 ≤ ` < qλ such that there exists (k1, k2) ∈ {0, . . . , qκ − 1}2 with

(30) f(`qκ + k1 + k2) f(`qκ + k1) 6= fκ+ρ(`q
κ + k1 + k2) fκ+ρ(`qκ + k1)

is at most O(qλ−ρ), where the implied constant may depend only on q and f .

Lemma 12. If f : N → U satisfies Definition 5, then for (µ, ν, ρ) ∈ N3 with 2ρ < ν the set E
of (m,n) ∈ {qµ−1, . . . , qµ − 1} × {qν−1, . . . , qν − 1} such that there exists k < qµ+ρ with f(mn +

k) f(mn) 6= fµ+2ρ(mn+ k) fµ+2ρ(mn) satisfies

(31) card E � (log q) qµ+ν−ρ,

where the implied constant may depend only on q and f .

Proof. This is Lemma 8 of [26]. �

Lemma 13. Any strongly q-multiplicative function has the carry property (see Definition (5)).

Proof. Let f be a strongly q-multiplicative function and (λ, κ, ρ) ∈ N3 with ρ < λ. Considering
fκ+ρ in (30), the inequality may occur only by carry propagation when the digits of `qκ + k1 of
indexes κ,. . . ,κ+ ρ− 1 are equal to q− 1, i.e. for integers ` with� qρ least significant digits equal
to q − 1. It follows that f has the carry property. �

6. Fourier Transforms of strongly q-multiplicative functions

The main purpose of this section is to prove Proposition 1 and Proposition 2.

Proposition 1. If f is a proper strongly q-multiplicative function, then there exist constants c1 > 0,
c2 > 0 such that for all λ ∈ N we have

1

qλ

∑
0≤b<qλ

∑
0≤h<qλ

∣∣∣∣f̂ [b]
λ (h)

∣∣∣∣4 ≤ c1q
−c2λ.

By (29) and Proposition 1 we obtain
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Proposition 2. If f is a proper strongly q-multiplicative function, then there exist constants c1 > 0,
c2 > 0 such that for all t ∈ Z and λ ∈ N we have

(32)
1

q2λ

∑
0≤a<qλ

∑
0≤b<qλ

∣∣∣∣f̂ [a,b]
λ (t)

∣∣∣∣2 ≤ c1q
−c2λ.

The proof of Proposition 1 is divided into several Lemmas.

Lemma 14. Suppose that b ≡ j mod q (with 0 ≤ j < q). Then

f̂
[b]
λ (h) =

1

q

∑
0≤`≤q−1−j

f(`)f(`+ j) e(−h`q−λ) f̂ [bb/qc]
λ−1 (h)

+
1

q

∑
q−j≤`≤q−1

f(`)f(`+ j − q) e(−h`q−λ) ̂
f
[bb/qc+1]
λ−1 (h).

Proof. We write b = qb′ + j and split up the sum over 0 ≤ u < qλ into q according to the residue
class of u: u = qu′+`, 0 ≤ ` < q−1, 0 ≤ u′ < qλ−1, and use the property fλ(qm+r) = fλ−1(m)f(r)
(for 0 ≤ r < q):

f̂
[b]
λ (h) =

1

qλ

q−1∑
`=0

∑
0≤u′<qλ−1

fλ(qu
′ + `)fλ(qu′ + qb′ + `+ j) e

(
−hu′q−(λ−1) − `hq−λ

)
=

1

qλ

q−1−j∑
`=0

∑
0≤u′<qλ−1

fλ−1(u
′)fλ−1(u′ + b′)f(`)f(`+ j) e

(
−hu′q−(λ−1)

)
e
(
−`hq−λ

)
+

1

qλ

q−1∑
`=q−j

∑
0≤u′<qλ−1

fλ−1(u
′)fλ−1(u′ + b′ + 1)f(`)f(`+ j − q) e

(
−hu′q−(λ−1)

)
e
(
−`hq−λ

)
=

1

q

∑
0≤`≤q−1−j

f(`)f(`+ j) e(−h`q−λ) f̂ [b′]
λ−1(h)

+
1

q

∑
q−j≤`≤q−1

f(`)f(`+ j − q) e(−h`q−λ) f̂ [b′+1]
λ−1 (h).

�

For any (λ, h) ∈ N2 let us consider

Γλ(h) = max
0≤b<qλ

∣∣∣∣f̂ [b]
λ (h)

∣∣∣∣ .
We have Γλ(0) = 1 and it follows from Lemma 14 that for all h ≥ 1 we have

(33) Γλ(h) ≤ Γλ−1(h).

Lemma 15 will give a better estimate of Γλ(h) in terms of Γλ−1(h) (or Γλ−2(h) in the case q = 2).

Lemma 15. If q = 2 then we have

(34) Γλ(h) ≤ max

(∣∣∣∣cos
πh

2λ

∣∣∣∣ , sin2 πh

2λ

)
Γλ−2(h)
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whereas for q ≥ 3 we have

Γλ(h) ≤ max

{
max
2≤j<q

|1 + f(q − j + 1)f(1)f(q − j) e(−hq−λ)|+ q − 2

q
,

max
0≤j<q−1

|1 + f(j)f(1)f(j + 1) e(−hq−λ)|+ q − 2

q

}
Γλ−1(h).

Proof. Suppose that q = 2. This implies that f(h) = ζs2(n), where |ζ| = 1 and s2(n) denotes the
binary sum-of-digits function. In particular this simplifies the recurrence relation in Lemma 14:
f(`)f(`+ j) = ζ−j and f(`)f(`+ j − 2) = ζ2−j.

If b is even, that is j = 0, then we get

|f̂ [b]
λ (h)| ≤

∣∣∣∣1 + e(−h2−λ)

2

∣∣∣∣ Γλ−1(h) =

∣∣∣∣cos
πh

2λ

∣∣∣∣ Γλ−1(h) ≤
∣∣∣∣cos

πh

2λ

∣∣∣∣ Γλ−2(h).

If b is odd then either bb/2c or bb/2c+ 1 is even. In both case

|f̂ [b]
λ (h))| ≤

|f̂ [bb/2c]
λ−1 (h)|+ | ̂

f
[bb/2c+1]
λ−1 (h)|

2

≤
(

1

2
+

1

2

∣∣∣∣cos
πh

2λ−1

∣∣∣∣) Γλ−2(h)

≤ max

(
cos2

πh

2λ
, sin2 πh

2λ

)
Γλ−2(h).

Putting these two estimates together we derive

Γλ(h) ≤ max

(∣∣∣∣cos
πh

2λ

∣∣∣∣ , cos2
πh

2λ
, sin2 πh

2λ

)
Γλ−2(h)

which completes the proof of (34).
If q ≥ 3 and 0 ≤ j ≤ q− 1 then we either have j ≥ 2 or q− j ≥ 2. Suppose first that q− j ≥ 2.

Then by Lemma 14∣∣∣∣f̂ [b]
λ (h)

∣∣∣∣ ≤ |1 + f(j)f(1)f(j + 1) e(−hq−λ)|+ q − j − 2

q

∣∣∣∣f̂ [bb/qc]
λ−1 (h)

∣∣∣∣+
j

q

∣∣∣∣ ̂
f
[bb/qc+1]
λ−1 (h)

∣∣∣∣
≤ |1 + f(j)f(1)f(j + 1) e(−hq−λ)|+ q − 2

q
Γλ−1(h).

Similarly if j ≥ 2 we obtain∣∣∣∣f̂ [b]
λ (h)

∣∣∣∣ ≤ q − j
q

∣∣∣∣f̂ [bb/qc]
λ−1 (h)

∣∣∣∣+
|1 + f(q − j + 1)f(1)f(q − j) e(−hq−λ)|+ q − j − 2

q

∣∣∣∣ ̂
f
[bb/qc+1]
λ−1 (h)

∣∣∣∣
≤ |1 + f(q − j + 1)f(1)f(q − j) e(−hq−λ)|+ q − 2

q

and consequently,

Γλ(h) ≤ max

{
max
2≤j<q

|1 + f(q − j + 1)f(1)f(q − j) e(−hq−λ)|+ q − 2

q
,

max
0≤j<q−1

|1 + f(j)f(1)f(j + 1) e(−hq−λ)|+ q − 2

q

}
Γλ−1(h)
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which completes the proof of the lemma. �

Lemma 16. Suppose that q ≥ 2. Then for every strongly q-multiplicative function f there exist
L ≥ 2, a proper subset S ⊂ {0, 1, . . . , q − 1}L and a constant c′ = c′(q, f, L, S) > 0 such that∣∣∣∣f̂ [b]

λ (h)

∣∣∣∣ ≤ q−c
′J(h),

where J(h) denotes the number of sub-blocks of length L in the q-ary expansion of h =
∑λ−1

j=0 εj(h)
that are not contained in S.

Moreover, the set S can be chosen in a way that all prefixes of length L − 1 from the elements
of S are different.

Proof. If q = 2 let us consider S = {(0, 0, 0), (0, 1, 1), (1, 0, 0), (1, 1, 1)} ⊂ {0, 1}3. For any j ∈
{3, . . . , λ} we have

h

2j
=
εj−1(h)

2
+
εj−2(h)

4
+ · · ·+ ε0(h)

2j
,

so that h
2j
∈
[
1
8
, 3
8

]
∪
[
5
8
, 7
8

]
if and only if (εj−1(h), εj−2(h), εj−3(h)) /∈ S and in this case we have

max

(∣∣∣∣cos
πh

2λ

∣∣∣∣ , ∣∣∣∣sin πh2λ
∣∣∣∣) ≤ cos

π

8
.

This gives Lemma 16 in the case q = 2 with c′ = − log(cos π
8
)/ log 2 > 0.

