
CUCKOO HASHING REVISITED

motivated by Luc Devroye, jointly worked out with Reinhard Kutzelnigg

Michael Drmota∗

Institut für Diskrete Mathematik und Geometrie

TU Wien

michael.drmota@tuwien.ac.at

www.dmg.tuwien.ac.at/drmota/

∗ supported by the Austrian Science Foundation FWF, grant S9600.

AofA 2006, Alden Biesen, July 3, 2006

Contents

• Cuckoo Hashing

• Cuckoo Graph

• Random Bipartite Graphs

• Asymptotic Results

• Generating Functions

• Double Saddle Points

Cuckoo Hashing

[Pagh and Rodler, 2001]

• 2 tables T1, T2 of size m

• 2 hash functions h1(x), h2(x) .

• Every key x is stored at h1(x) ∈ T1 or at h2(x) ∈ T2 .

Cuckoo Hashing

C A K V M F H
h1 3 1 1 2 3 1 3
h2 3 4 3 0 2 4 3

0

1

2

3

4

T T1 2

Cuckoo Hashing

C A K V M F H
h1 3 1 1 2 3 1 3
h2 3 4 3 0 2 4 3

0

1

2

3

4

T T1 2

C

Cuckoo Hashing

C A K V M F H
h1 3 1 1 2 3 1 3
h2 3 4 3 0 2 4 3

0

1

2

3

4

T T1 2

C

A

Cuckoo Hashing

C A K V M F H
h1 3 1 1 2 3 1 3
h2 3 4 3 0 2 4 3

0

1

2

3

4

T T1 2

C

A
K

Cuckoo Hashing

C A K V M F H
h1 3 1 1 2 3 1 3
h2 3 4 3 0 2 4 3

0

1

2

3

4

T T1 2

C

A

K

Cuckoo Hashing

C A K V M F H
h1 3 1 1 2 3 1 3
h2 3 4 3 0 2 4 3

0

1

2

3

4

T T1 2

C

A

K

Cuckoo Hashing

C A K V M F H
h1 3 1 1 2 3 1 3
h2 3 4 3 0 2 4 3

0

1

2

3

4

T T1 2

C

A

K

V

Cuckoo Hashing

C A K V M F H
h1 3 1 1 2 3 1 3
h2 3 4 3 0 2 4 3

0

1

2

3

4

T T1 2

C

A

K

V

M

Cuckoo Hashing

C A K V M F H
h1 3 1 1 2 3 1 3
h2 3 4 3 0 2 4 3

0

1

2

3

4

T T1 2

C

A

K

V

M

Cuckoo Hashing

C A K V M F H
h1 3 1 1 2 3 1 3
h2 3 4 3 0 2 4 3

0

1

2

3

4

T T1 2

C

A

K

V

M

Cuckoo Hashing

C A K V M F H
h1 3 1 1 2 3 1 3
h2 3 4 3 0 2 4 3

0

1

2

3

4

T T1 2

C

A

K

V

M

F

Cuckoo Hashing

C A K V M F H
h1 3 1 1 2 3 1 3
h2 3 4 3 0 2 4 3

0

1

2

3

4

T T1 2

C

A

K
V

M

F

Cuckoo Hashing

C A K V M F H
h1 3 1 1 2 3 1 3
h2 3 4 3 0 2 4 3

0

1

2

3

4

T T1 2

C

A

K

V

M

F

Cuckoo Hashing

C A K V M F H
h1 3 1 1 2 3 1 3
h2 3 4 3 0 2 4 3

0

1

2

3

4

T T1 2

C

A

K

V

M

F

Cuckoo Hashing

C A K V M F H
h1 3 1 1 2 3 1 3
h2 3 4 3 0 2 4 3

0

1

2

3

4

T T1 2

C

A

K

V

M

F

Cuckoo Hashing

C A K V M F H
h1 3 1 1 2 3 1 3
h2 3 4 3 0 2 4 3

0

1

2

3

4

T T1 2

C

A

K

V
M

F

Cuckoo Hashing

C A K V M F H
h1 3 1 1 2 3 1 3
h2 3 4 3 0 2 4 3

0

1

2

3

4

T T1 2

C

A

K

V M

F

Cuckoo Hashing

C A K V M F H
h1 3 1 1 2 3 1 3
h2 3 4 3 0 2 4 3

0

1

2

3

4

T T1 2

C

A

K

V M

F

H

Cuckoo Hashing

C A K V M F H
h1 3 1 1 2 3 1 3
h2 3 4 3 0 2 4 3

REHASH !!

0

1

2

3

4

T T1 2

C

A

K

V M

F

H

Cuckoo Graph

1

2

3

4

0

1

2

3

4

0

Cuckoo Graph

1

2

3

4

0

1

2

3

4

0

Cuckoo Graph

1

2

3

4

0

1

2

3

4

0

Cuckoo Graph

1

2

3

4

0

1

2

3

4

0

Cuckoo Graph

1

2

3

4

0

1

2

3

4

0

Cuckoo Graph

1

2

3

4

0

1

2

3

4

0

Cuckoo Graph

1

2

3

4

0

1

2

3

4

0

Cuckoo Graph

1

2

3

4

0

1

2

3

4

0

Cuckoo Graph

1

2

3

4

0

1

2

3

4

0

Cuckoo Graph

1

2

3

4

0

1

2

3

4

0

Cuckoo Graph

1

2

3

4

0

1

2

3

4

0

Cuckoo Graph

1

2

3

4

0

1

2

3

4

0

Cuckoo Graph

1

2

3

4

0

1

2

3

4

0

Cuckoo Graph

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

6

7

Cuckoo Graph

• Bipartite Graph

G = (V1, V2, E)

V1, V2 ... tables, labeled vertex sets

E ... collects hash values e = (h1(x), h2(x)), labeled edges

• |V1| = |V2| = m ... table size

|E| = n ... number of keys

• Hashing works ⇐⇒ G contains no complex component !!!