In the case q ≥ 3 the situation is slightly different. In some sense it simplifies because Γλ(h)
is directly related with Γλ−1(h) (and not with Γλ−2(h), see Lemma 15) but on the other hand we
have to be more careful with the values hq−λ.

For 2 ≤ j < q let αj ∈ [0, 1) be defined by e(αj) = f(q − j + 1)f(1)f(q − j). Similarly for

0 ≤ j < q−1 let βj ∈ [0, 1) be given by e(βj) = f(j)f(1)f(j + 1). Set T = {αj : 2 ≤ j < q}∪{βj :
0 ≤ j < q − 1}.

By Lemma 15 we have to specify conditions for h that ensure that hq−λ is different from (and
even not too close to) αj and βj. The idea is to cover T with q-adic intervals [mq−L, (m+ 1)q−L)
that we encode with the q-adic digits of m. It is clear that hq−λ mod 1 ∈ [mq−L, (m + 1)q−L) if
and only if the digits of m = m0 + m1q + · · · + mL−1q

L−1 coincide with the last L digits of h:
mL−j = ελ−j(h), 1 ≤ j ≤ L. In particular we can find a collection I of q-adic intervals with a
sufficiently large (and common) length q−L with the following two properties:

(1) T is contained in the interior of the union of all intervals of I, where we assume that we
work on the torus, that is, 0 and 1 are identified.

(2) The digit blocks (m1,m2, . . . ,mL−1) of length L − 1 corresponding to those m = m0 +
m1q + · · · + mL−1q

L−1 for which the interval [mq−L, (m + 1)q−L) is contained in I are all
different.

Both conditions are very easy to satisfy if the elements of T are not q-adic rational numbers. In
the case of q-adic rational numbers we can increase the value of L in order to satisfy the conditions.

Let τ be the minimal distance of an element of T to the boundary of the union of all intervals
of I. By the first property it follows that τ > 0. Furthermore we let S be the set of all q-ary digit
blocks of m for which [mq−L, (m + 1)q−L) is contained in I. Now suppose that h < qλ has the
property that the digit block (ελ−L(h), . . . , ελ−1(h)) is not contained in S. Then hq−λ mod 1 is not
contained in the union of intervals of I which implies that

(35) ‖hq−λ − αj‖ ≥ τ and ‖hq−λ − βj′‖ ≥ τ
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for all (j, j′) ∈ {2, . . . , q − 1} × {0, . . . , q − 2}. Consequently we have

Γλ(h) ≤ |1 + e(τ)|+ q − 2

q
Γλ−1(h).

Of course this implies by induction that

Γλ(h) ≤ q−c
′J(h),

with

c′ =
1

log q
log

q

|1 + e(τ)|+ q − 2
> 0.

�

Remark 4. Note that replacing τ by τ/2 we can keep the same L and S in order to obtain (35)
for any slight pertubation of αj and βj (slight pertubation of the strongly q-multiplicative function
f).

Lemma 17. Let J(h), 0 ≤ h < qλ be a function of the form given in Lemma 16, that is, it counts
the number of blocks of length L in the q-ary expansion of h that are not contained in S, where all
prefixes of length L− 1 from the elements of S are different.

Then for every ε > 0 there exist constants η = η(ε, q, L, S) ≥ 0 and c = c(ε, q, L, S) > 0 such
that

|h < qλ : J(h) ≤ ελ}| ≤ c qη λ.

Moreovever we have

lim
ε→0

η(ε) = 0.

Proof. Let εj(h) denote the j-th binary digit of h. Furthermore for every block B ∈ {0, 1, . . . , q −
1}L−1 let

a
(B)
λ (x) =

∑
h<qλ, (ελ−L−1(h),...,ελ−1(h)=B

xJ(h).

Then we have a
(B)
1 (x) = 1 for all B ∈ {0, 1, . . . , q − 1}L−1. Now for every block B of length L− 1

let B′ be the prefix of B of length L− 2, that is, B = (B′δ(B)), where δ(B) denotes the last digit
of B and denote by B′′ the suffix of B of length L− 2. With the help of this notation we get the
recurrence relations

a
(B)
λ+1(x) =

∑
C:C′′=B′, (C,δ(B))∈S

a
(C)
λ (x) + x

∑
C:C′′=B′, (C,δ(B)) 6∈S

a
(C)
λ (x)

Iterating this recurrence we obtain

(
a
(B)
λ (x)

)
B∈{0,1,...,q−1}L−1

= A(x)λ−1

 1
...
1

 ,

where the matrix A(x) = (aB,C(x))B,C∈{0,1,...,q−1}L−1 is given by

aB,C(x) =

 1 if C ′′ = B′ and (C, δ(B)) ∈ S,
x if C ′′ = B′ and (C, δ(B)) 6∈ S,
0 otherwise.
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If x > 0 then A(x) is a positive irreducible matrix. By Perron-Frobenius theory there exists a
unique dominating eigenvalue ρ(x) of A(x) so that∑

h<qλ,

xJ(h) =
∑
B

a
(B)
λ (x)

=
(

1 · · · 1
)
A(x)λ−1

 1
...
1


= D(x)ρ(x)λ−1 +O

(
ρ(x)(1−γ)λ

)
≤ E(x)ρ(x)λ−1

for some real number γ = γ(x) > 0 and certain positive functions D(x) and E(x).
By assumption all prefixes of length L − 1 of elements of S are different. Hence, every row of

A(x) contains at most one 1. This implies that the largest eigenvalue of A(0) is at most 1. Since
the largest eigenvalue is a continuous function in the entries of a matrix it follows that

(36) lim
x→0+

ρ(x) ≤ 1.

Now suppose that 0 < x < 1. Then we have∑
h<qλ

xJ(h) ≥
∑

h<qλ, J(h)≤ελ

xJ(h)

≥ xελ |{h < qλ : J(h) ≤ ελ}|.

Hence, be choosing x = ε we obtain

|{h < qλ : J(h) ≤ ελ}| ≤ E(x)ρ(x)λ−1

xελ

≤ E(ε)

ρ(ε)

(
ρ(ε)

εε

)λ
.

This proves the lemma with

c(ε) =
E(ε)

ρ(ε)
and η(ε) = max

{
0,

1

log q
log

ρ(ε)

εε

}
,

since (36) implies limε→0 η(ε) = 0. �

Lemma 18. Suppose that f is a proper strongly q-multiplicative function. Then there exist con-
stants C1 = C1(q) > 0 and

(37) 0 < C2 = C2(f, q) ≤
4

q log q

such that

(38) |f̂λ(t)| ≤ C1q
−C2 λ

uniformly for all t ∈ R and λ ∈ N.

Proof. As f is strongly q-multiplicative, for any t ∈ R we have

(39) f̂λ(t) =
λ∏
`=1

(
1

q

∑
0≤j<q

f(j) e

(
−jt
q`

))
.
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If we put (α0, . . . , αq−1) ∈ Rq such that f(j) = e(αj) for j ∈ {0, . . . , q − 1} and

ϕ(t) =

∣∣∣∣∣ ∑
0≤j<q

e(αj − jt)

∣∣∣∣∣
and if we define γq(f) by

qγq(f) = max
t∈R

√
ϕ(t)ϕ(qt)

it follows from (39) that for any t ∈ R we have∣∣∣f̂λ(t)∣∣∣ ≤ q−λ
λ∏
`=1

ϕ(tq−`) ≤ q1−λ
∏

1≤`≤λ/2

ϕ(tq−(2`−1))ϕ(tq−2`) ≤ q1−λ+2bλ/2cγq(f)

so that for any t ∈ R, ∣∣∣f̂λ(t)∣∣∣ ≤ qλ(γq(f)−1)+1.

As in [19, (8)], let σq(f) be defined by

σq(f) = min
t∈R

∑
0≤j<i<q

‖αi − αj − (i− j)t‖2.

If σq(f) > 0 it follows from [19, Lemme 8] that γq(f) ≤ 1− 16
q2(q−1) log qσq(f) so that (38) holds with

C1 = q and

C2 =
16

q2(q − 1) log q
σq(f)

which satisfies (37) by observing that σq(f) ≤ q(q − 1)/4.
If σq(f) = 0 it follows from [19, Lemme 1] that α0, α1, . . . , αq−1 form an arithmetic progression

modulo 1 (note that α0 ≡ 0 mod 1) thus for any integer n we have f(n) = e(α1sq(n)). Since f is
proper and sq(n) ≡ n mod q − 1 for any integer n, it follows that (q − 1)α1 /∈ Z so that we can
apply [19, Lemme 11] to obtain (38) with C1 = q and

C2 =
4‖(q − 1)α1‖2

q(q +
√

2− 1)2 log q

which satisfies (37). �

Proof of Proposition 1. By applying (29) Lemma 16 and (26) we have

1

q2λ

∑
0≤a<qλ

∑
0≤b<qλ

∣∣∣∣f̂ [a,b]
λ (t)

∣∣∣∣2 ≤ 1

qλ

∑
0≤b<qλ

∑
0≤h<qλ

∣∣∣∣f̂ [b]
λ (h)

∣∣∣∣4
≤ 1

qλ

∑
0≤b<qλ

∑
0≤h<qλ

q−2c
′J(h)

∣∣∣∣f̂ [b]
λ (h)

∣∣∣∣2
=

∑
0≤h<qλ

q−2c
′J(h)

∑
0≤k<qλ

∣∣∣f̂λ(h+ k)
∣∣∣2 ∣∣∣f̂λ(k)

∣∣∣2
= S1 + S2

with

S1 =
∑

0≤h<qλ, J(h)>ελ

q−2c
′J(h)

∑
0≤k<qλ

∣∣∣f̂λ(h+ k)
∣∣∣2 ∣∣∣f̂λ(k)

∣∣∣2
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and

S2 =
∑

0≤h<qλ, J(h)≤ελ

q−2c
′J(h)

∑
0≤k<qλ

∣∣∣f̂λ(h+ k)
∣∣∣2 ∣∣∣f̂λ(k)

∣∣∣2 .
The first sum can be directly estimated:

S1 ≤ q−2c
′ελ

∑
0≤h,k<qλ

∣∣∣f̂λ(h+ k)
∣∣∣2 ∣∣∣f̂λ(k)

∣∣∣2 = q−2c
′ελ.

For the second sum we apply Lemma 18 for the term
∣∣∣f̂λ(h+ k)

∣∣∣2 and obtain with the help of

Lemma 17

S2 ≤ C1q
−2C2λ

∑
0≤h<qλ, J(h)≤ελ

∑
0≤k<qλ

∣∣∣f̂λ(k)
∣∣∣2

= C1q
−2C2λ|{h < qλ : J(h) ≤ ελ}|

≤ C1c q
−(2C2−η)λ.

Finally we obtain

(40)
1

qλ

∑
0≤b<qλ

∑
0≤h<qλ

∣∣∣∣f̂ [b]
λ (h)

∣∣∣∣4 ≤ q−2c
′ελ + C1c q

−(2C2−η)λ

and if we choose ε > 0 such that η(ε) ≤ C2,

(41) c1 = c1(q, f, L, S) = 1 + C2c

and

(42) c2 = c2(q, f, L, S) = min{2c′, C2},

this completes the proof of Proposition 1.

In special cases we can be more precise, and in particular if f = e(αf0), where α ∈ R and f0
is an integer valued strongly q-additive function with gcd(f0(1), . . . , f0(q − 1)) = 1 we have the
following Proposition.

Proposition 3. If f0 is an integer valued strongly q-additive function such that gcd(f0(1), . . . , f0(q1−
1)) = 1 and f = e(αf0), then uniformly for α ∈ R such that df0α /∈ Z we have

(43)
1

q2λ

∑
0≤a<qλ

∑
0≤b<qλ

∣∣∣∣f̂ [a,b]
λ (t)

∣∣∣∣2 ≤ c10q
−c9‖df0α‖

2/ log(1/‖df0α‖)λ.

First it follows from the proof of Lemma 18 that

|f̂λ(h)| ≤ q · q−c3(σq(αf0)+‖(q−1)f0(1)α‖2)λ

for some constant c3 = c3(f0, q) > 0. However, by (19) and (20) from [20] we have

σq(αf0) + ‖(q − 1)f0(1)α‖2 ≥ c4‖df0α‖2

for some constant c4 = c4(f0, q) > 0. Hence we have

(44) |f̂λ(h)| ≤ q · q−c5‖df0α‖2λ

for some constant c5 = c5(f0, q) > 0.
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Due to periodicity and symmetry we only have to consider the interval 0 ≤ α ≤ 1/(2df0). Let
us put

A =
1

2q2 maxj{|f0(q − j + 1)− f0(1)− f0(q − j)|, |f0(j) + f0(1)− f0(j + 1)|}

and start with the case 0 ≤ α ≤ A, which means that αj = α(f0(q − j + 1) − f0(1) − f0(q − j))
and βj = αj(f0(j) + f0(1)− f0(j + 1)) satisfy |αj| ≤ 1/(2q2) and |βj| ≤ 1/(2q2). We choose L = 2,
S = {(00), (11), . . . , (q − 1, q − 1)} and obtain by Lemma 16∣∣∣∣f̂ [b]

λ (h)

∣∣∣∣ ≤ q−c
′ J(h).

We have ∑
h<qλ

xJ(h) = q (1 + (q − 1)x)λ−1 ,

so that, we can take in the proof of Lemma 17

E(ε) = q, ρ(ε) = 1 + (q − 1)ε and η(ε) =
1

log q
log

1 + (q − 1)ε

εε
.

By choosing ε = c6‖df0α‖2/ log(1/‖df0α‖) for some c6 = c6(q, f) such that η(ε) ≤ C2 = c5‖df0α‖2,
we obtain by (40) the upper bound

(45)
1

qλ

∑
0≤b<qλ

∑
0≤h<2λ

∣∣∣∣f̂ [b]
λ (h)

∣∣∣∣4 ≤ c8q
−c7‖df0α‖

2/ log(1/‖df0α‖)λ

with some positive constant c8 = c8(q, f0).
If A ≤ α ≤ 1/(2df0), then it follows from (44) that we have uniformly

|f̂λ(h)| ≤ q · q−c5‖df0A‖2λ.

When α varies in the compact set [A, 1/(2df0)] it is enough by Remark 4 to consider only finitely
many different L and S in the construction used in the proof of Lemma 16. If we take for c̃1 the
maximum over L and S of all the c1(q, αf0, L, S) defined by (41) and for c̃2 the minimum over L
and S of all the c2(q, αf0, L, S) defined by (42) then we obtain

(46)
1

qλ

∑
0≤b<qλ

∑
0≤h<2λ

∣∣∣∣f̂ [b]
λ (h)

∣∣∣∣4 ≤ c̃1q
−c̃2λ

uniformly for α ∈ [A, 1/(2df0)].
Putting together (45) and (46) it follows that

1

qλ

∑
0≤b<qλ

∑
0≤h<2λ

∣∣∣∣f̂ [b]
λ (h)

∣∣∣∣4 ≤ c10q
−c9‖df0α‖

2/ log(1/‖df0α‖)λ

with some positive constants c9 = c9(q, f0) and c10 = c10(q, f0) holds uniformly for all α and
Proposition 3 follows from (29).
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7. Sums of type I

Let

(47) 1 ≤M ≤ N

be integers. Let µ1 and ν1 be the unique integers such that

(48) qµ1−11 ≤M < qµ11 and qν1−11 ≤ N < qν11

and assume that

(49) µ1 ≤ ξ1(µ1 + ν1)

where

(50) 0 < ξ1 < 1/3

will be fixed in (66).
Similarly let µ2 and ν2 be the unique integers such that

(51) qµ2−12 ≤M < qµ22 and qν2−12 ≤ N < qν22

and assume that

(52) µ2 ≤ ξ1(µ2 + ν2).

For any ϑ ∈ R, any interval I(M,N) ⊆ [MN
4
,MN ], f and g two strongly q-multiplicative

functions we consider

SI(ϑ) =
∑

M
2
<m≤M

∣∣∣∣∣∣∣
∑
n

mn∈I(M,N)

f(mn)g(mn) e(ϑmn)

∣∣∣∣∣∣∣ .
Proposition 4. For any integers M and N satisfying (47), (48), (49), (51) and (52) we have
uniformly for ϑ ∈ R

(53) SI(ϑ)� (logMN)
1
2
ω(q1)+

1
2
ω(q2) (MN)1−σ(q1,q2)

for some explicit σ(q1, q2) > 0.

Proof. By Cauchy-Schwarz

S2
I (ϑ) ≤M

∑
M
2
<m≤M

∣∣∣∣∣∣∣
∑
n

mn∈I(M,N)

f(mn)g(mn) e(ϑmn)

∣∣∣∣∣∣∣
2

,

and by Lemma 5, for any integers

(54) R ≥ 1

and

L ≥ 7N

4
,

we have

S2
I (ϑ)� MN

R

∑
r∈Z

K̂
( r
R

) ∑
M
2
<m≤M

SI,1
(
r,m,

⌊
N
4

⌋
+ 1,

⌊
N
4

⌋
+ L

)
e(ϑmr) +M2R2

where K̂ is the Fourier transform of the Fejer kernel defined by (17) and

SI,1(r,m,A,B) =
∑

A≤n≤B

f(mn+mr)f(mn)g(mn+mr)g(mn).
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Let D > 0 be a parameter to be chosen later (in (62)) which will represent a margin in the carry
propagation and let δ1 and δ2 be the unique integers such that

qδ1−11 ≤ D < qδ11 and qδ2−12 ≤ D < qδ22 .

Combining Lemma 13 and Lemma 12, applied to f (with (µ1, ν1, δ1) in place of (µ, ν, ρ)) and to g
(with (µ2, ν2, δ2) in place of (µ, ν, ρ)), for

(55) qλ1−11 < MRD ≤ qλ11

and

(56) qλ2−12 < MRD ≤ qλ22

we can replace f by fλ1 and g by gλ2 in SI,1 introducing an admissible error term O(M2N2/D).
We obtain

(57) S2
I (ϑ)� MN

R

∑
r∈Z

K̂
( r
R

) ∑
M
2
<m≤M

SI,2
(
r,m,

⌊
N
4

⌋
+ 1,

⌊
N
4

⌋
+ L

)
e(ϑmr) +M2R2 +

M2N2

D

with

SI,2(r,m,A,B) =
∑

A≤n≤B

fλ1(mn+mr)fλ1(mn)gλ2(mn+mr)gλ2(mn).

Observing that n 7→ fλ1(mn + mr)fλ1(mn)gλ2(mn + mr)gλ2(mn) is periodic of period qλ11 q
λ2
2 we

choose

L =

⌈
7N

4 qλ11 q
λ2
2

⌉
qλ11 q

λ2
2 ,

so that

SI,2
(
r,m,

⌊
N
4

⌋
+ 1,

⌊
N
4

⌋
+ L

)
=

⌈
7N

4 qλ11 q
λ2
2

⌉
SI,2(r,m, 0, q

λ1
1 q

λ2
2 − 1)

Since n runs over all residue classes modulo qλ11 q
λ2
2 and gcd(q1, q2) = 1, we may replace n by

n1q
λ2
2 + n2q

λ1
1 with 0 ≤ n1 < qλ11 and 0 ≤ n2 < qλ22 . Thus by periodicity

SI,2(r,m, 0, q
λ1
1 q

λ2
2 −1) =

∑
0≤n1<q

λ1
1

fλ1(mn1q
λ2
2 +mr)fλ1(mn1q

λ2
2 )

∑
0≤n2<q

λ2
2

gλ2(mn2q
λ1
1 +mr)gλ2(mn2q

λ1
1 ),

and again since gcd(q1, q2) = 1,

SI,2(r,m, 0, q
λ1
1 q

λ2
2 − 1) =

∑
0≤n1<q

λ1
1

fλ1(mn1 +mr)fλ1(mn1)
∑

0≤n2<q
λ2
2

gλ2(mn2 +mr)gλ2(mn2).

We apply Cauchy-Schwarz as follows:

∑
r

∑
m

(∣∣∣∣∣A1/2
r

∑
n1

∣∣∣∣∣ ·
∣∣∣∣∣A1/2

r

∑
n2

∣∣∣∣∣
)
≤

∑
r

∑
m

Ar

∣∣∣∣∣∑
n1

∣∣∣∣∣
2
1/2∑

r

∑
m

Ar

∣∣∣∣∣∑
n2

∣∣∣∣∣
2
1/2

with Ar = R−1K̂ (r/R) . Observing that
⌈

7N

4 q
λ1
1 q

λ2
2

⌉
�
(

1 + N

q
2λ1
1

)1/2 (
1 + N

q
2λ2
2

)1/2
it suffice to esti-

mate

(58)

(
1 +

N

q2λ11

)
1

R

∑
r∈Z

K̂
( r
R

)∑
m

∣∣∣∣∣∣∣
∑

0≤n1<q
λ1
1

fλ1(mn1 +mr)fλ1(mn1)

∣∣∣∣∣∣∣
2
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and

(59)

(
1 +

N

q2λ22

)
1

R

∑
r∈Z

K̂
( r
R

)∑
m

∣∣∣∣∣∣∣
∑

0≤n2<q
λ2
2

gλ2(mn2 +mr)gλ2(mn2)

∣∣∣∣∣∣∣
2

.

We will focus on (58) (the case of (59) is similar).
Writing m = d1m

′ with gcd(m′, qλ11 ) = 1 and observing that for any u ∈ Z, n1 7→ fλ1(d1m
′n1+u)

is
q
λ1
1

d1
-periodic, we get

(
1 +

N

q2λ11

) ∑
d1 | q

λ1
1

d1≤M

d21
R

∑
r∈Z

K̂
( r
R

) ∑
m′≤M/d1

gcd(m′,q
λ1
1 )=1

∣∣∣∣∣∣∣∣
∑

0≤n1<
q
λ1
1
d1

fλ1(d1m
′n1 + d1m

′r)fλ1(d1m
′n1)

∣∣∣∣∣∣∣∣
2

.

By Fourier inversion the inner sum over n1 is equal to∑
0≤n1<

q
λ1
1
d1

∑
0≤h<qλ11

∑
0≤k<qλ11

f̂λ1(h)f̂λ1(h− k) e

(
kd1m

′n1 + hd1m
′r

qλ11

)
.

Since gcd(m′, qλ11 ) = 1 we may replace h by hm̃′ and k by km̃′ where m′ m̃′ ≡ 1 mod qλ11 , and this
gives ∑

0≤n1<
q
λ1
1
d1

∑
0≤h<qλ11

∑
0≤k<qλ11

f̂λ1(hm̃
′)f̂λ1((h− k)m̃′) e

(
kd1n1 + hd1r

qλ11

)
,

which is equal to

qλ11
d1

∑
0≤h<qλ11

∑
k≡0 mod

q
λ1
1
d1

f̂λ1(hm̃
′)f̂λ1((h− k)m̃′) e

(
hd1r

qλ11

)
.

Writing h = h′ + `
q
λ1
1

d1
we obtain

qλ11
d1

∑
0≤h′<

q
λ1
1
d1

∑
0≤`<d1

∑
0≤k′<d1

f̂λ1

(
h′m̃′ + `m̃′

qλ11
d1

)
f̂λ1

(
h′m̃′ + `m̃′

qλ11
d1
− k′m̃′ q

λ1
1

d1

)
e

(
h′d1r

qλ11

)
,

and if we put `′ = `− k′ by periodicity we get for (58) the estimate(
1 +

N

q2λ11

)
q2λ11

∑
d1 | q

λ1
1

d1≤M

∑
m′≤M/d1

gcd(m′,q
λ1
1 )=1

1

R

∑
r∈Z

K̂
( r
R

) ∣∣∣∣∣∣∣∣
∑

0≤h′<
q
λ1
1
d1

∣∣∣∣∣ ∑
0≤`′<d1

f̂λ1

(
h′m̃′ + `′m̃′

qλ11
d1

)∣∣∣∣∣
2

e

(
h′d1r

qλ11

)∣∣∣∣∣∣∣∣
2

.
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By (18) we have K̂(r/R) ≤ K(r/2R) and expanding the square, (19) permits to obtain(
1 +

N

q2λ11

)
q2λ11

∑
d1 | q

λ1
1

d1≤M

∑
m′≤M/d1

gcd(m′,q
λ1
1 )=1

∑
0≤h′<

q
λ1
1
d1

∣∣∣∣∣ ∑
0≤`′<d1

f̂λ1

(
h′m̃′ + `′m̃′

qλ11
d1

)∣∣∣∣∣
2

∑
0≤h′′<

q
λ1
1
d1

K̂

(
2R

∥∥∥∥(h′′ − h′) d1
qλ11

∥∥∥∥)
∣∣∣∣∣ ∑
0≤`′′<d1

f̂λ1

(
h′′m̃′ + `′′m̃′

qλ11
d1

)∣∣∣∣∣
2

.

The last sum over h′′ is equal to∑
−h′≤h̃′′<−h′+

q
λ1
1
d1

K̂

(
2R

∥∥∥∥h̃′′ d1qλ11
∥∥∥∥)
∣∣∣∣∣ ∑
0≤`′′<d1

f̂λ1

(
h′m̃′ + h̃′′m̃′ + `′′m̃′

qλ11
d1

)∣∣∣∣∣
2

.

The function h̃′′ 7→
∥∥∥h̃′′ d1

q
λ1
1

∥∥∥ is
q
λ1
1

d1
-periodic, and since f̂λ1 is qλ11 -periodic, we observe that

∑
0≤`′′<d1

f̂λ1

(
h′m̃′ +

(
h̃′′ +

qλ11
d1

)
m̃′ + `′′m̃′

qλ11
d1

)
=

∑
0≤`′′<d1

f̂λ1

(
h′m̃′ + h̃′′m̃′ + (`′′ + 1)m̃′

qλ11
d1

)

=
∑

0≤`′′<d1

f̂λ1

(
h′m̃′ + h̃′′m̃′ + `′′m̃′

qλ11
d1

)
so that this quantity is

q
λ1
1

d1
-periodic in h̃′′. We deduce that the sum over h̃′′ may be written

∑
−
q
λ1
1
2d1

<h̃′′≤
q
λ1
1
2d1

K̂

(
2Rh̃′′

d1

qλ11

) ∣∣∣∣∣ ∑
0≤`′′<d1

f̂λ1

(
h′m̃′ + h̃′′m̃′ + `′′m̃′

qλ11
d1

)∣∣∣∣∣
2

,

which by Cauchy-Schwarz (for the sum over `′′) and interverting the summations is at most

(60) d1
∑

0≤`′′<d1

∑
−
q
λ1
1
2d1

<h̃′′≤
q
λ1
1
2d1

K̂

(
2Rh̃′′

d1

qλ11

) ∣∣∣∣f̂λ1 (h′m̃′ + h̃′′m̃′ + `′′m̃′
qλ11
d1

)∣∣∣∣2 .
As the support of K̂ is [−1, 1] (see (17)) the length of the summation over h̃′′ is ≤ 1 +

q
λ1
1

Rd1
≤ qλ1−ρ

′

1

where ρ′ = ρ− 2 and ρ ∈ N is defined by

(61) qρ−11 < R ≤ qρ1 .

As f is strongly q1-multiplicative, by (39) and Lemma 18 we obtain for any t ∈ R,∣∣∣f̂λ1(t)∣∣∣ =
∣∣∣f̂λ1−ρ′(t)∣∣∣ ∣∣∣f̂ρ′(t q−(λ1−ρ′)1 )

∣∣∣� q−C2ρ′

1

∣∣∣f̂λ1−ρ′(t)∣∣∣ .
Since 0 ≤ K̂ ≤ 1, the sum (60) is at most

d21 max
k∈Z

∑
0≤h<qλ1−ρ

′
1

∣∣∣f̂λ1 ((h+ k)m̃′
)∣∣∣2 � d21q

−2C2ρ′

1 max
k∈Z

∑
0≤h<qλ1−ρ

′
1

∣∣∣f̂λ1−ρ′ ((h+ k)m̃′
)∣∣∣2 = d21q

−2C2ρ′

1 ,

where the last equality is obtained by (25), observing that since gcd(m̃′, qλ1−ρ
′

1 ) = 1, in the last

sum hm̃′ runs over a complete set of residues modulo qλ1−ρ
′

1 .
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Therefore again by Cauchy-Schwarz (for the sum over `′) we obtain that (58) is bounded by

q−2C2ρ′

1

(
1 +

N

q2λ11

)
q2λ11

∑
d1 | q

λ1
1

d1≤M

d21
M

d1
max
m̃′∈Z

gcd(m̃′,q
λ1
1 )=1

∑
0≤h′<

q
λ1
1
d1

d1
∑

0≤`′<d1

∣∣∣∣f̂λ1 (h′m̃′ + `′m̃′
qλ11
d1

)∣∣∣∣2

� q−2C2ρ′

1 M
(
q2λ11 +N

) ∑
d1 | q

λ1
1

d1≤M

d21
∑

0≤h<qλ11

∣∣∣f̂λ1 (h)
∣∣∣2 ,

and finally by (55) and (56) is

� R−2C2M3
(
M2R2D2 +N

)
τ(qλ11 ).

We choose

(62) D = N δ

with 0 < δ < 1/6 and

(63) R =
⌊
N1/2M−1D−1

⌋
with

(64) M ≤ N
1
2
−δ,

so that (54) is satisfied. Assuming also

(65) M ≤ (N1/2M−1D−1)C2/2,

we obtain that (58) is

� R−C2MN τ(qλ11 )� R−C2MN λ
ω(q1)
1 τ(q1).

The condition (65) is ensured if

µ1

(
1 +

(
3

2
− δ
)
C2

2

)
< (µ1 + ν1)

(
1

2
− δ
)
C2

2
,

which is the case if (50) is restricted to

(66) 0 < ξ1 <
(1− 2δ)C2

4 + (3− 2δ)C2

.

It follows from (37) and (66) that ξ1 <
1
4

(which implies (50)), so that µ1 <
1
4
(µ1 + ν1) which

implies that 3µ1 < ν1 and M ≤ N1/3 ≤ N
1
2
−δ, so that (64) holds. Since 1

2
− δ > 0, M � (MN)1/4

and N � (MN)3/4 we have

R−C2 � (MN)
C2
4
− 3C2

4 ( 1
2
−δ) = (MN)−

C2
8
+

3δC2
4

so that finally (58) is

� (MN)1−
C2(f,q1)

8
(1−6δ) (logMN)ω(q1) τ(q1).

In the same way (59) is

� (MN)1−
C2(g,q2)

8
(1−6δ) (logMN)ω(q2) τ(q2).

It follows from (57) that

S2
I (ϑ)� (MN)2−

C2(f,q1)+C2(g,q2)
16

(1−6δ) (logMN)
1
2
ω(q1)+

1
2
ω(q2) +M2R2 +

M2N2

D
.
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By (63), M2R2 ≤ ND−2 = N1−2δ ≤ (MN)1−2δ and M2N2

D
= M2N2

Nδ ≤ (MN)2−
3δ
4 Choosing

δ =
C2(f, q1) + C2(g, q2)

6(2 + C2(f, q1) + C2(g, q2))

we obtain (53) with σ(q1, q2) = 3
4
δ. �

8. Sums of type II

Let

(67) 1 ≤M ≤ N

be integers. Let µ1 and ν1 be the unique integers such that

(68) qµ1−11 ≤M < qµ11 and qν1−11 ≤ N < qν11

and assume that

(69) ξ1(µ1 + ν1) ≤ µ1 ≤ 1
2
(µ1 + ν1)

where ξ1 satisfies (66).
Similarly let µ2 and ν2 be the unique integers such that

(70) qµ2−12 ≤M < qµ22 and qν2−12 ≤ N < qν22

and assume that

(71) ξ1(µ2 + ν2) ≤ µ2 ≤ 1
2
(µ2 + ν2).

We assume also that the multiplicative dependence of the variables in the type II sums has been
removed by the classical method described (for example) in section 5 of [25].

For any ϑ ∈ R, (am)m∈N and (bn)n∈N two sequences of complex numbers of modulus at most 1
and f and g two strongly q-multiplicative functions we consider

SII(ϑ) =
∑

M
2
<m≤M

∑
N
2
<n≤N

ambnf(mn)g(mn) e(ϑmn).

Proposition 5. For any integers M and N satisfying (68), (69), (70), (71), we have uniformly
for (am)m∈N and (bn)n∈N two sequences of complex numbers of modulus at most 1 and ϑ ∈ R

(72) |SII(ϑ)| �MN exp

(
−C log(MN)

log log(MN)

)
for some explicit constant C = C(f, g, ξ1, ξ2) > 0.

As often in this approach, getting an upper bound for the sums of type II is the most difficult
part. The proof is quite long and complicated and will be developped over several sections and
completed at formula (97). By the Cauchy-Schwarz inequality we have

|SII(ϑ)|2 �M
∑

M
2
<m≤M

∣∣∣∣∣∣
∑

N
2
<n≤N

bnf(mn)g(mn) e(ϑmn)

∣∣∣∣∣∣
2

.

Let R0 be an integer to be defined later (by (92)) such that

(73) 1 ≤ R0 ≤ N.

Applying Lemma 4 to the summation over n with k = 1 and then summing over m we get

|SII(ϑ)|2 � M2N2

R0

+
MN

R0

∑
1≤r0<R0

(
1− r0

R0

)
<(S1(r0)),
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with

S1(r0) =
∑

M
2
<m≤M

∑
N
2
<n≤N−r0

bn+r0bnf(mn+mr0)f(mn)g(mn+mr0)g(mn) e(ϑmr0).

Let ρ1 and ρ2 be the unique integers such that

(74) qρ1−11 < R0 ≤ qρ11 and qρ2−12 < R0 ≤ qρ22 ,

and

(75) µ12 = µ1 + 2ρ1 and µ22 = µ2 + 2ρ2.

If f and g have the carry property explained in Definition 5, then by Lemma 12 the number
of (m,n) for which f(mn + mr0)f(mn) 6= fµ12(mn + mr0)fµ12(mn) is O(MN/R0), and similarly

the number of (m,n) for which g(mn+mr0)g(mn) 6= gµ22(mn+mr0)gµ22(mn) is also O(MN/R0).
Hence

S1(r0) = S ′1(r0) +O(MN/R0),

where

S ′1(r0) =
∑

M
2
<m≤M

∑
N
2
<n≤N−r0

bn+r0bnfµ12(mn+mr0)fµ12(mn)gµ22(mn+mr0)gµ22(mn) e(ϑmr0).

Using the Cauchy-Schwarz inequality, this leads to

(76) |SII(ϑ)|4 � M4N4

R2
0

+
M2N2

R2
0

R0

∑
1≤r0<R0

|S ′1(r0)|
2
.

We reverse the order of summation in S ′1(r0) and obtain:

|S ′1(r0)| ≤
∑

N
2
<n≤N−r0

∣∣∣∣∣∣
∑

M
2
<m≤M

fµ12(mn+mr0)fµ12(mn)gµ22(mn+mr0)gµ22(mn) e(ϑmr0)

∣∣∣∣∣∣ .
We may extend the summation over n to (N/2, N ] and apply the Cauchy-Schwarz inequality:

|S ′1(r0)|
2 � N

∑
N
2
<n≤N

∣∣∣∣∣∣
∑

M
2
<m≤M

fµ12(mn+mr0)fµ12(mn)gµ22(mn+mr0)gµ22(mn) e(ϑmr0)

∣∣∣∣∣∣
2

.

Applying to the summation over m the Lemma 4 with positive integers k = qµ111 and R1 such that

(77) M � qµ111 R1 �M

and then summing over n and r0 we get

(78)
1

R0

∑
1≤r0<R0

|S ′1(r0)|
2 � M2N2

R1

+MN <(S2),

with

S2 =
1

R0R1

∑
1≤r0<R0

∑
1≤r1<R1

(
1− r1

R1

)
e(qµ111 r0r1ϑ) S ′2(r0, r1)

and

S ′2(r0, r1) =
∑

N
2
<n≤N

∑
M/2<m≤M−qµ111 r1

ψ
<q

µ11
1 r1,r0>

1 (m,n)

using notation (21) with
ψ1(m,n) = fµ12(mn) gµ22(mn).



PRIME NUMBERS IN TWO BASES 27

Using (76) and (78) we obtain uniformly for ϑ ∈ R:

(79) |SII(ϑ)|4 � M4N4

R2
0

+
M4N4

R1

+
M3N3

R0R1

∑
1≤r0<R0

∑
1≤r1<R1

|S ′2(r0, r1)| .

Using the Cauchy-Schwarz inequality we get

(80) |SII(ϑ)|8 � M8N8

R4
0

+
M8N8

R2
1

+
M6N6

R2
0R

2
1

R0R1

∑
1≤r0<R0

∑
1≤r1<R1

|S ′2(r0, r1)|
2
.

We have

|S ′2(r0, r1)|
2 ≤ N

∑
N
2
<n≤N

∣∣∣∣∣∣
∑

M/2<m≤M−qµ111 r1

ψ
<q

µ11
1 r1,r0>

1 (m,n)

∣∣∣∣∣∣
2

and applying to the summation over m the Lemma 4 with positive integers k = qµ212 and R2 such
that

(81) M � qµ212 R2 �M

we obtain

|S ′2(r0, r1)|
2 �M2N2

R2

+
MN

R2

<
∑

1≤r2<R2

(
1− r2

R2

)
∑

N
2
<n≤N

∑
M/2<m≤M−qµ111 r1−q

µ21
2 r2

ψ
<q

µ11
1 r1,r0>

1 (m+ qµ212 r2, n)ψ
<q

µ11
1 r1,r0>

1 (m,n).

Writing fµ12 = fµ11fµ11,µ12 and gµ22 = gµ21gµ21,µ22 , using the periodicity and then summing over r0
and r1 we get

(82)
1

R0R1

∑
1≤r0<R0

∑
1≤r1<R1

|S ′2(r0, r1)|
2 � M2N2

R2

+
MN

R0R1R2

∑
1≤r0<R0

∑
1≤r1<R1

∑
1≤r2<R2

|S3(r0, r1, r2)|

with

S3(r0, r1, r2) =
∑

N
2
<n≤N

∑
M/2<m≤M−qµ111 r1−q

µ21
2 r2

ψ
<q

µ11
1 r1,r0>

2 (m+ qµ212 r2, n)ψ
<q

µ11
1 r1,r0>

2 (m,n),

using notation (21) with

ψ2(m,n) = fµ11,µ12(mn) gµ21,µ22(mn).

For i ∈ {1, 2}, we filter the variables in the expressions fµ11,µ12(.) (for i = 1) and gµ21,µ22(.) (for
i = 2) in terms of variables vi1, vi2, ui1, ui2, ui3, ui4 (we denote by τ the permutation on {1, 2}
exchanging 1 and 2) as follows:

rin ≡ vi1 mod qµi2−µi1i , 0 ≤ vi1 < qµi2−µi1i ,

rir0 ≡ vi2 mod qµi2−µi1i , 0 ≤ vi2 < qµi2−µi1i ,

mn ≡ ui1q
µi1
i + wi1 mod qµi2i , 0 ≤ ui1 < qµi2−µi1i , 0 ≤ wi1 < qµi1i ,

m(n+ r0) ≡ ui2q
µi1
i + wi2 mod qµi2i , 0 ≤ ui2 < qµi2−µi1i , 0 ≤ wi2 < qµi1i ,

rτ(i)r0q
µτ(i)1
τ(i) ≡ ui3q

µi1
i + wi3 mod qµi2i , 0 ≤ ui3 < qµi2−µi1i , 0 ≤ wi3 < qµi1i ,

rτ(i)nq
µτ(i)1
τ(i) ≡ ui4q

µi1
i + wi4 mod qµi2i , 0 ≤ ui4 < qµi2−µi1i , 0 ≤ wi4 < qµi1i ,
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with auxiliary variables wi1, wi2, wi3, wi4 (which do not influence the corresponding values of
fµ11,µ12(.) and gµ21,µ22(.)). Using (2) with

(83) α1 = qµ11−µ121 , α2 = qµ21−µ222 ,

since f is strongly q1-multiplicative and g is strongly q2-multiplicative, using notation (28) we can
write

S3(r0, r1, r2) =
∑

u11,u12,u13,u14

∑
v11,v12

∑
u21,u22,u23,u24

∑
v21,v22

f
[v11+v12,u13+u14]
µ12−µ11 (u12) f

[v11,u14]
µ12−µ11 (u11) g

[u23+u24,v21+v22]
µ22−µ21 (u22) g

[u24,v21]
µ22−µ21(u21)∑

N
2
<n≤N

∑
M/2<m≤M−qµ111 r1−q

µ21
2 r2

1
r1n≡v11 mod q

µ12−µ11
1

1
r1r0≡v12 mod q

µ12−µ11
1

χα1

(
mn

qµ121

− u11

qµ12−µ111

)
χα1

(
m(n+ r0)

qµ121

− u12

qµ12−µ111

)
χα1

(
r2r0q

µ21
2

qµ121

− u13

qµ12−µ111

)
χα1

(
r2nq

µ21
2

qµ121

− u14

qµ12−µ111

)
1
r2n≡v21 mod q

µ22−µ21
2

1
r2r0≡v22 mod q

µ22−µ21
2

χα2

(
mn

qµ222

− u21

qµ22−µ212

)
χα2

(
m(n+ r0)

qµ222

− u22

qµ22−µ212

)
χα2

(
r1r0q

µ11
1

qµ222

− u23

qµ22−µ212

)
χα2

(
r1nq

µ11
1

qµ222

− u24

qµ22−µ212

)
.

Let

F (h, a, b) =
̂
f
[a,b]
µ12−µ11(h), G(h, a, b) =

̂
g
[a,b]
µ22−µ21(h).

We observe that F and G satisfy for all (a, b) ∈ Z2:∑
0≤h<qµ12−µ111

|F (h, a, b)|2 = 1,
∑

0≤h<qµ22−µ212

|G(h, a, b)|2 = 1,

and for all (h, a, b) ∈ Z3:

F (h, a, 0) = F (h, 0, b) =

{
1 if h ≡ 0 mod qµ12−µ111 ,
0 otherwise,

G(h, a, 0) = G(h, 0, b) =

{
1 if h ≡ 0 mod qµ22−µ212 ,
0 otherwise.

Applying Lemma 3 to S3(r0, r1, r2) (we have d = 6) we obtain by (7)

(84) S3(r0, r1, r2) = S4(r0, r1, r2) +O(E4(r0, r1, r2))

with, for any integer H ≥ 1,
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S4(r0, r1, r2) =
∑

h11,h12,h14

ah11(α1, H)ah12(α1, H)ah14(α1, H)

∑
h21,h22,h24

ah21(α2, H)ah22(α2, H)ah24(α2, H)

qµ11−µ121

∑
0≤k11<q

µ12−µ11
1

∑
v11

e

(
−k11v11
qµ12−µ111

) ∑
v12≡r1r0 mod q

µ12−µ11
1∑

u13

χα1

(
r2r0q

µ21
2

qµ121

− u13

qµ12−µ111

)∑
u14

e

(
− h14u14

qµ12−µ111

)
q
2(µ12−µ11)
1 F (h12, v11 + v12, u13 + u14) F (−h11, v11, u14)

qµ21−µ222

∑
0≤k21<q

µ22−µ21
2

∑
v21

e

(
−k21v21
qµ22−µ212

) ∑
v22≡r2r0 mod q

µ22−µ21
2∑

u23

χα2

(
r1r0q

µ11
1

qµ222

− u23

qµ22−µ212

)∑
u24

e

(
− h24u24

qµ22−µ212

)
q
2(µ22−µ21)
2 G(h22, v21 + v22, u23 + u24) G(−h21, v21, u24)∑
M/2<m≤M−qµ111 r1−q

µ21
2 r2

∑
N
2
<n≤N

e

(
(h11 + h12)mn+ h12mr0 + h14r2nq

µ21
2 + k11r1nq

µ11
1

qµ121

)
e

(
(h21 + h22)mn+ h22mr0 + h24r1nq

µ11
1 + k21r2nq

µ21
2

qµ222

)
.

and

E4(r0, r1, r2) =
q
3(µ12−µ11)
1 q

3(µ22−µ21)
2

H6

∑
|h11|,|h12|,|h14|≤Hq

µ11−µ12
1

∑
|h21|,|h22|,|h24|≤Hq

µ21−µ22
2∑

v12≡r1r0 mod q
µ12−µ11
1

∑
u13

χα1

(
r2r0q

µ21
2

qµ121

− u13

qµ12−µ111

)
∑

v22≡r2r0 mod q
µ22−µ21
2

∑
u23

χα2

(
r1r0q

µ11
1

qµ222

− u23

qµ22−µ212

)
∑

(δ11,δ12,δ14,δ21,δ22,δ24)∈{0,1}6
(δ11,δ12,δ14,δ21,δ22,δ24)6=(0,...,0)

∑
M/2<m≤M−qµ111 r1−q

µ21
2 r2

∑
N
2
<n≤N∑

v11

1
r2n≡v21 mod q

µ22−µ21
2

∑
v21

1
r2r0≡v22 mod q

µ22−µ21
2

e

(
(δ11h11 + δ12h12)q

µ12−µ11
1 mn+ δ12h12q

µ12−µ11
1 mr0 + δ14h14q

µ12−µ11
1 r2nq

µ21
2

qµ121

)
e

(
(δ21h21 + δ22h22)q

µ22−µ21
1 mn+ δ22h22q

µ22−µ21
2 mr0 + δ24h24q

µ22−µ21
2 r1nq

µ11
1

qµ222

)
.
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8.1. Estimate of E4(r0, r1, r2). Observing that in E4(r0, r1, r2) there is only one contributing
value for v12, v22, v11, v21, u13 and u23 we can write:

E4(r0, r1, r2) =
q
3(µ12−µ11)
1 q

3(µ22−µ21)
2

H6

∑
|h11|,|h12|,|h14|≤Hq

µ11−µ12
1

∑
|h21|,|h22|,|h24|≤Hq

µ21−µ22
2∑

(δ11,δ12,δ14,δ21,δ22,δ24)∈{0,1}6
(δ11,δ12,δ14,δ21,δ22,δ24)6=(0,...,0)

∑
M/2<m≤M−qµ111 r1−q

µ21
2 r2

∑
N
2
<n≤N

e

(
(δ11h11 + δ12h12)mn+ δ12h12mr0 + δ14h14r2nq

µ21
2

qµ111

)
e

(
(δ21h21 + δ22h22)mn+ δ22h22mr0 + δ24h24r1nq

µ11
1

qµ212

)
.

Let E40(r0, r1, r2) be the contribution of the terms for which (δ11, δ12, δ21, δ22) = (0, 0, 0, 0), and
E41(r0, r1, r2) be the contribution of the terms for which (δ11, δ12, δ21, δ22) 6= (0, 0, 0, 0).

In E40(r0, r1, r2) we have (δ14, δ24) ∈ {(1, 1), (1, 0), (0, 1)} so that

E40(r0, r1, r2)�M
qµ12−µ111 qµ22−µ212

H2
E401(r1, r2) +M

qµ12−µ111

H
E402(r1, r2) +M

qµ22−µ212

H
E403(r1, r2),

where E401(r1, r2), E402(r1, r2) and E403(r1, r2), defined below, can be estimated by Lemma 7:

E401(r1, r2) =
∑

|h14|≤Hq
µ11−µ12
1

∑
|h24|≤Hq

µ21−µ22
2

min

(
N,

∣∣∣∣sin π(h14r2qµ212

qµ111

+
h24r1q

µ11
1

qµ212

)∣∣∣∣−1
)

�
∑

|h14|≤Hq
µ11−µ12
1

(gcd(r1q
µ11
1 , qµ212 )N + qµ212 log qµ212 )

� Hqµ11−µ121 (gcd(r1q
µ11
1 , qµ212 )N + qµ212 log qµ212 ) ,

E402(r1, r2) =
∑

|h14|≤Hq
µ11−µ12
1

min

(
N,

∣∣∣∣sin πh14r2qµ212

qµ111

∣∣∣∣−1
)

� (gcd(r2q
µ21
2 , qµ111 )N + qµ111 log qµ111 ) ,

and

E403(r1, r2) =
∑

|h24|≤Hq
µ21−µ22
2

min

(
N,

∣∣∣∣sin πh24r1qµ111

qµ212

∣∣∣∣−1
)

� (gcd(r1q
µ11
1 , qµ212 )N + qµ212 log qµ212 ) .

Since gcd(q1, q2) = 1, qµ111 ≤M ≤ N and qµ212 ≤M ≤ N (by (67)), using (15) we get uniformly for
r0 ∈ {1, . . . , R0 − 1}:

R−11 R−12

∑
1≤r1<R1

∑
1≤r2<R2

E40(r0, r1, r2)

� MN
qµ12−µ111

H
(τ(qµ111 ) + log qµ111 ) +MN

qµ22−µ212

H
(τ(qµ212 ) + log qµ212 ) .
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We may estimate E41(r0, r1, r2) by

q
3(µ12−µ11)
1 q

3(µ22−µ21)
2

H6

∑
|h11|,|h12|,|h14|≤Hq

µ11−µ12
1

∑
|h21|,|h22|,|h24|≤Hq

µ21−µ22
2∑

(δ11,δ12,δ14,δ21,δ22,δ24)∈{0,1}6
(δ11,δ12,δ21,δ22)6=(0,0,0,0)

∑
M/2<m≤M−qµ111 r1−q

µ21
2 r2

min

(
N,

∣∣∣∣sin π((δ11h11 + δ12h12)m+ δ14h14r2q
µ21
2

qµ111

+
(δ21h21 + δ22h22)m+ δ24h24r1q

µ11
1

qµ212

)∣∣∣∣−1
)
.

The contribution of the terms for which δ11 = 1 is estimated by

qµ12−µ111

H

∑
M/2<m≤M−qµ111 r1−q

µ21
2 r2

max
ϕ∈R

 ∑
|h11|≤Hq

µ11−µ12
1

min

(
N,

∣∣∣∣sin π(h11mqµ111

+ ϕ

)∣∣∣∣−1
) .

which by Lemma 7 is at most

qµ12−µ111

H

∑
M/2<m≤M−qµ111 r1−q

µ21
2 r2

(gcd(m, qµ111 )N + qµ111 log qµ111 )

and by (15), since by (67) we have qµ111 ≤ M ≤ N and qµ212 ≤ M ≤ N , we obtain uniformly over
r0, r1, r2 that the contribution of the terms for which δ11 = 1 is estimated by

�MN
qµ12−µ111

H
(τ(qµ111 ) + log qµ111 ) .

We may argue similarly if δ12 = 1, if δ21 = 1 and if δ22 = 1. Therefore we obtain

E41(r0, r1, r2)�MN
qµ12−µ111

H
(τ(qµ111 ) + log qµ111 ) +MN

qµ22−µ212

H
(τ(qµ212 ) + log qµ212 ) ,

and finally, uniformly for r0 ∈ {1, . . . , R0 − 1}:

R−11 R−12

∑
1≤r1<R1

∑
1≤r2<R2

E4(r0, r1, r2)

� MN
qµ12−µ111

H
(τ(qµ111 ) + log qµ111 ) +MN

qµ22−µ212

H
(τ(qµ212 ) + log qµ212 )

which, if we choose

(85) H = R3
0 max(R1, R2),

by (75), (77), (81) gives

R−11 R−12

∑
1≤r1<R1

∑
1≤r2<R2

E4(r0, r1, r2)(86)

� MNR−10

(
(1 + µ11)

ω(q1) + log qµ111 + (1 + µ21)
ω(q2) + log qµ212

)
.
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8.2. Estimate of S4(r0, r1, r2).

S4(r0, r1, r2)� qµ12−µ111

∑
h11,h12,h14

min(α1, |h11|−1) min(α1, |h12|−1) min(α1, |h14|−1)

qµ22−µ212

∑
h21,h22,h24

min(α2, |h21|−1) min(α2, |h22|−1) min(α2, |h24|−1)

∑
u13

χα1

(
r2r0q

µ21
2

qµ121

− u13

qµ12−µ111

) ∑
v12≡r1r0 mod q

µ12−µ11
1∑

u14

∑
v11

|F (h12, v11 + v12, u13 + u14) F (−h11, v11, u14)|

∑
u23

χα2

(
r1r0q

µ11
1

qµ222

− u23

qµ22−µ212

) ∑
v22≡r2r0 mod q

µ22−µ21
2∑

u24

∑
v21

|G(h22, v21 + v22, u23 + u24) G(−h21, v21, u24)|

∑
0≤k11<q

µ12−µ11
1

∑
0≤k21<q

µ22−µ21
2

∣∣∣∣∣ ∑
M/2<m≤M−qµ111 r1−q

µ21
2 r2

∑
N
2
<n≤N

e

(
(h11 + h12)mn+ h12mr0 + h14r2nq

µ21
2 + k11r1nq

µ11
1

qµ121

)
e

(
(h21 + h22)mn+ h22mr0 + h24r1nq

µ11
1 + k21r2nq

µ21
2

qµ222

) ∣∣∣∣∣.
By Cauchy-Schwarz and Proposition 2 we have uniformly for u13 and v12:∑

v11

∑
u14

|F (h12, v11 + v12, u13 + u14) F (h12, v11, u14)|(87)

≤

(∑
v11

∑
u14

|F (h12, v11 + v12, u13 + u14)|2
)1/2(∑

v11

∑
u14

|F (h12, v11, u14)|2
)1/2

≤ c1(f) q
−c2(f)(µ12−µ11)
1 ,

and uniformly for u23 and v22, similarly:

∑
v21

∑
u24

|G(h22, v21 + v22, u23 + u24) G(h22, v21, u24)| ≤ c1(g) q
−c2(g)(µ22−µ21)
2 .

Furthermore by (83)

∑
u13

χα1

(
r2r0q

µ21
2

qµ121

− u13

qµ12−µ111

)
= 1 =

∑
u23

χα2

(
r1r0q

µ11
1

qµ222

− u23

qµ22−µ212

)
.
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Observing that the summations over v12 and v22 take each only one value, this gives

S4(r0, r1, r2)� c1(f)q
(1−c2(f))(µ12−µ11)
1

∑
h11,h12,h14

min(α1, |h11|−1) min(α1, |h12|−1) min(α1, |h14|−1)

c1(g)q
(1−c2(g))(µ22−µ21)
2

∑
h21,h22,h24

min(α2, |h21|−1) min(α2, |h22|−1) min(α2, |h24|−1)∑
0≤k11<q

µ12−µ11
1

∑
0≤k21<q

µ22−µ21
2∣∣∣∣∣ ∑

M/2<m≤M−qµ111 r1−q
µ21
2 r2

∑
N
2
<n≤N

e

(
(h11 + h12)mn+ h12mr0 + h14r2nq

µ21
2 + k11r1nq

µ11
1

qµ121

)

e

(
(h21 + h22)mn+ h22mr0 + h24r1nq

µ11
1 + k21r2nq

µ21
2

qµ222

) ∣∣∣∣∣,
and by (9) we get

S4(r0, r1, r2)�c1(f) q
(1−c2(f))(µ12−µ11)
1

∑
h11,h12,h14

min(α1, |h11|−1) min(α1, |h12|−1) min(α1, |h14|−1)

c1(g) q
(1−c2(g))(µ22−µ21)
2

∑
h21,h22,h24

min(α2, |h21|−1) min(α2, |h22|−1) min(α2, |h24|−1)∑
0≤k11<q

µ12−µ11
1

∑
0≤k21<q

µ22−µ21
2

∑
M/2<m≤M−qµ111 r1−q

µ21
2 r2

min

(
N,

∣∣∣∣∣ sin π
((

h11 + h12
qµ121

+
h21 + h22
qµ222

)
m+

h14r2q
µ21
2

qµ121

+
h24r1q

µ11
1

qµ222

+
k11r1

qµ12−µ111

+
k21r2

qµ22−µ212

)∣∣∣∣∣
−1)

.

Let us write

(88) S4(r0, r1, r2)� S40(r0, r1, r2) + S41(r0, r1, r2)

where S40(r0, r1, r2) denotes the contribution in the right hand side above of the terms for which
h11 + h12 = h21 + h22 = 0 and S41(r0, r1, r2) denotes the contribution of the remaining terms.

8.3. Diagonal part.
We handle here S40(r0, r1, r2) for which h11 + h12 = h21 + h22 = 0. We have

S40(r0, r1, r2)�c1(f) q
(1−c2(f))(µ12−µ11)
1

∑
h12,h14

min(α1, |h12|−1)2 min(α1, |h14|−1)

c1(g) q
(1−c2(g))(µ22−µ21)
2

∑
h22,h24

min(α2, |h22|−1)2 min(α2, |h24|−1)

M S401(r1, r2, h14, h24),

where S401(r1, r2, h14, h24) is equal to∑
0≤k11<q

µ12−µ11
1

∑
0≤k21<q

µ22−µ21
2

min

(
N,

∣∣∣∣sin π(h14r2qµ212 + k11r1q
µ11
1

qµ121

+
h24r1q

µ11
1 + k21r2q

µ21
2

qµ222

)∣∣∣∣−1
)
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Since gcd(q1, q2) = 1, by Lemma 8 we have uniformly in h14 and h24:

S401(r1, r2, h14, h24)� N gcd(r1, q
µ12−µ11
1 ) gcd(r2, q

µ22−µ21
2 ) + qµ12−µ111 qµ22−µ212 log

(
qµ12−µ111 qµ22−µ212

)
By (77), (81), (75),(74) we have qµ12−µ111 � R2

0R1 and qµ22−µ212 � R2
0R2 and if we assume that

(89) R4
0R1R2 � N

4
5

then
S401(r1, r2, h14, h24)� N gcd(r1, q

µ12−µ11
1 ) gcd(r2, q

µ22−µ21
2 ).

Since ∑
h12

(
min(α1, |h12|−1)

)2 � α1;
∑
h14

min(α1, |h14|−1)� 1 + logH,

∑
h22

(
min(α2, |h22|−1)

)2 � α2;
∑
h24

min(α2, |h24|−1)� 1 + logH,

this leads to

S40(r0, r1, r2)� q
(1−c2(f))(µ12−µ11)
1 q

(1−c2(g))(µ22−µ21)
2 α1α2(1 + logH)2

MN gcd(r1, q
µ12−µ11
1 ) gcd(r2, q

µ22−µ21
2 ),

which by (15) and (83) gives uniformly for r0 ∈ {1, . . . , R0 − 1}:

R−11 R−12

∑
1≤r1<R1

∑
1≤r2<R2

S40(r0, r1, r2)(90)

� MNq
−c2(f)(µ12−µ11)
1 q

−c2(g)(µ22−µ21)
2 (1 + logH)2τ(qµ12−µ111 )τ(qµ22−µ212 ).

Remark 5. The existence of two conditions (h11 + h12 = 0 and h21 + h22 = 0) in this diagonal
part provided the factor α1α2 which was crucial to permit to eliminate the factor qµ12−µ111 qµ22−µ212

and get a satisfactory upper bound.

8.4. Non diagonal part.
We handle here S41(r0, r1, r2) for which h11 + h12 6= 0 or h21 + h22 6= 0. After making the

summation over n and extending the summation over m (in order to remove its dependence on r1
and r2), we apply Lemma 7. We distinguish three cases:

• if h11 + h12 6= 0 and h21 + h22 = 0, by Lemma 7, remembering that MR2
0 � qµ121 , uniformly

for ϕ ∈ R we get ∑
M/2<m≤M

min

(
N,

∣∣∣∣sin π((h11 + h12)m

qµ121

+ ϕ

)∣∣∣∣−1
)

� N gcd (h11 + h12, q
µ12
1 ) + qµ121 log qµ121

� HN +MR2
0 log(MN).

• if h11 + h12 = 0 and h21 + h22 6= 0, by Lemma 7, remembering that MR2
0 � qµ222 , uniformly

for ϕ ∈ R, we get ∑
M/2<m≤M

min

(
N,

∣∣∣∣sin π((h21 + h22)m

qµ222

+ ϕ

)∣∣∣∣−1
)

� N gcd (h21 + h22, q
µ22
2 ) + qµ222 log qµ222

� HN +MR2
0 log(MN).
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• if h11 + h12 6= 0 and h21 + h22 6= 0, in order to apply Lemma 6 we introduce

ξ =
h11 + h12
qµ121

+
h21 + h22
qµ222

.

By (10), uniformly for ϕ ∈ R, we get the estimate∑
M/2<m≤M

min

(
N,

∣∣∣∣sin π((h11 + h12
qµ121

+
h21 + h22
qµ222

)
m+ ϕ

)∣∣∣∣−1
)

� ‖ξ‖−1 log ‖ξ‖−1 +N +MN ‖ξ‖+M log ‖ξ‖−1 .
By [32, Corollary 9.22] (see also [6, p. 30]) there exist an absolute constant C > 0 such
that∣∣∣∣−h11 − h12h21 + h22

q−µ121 qµ222 − 1

∣∣∣∣
≥ exp (−C log q1 log q2 log max(µ12, µ22) log max(|h11 + h12| , |h21 + h22|))
≥ exp (−C1 log log(MN) log(2H))

for some C1 > 0 depending only on q1 and q2, so that by (75)

‖ξ‖ ≥ |h21 + h22| q−µ222 exp (−C1 log log(MN) log(2H))

≥M−1R−20 exp (−C1 log log(MN) log(2H)) .

Since ‖ξ‖ ≤ 4H/M , this leads to∑
M/2<m≤M

min

(
N,

∣∣∣∣sin π((h11 + h12
qµ121

+
h21 + h22
qµ222

)
m+ ϕ

)∣∣∣∣−1
)

�MR2
0 exp (C1 log log(MN) log(2H)) log(MN) +HN +M log(MN).

It follows that

S41(r0, r1, r2)�c1(f) q
(2−c2(f))(µ12−µ11)
1

∑
h11,h12,h14

min(α1, |h11|−1) min(α1, |h12|−1) min(α1, |h14|−1)

c1(g) q
(2−c2(g))(µ22−µ21)
2

∑
h21,h22,h24

min(α2, |h21|−1) min(α2, |h22|−1) min(α2, |h24|−1)(
MR2

0 exp (C1 log log(MN) log(2H)) log(MN) +HN +M log(MN)
)
,

and by (75), (77), (81),

S41(r0, r1, r2)�c1(f) c1(g) R4
0 R1 R2 (1 + logH)6(91) (

MR2
0 exp (C1 log log(MN) log(2H)) log(MN) +HN +M log(MN)

)
.

If we choose

(92) R0 = exp

(
log(MN)

21C1 log log(MN)

)
,

(93) R1 = R2
0,

and

(94) R2 = R4
0,

the conditions (73), (77), (81) and (89) are satisfied and by (85) we have

H = R7
0,
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and

logH =
log(MN)

3C1 log log(MN)
.

It follows from (91) that

S41(r0, r1, r2)�c1(f) c1(g) exp

(
log(MN)

C1 log log(MN)

)(
M(MN)1/3 +N +M

)
.(95)

8.5. Completion of the estimate of the sums of type II.
By (88), (90) and (95) we conclude that

R−11 R−12

∑
1≤r1<R1

∑
1≤r2<R2

S4(r0, r1, r2)(96)

� MNq
−c2(f)(µ12−µ11)
1 q

−c2(g)(µ22−µ21)
2 (1 + logH)2τ(qµ12−µ111 )τ(qµ22−µ212 )

+ c1(f) c1(g) exp

(
log(MN)

C1 log log(MN)

)(
M(MN)1/3 +N +M

)
.

By (80), (82) we have

|SII(ϑ)|8 �ε
M8N8

R4
0

+
M8N8

R2
1

+
M8N8

R2

+
M7N7

R0R1R2

∑
1≤r0<R0

∑
1≤r1<R1

∑
1≤r2<R2

|S3(r0, r1, r2)| ,

and it follows from (84) and (96) that

|SII(ϑ)|8 �M8N8

R4
0

+
M8N8

R2
1

+
M8N8

R2

+M8N8q
−c2(f)(µ12−µ11)
1 q

−c2(g)(µ22−µ21)
2 (1 + logH)2τ(qµ12−µ111 )τ(qµ22−µ212 )

+ c1(f) c1(g) exp

(
log(MN)

C1 log log(MN)

)
M8N8

(
M(MN)−2/3 +M−1 +N−1

)
.

observing by (67) and (69) that (MN)ξ1 ≤M ≤ (MN)
1
2 we obtain

|SII(ϑ)|8 �M8N8

R4
0

+
M8N8

R2
1

+
M8N8

R2

(97)

+M8N8q
−c2(f)(µ12−µ11)
1 q

−c2(g)(µ22−µ21)
2 (1 + logH)2τ(qµ12−µ111 )τ(qµ22−µ212 )

+ c1(f) c1(g) exp

(
log(MN)

C1 log log(MN)

)
(MN)8−min( 1

6
,ξ1),

with ξ1 satisfying (66), which gives (72).

9. Proof of Theorems 1, 2 and 3

By Proposition 4 we have uniformly for ϑ ∈ R

SI(ϑ)� (logMN)
1
2
ω(q1)+

1
2
ω(q2) (MN)1−σ(q1,q2)

and by Proposition 5 we have uniformly for ϑ ∈ R

|SII(ϑ)| �MN exp

(
−C log(MN)

log log(MN)

)
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so that applying [25, Lemma 1], or its analogue in the case of µ obtained using (13.40) instead of
(13.39) from [13] we obtain uniformly for ϑ ∈ R∣∣∣∣∣∣

∑
x/4<n≤x

Λ(n)f(n)g(n) e(ϑn)

∣∣∣∣∣∣� x exp

(
−c log x

log log x

)
and ∣∣∣∣∣∣

∑
x/4<n≤x

µ(n)f(n)g(n) e(ϑn)

∣∣∣∣∣∣� x exp

(
−c log x

log log x

)
.

Applying these two inequalities with x replaced by x/4k for 0 ≤ k ≤ K =
⌊

log x
2 log 4

⌋
and observing

that log(x/4k)
log log(x/4k)

≥ log x
2 log log x

we have∣∣∣∣∣∑
n≤x

Λ(n)f(n)g(n) e(ϑn)

∣∣∣∣∣ ≤
K∑
k=0

∣∣∣∣∣∣
∑

x/4k+1<n≤xk
Λ(n)f(n)g(n) e(ϑn)

∣∣∣∣∣∣
�

K∑
k=0

x

4k
exp

(
−c log(x/4k)

log log(x/4k)

)

� x exp

(
−c log x

2 log log x

) K∑
k=0

1

4k

� x exp

(
−c log x

2 log log x

)
and similarly for µ, which completes the proofs of Theorems 1 and 2.

Theorem 3 follows from the proof of Theorem 1 where by Cauchy-Schwarz and Proposition 3 we
have to replace (87) by∑

v11

∑
u14

|F (h12, v11 + v12, u13 + u14) F (h12, v11, u14)|

≤ c10(q1, f0) q
−c9(q1,f0)‖df0α‖

2/ log(1/‖df0α‖) (µ12−µ11)
1 ,

and similarly for q2 and g0.
Finally Corollary 1 can be deduced from Theorem 3 by an argument similar to the proof of

Theorem 3 of [25] (see Section 11).
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