(only trees or unicyclic components)

Cuckoo Graph

Edge Insertion: Good case 1: joining 2 trees

F

Cuckoo Graph

Edge Insertion: Good case 1: joining 2 trees

F

F

Cuckoo Graph

Edge Insertion: Good case 1: joining 2 trees

F

F

Cuckoo Graph

Edge Insertion: Good case 1: joining 2 trees

F

F

Cuckoo Graph

Edge Insertion: Good case 1: joining 2 trees

F

Cuckoo Graph

Edge Insertion: Good case 2: inserting an edge into a tree

F

Cuckoo Graph

Edge Insertion: Good case 2: inserting an edge into a tree

F

Cuckoo Graph

Edge Insertion: Good case 2: inserting an edge into a tree

F

Cuckoo Graph

Edge Insertion: Good case 2: inserting an edge into a tree

F

Cuckoo Graph

Edge Insertion: Good case 2: inserting an edge into a tree

F

Cuckoo Graph

Edge Insertion: Good case 2: inserting an edge into a tree

F

Cuckoo Graph

Edge Insertion: Bad case: inserting an edge into a cyclic component

F

Cuckoo Hashing – Cuckoo Graph

Cuckoo Hashing Cuckoo Graph G = (V1, V2, E)

m size of hash tables T1, T2 ←→ |V1|, |V2|

n number of keys ←→ |E|

successful hashing ←→ no complex components

running time ←→ size of components

Random Bipartite Graph

• Gm1,m2,n random bipartite multigraph (labeled)

• |V1| = m1, |V2| = m2 labeled vertex sets

• |E| = n labeled multi edges

• Each of these #Gm1,m2,n = mn
1mn

2 graphs is equally likely

The edge labels encode the insertion procedure (dynamic model)

Notation: G◦m1,m2,n ... graphs with no complex component

Asymptotic Results

Probability of Succussfull Hashing

Theorem 1

Suppose that n = (1− ε)m for some ε > 0.

=⇒
#G◦m,m,n

#Gm,m,n
= 1−

h(ε)

m
+ O(m−2) (m→∞)

with

h(ε) =
(2ε2 − 5ε + 5)(1− ε)3

12(2− ε)2ε3

=
5

48
ε−3 −

5

16
ε−2 +

21

64
ε−1 −

13

96
+

3

256
ε +

1

256
ε2 +

1

1024
ε3 + O

(
ε4

)

Asymptotic Results

Remark 1. [Devroye and Morin]: 1−
#G◦m,m,n

#Gm,m,n
= O(1/m).

Remark 2. The probability that Cuckoo hashing fails (with table sizes

m and n = (1− ε)m keys) is

h(ε)

m
+ O(m−2).

Asymptotic Results

Probability of Succussfull Hashing

Theorem 2

Suppose that n = m.

=⇒
#G◦m,m,n

#Gm,m,n
=

√
2

3
+ o(1) = 0.8164965809 . . . + o(1) (m→∞)

Remark 3. The same results holds for ususal random graphs

[Flajolet, Knuth, and Pittel, 1989]

Remark 4. Threshold appears at n = m−Θ(m2/3)

(as for random graphs – birth of a giant component).

Asymptotic Results

Unicyclic Components

Theorem 3. Let Xm,n denote the number of points in unicyclic com-

ponents. Suppose that ε > 0 and n = (1− ε)m . Then, as m → ∞,

Xm,n has a discrete limiting distribution with expected value

EXm,n =
(1− ε)2

(2− ε)ε2
+ O

(
1

m

)
and variance

VarXm,n =
(1− ε)2(ε2 − 3ε + 4)

(2− ε)2ε4
+ O

(
1

m

)
.

Asymptotic Results

Tree Sizes

Theorem 4. Let Tk;m,n denote the number of trees of size k. Suppose

that ε > 0 and n = (1− ε)m . Then, as m → ∞, Tk;m,n satisfies a

central limit theorem with expected value

ETk;m,n = 2m
kk−2(1− ε)k−1ek(ε−1)

k!
+ O(1)

and variance

VarTk;m,n = 2m

(
kk−2(1− ε)k−1ek(ε−1)

k!
−

k2k−4(1− ε)2k−3e2k(ε−1)(k2ε2 + k2ε− 4kε + 2)

(k!)2

)
+ O(1)

Asymptotic Results

Remark 1. Cyclic components are negligible (for ε > 0)

Remark 2. Expected average tree size ≤ 2

=⇒ expected running time ≤ 2m

(This explains the extremely good performance of Cuckoo hashing.)

Generating Functions

Bipartite Trees

t1,m1,m2
... number of bipartite rooted trees with m1 nodes of type 1,

m2 nodes of type 2, and the root is of type 1.

t2,m1,m2
... number of bipartite rooted trees with m1 nodes of type 1,

m2 nodes of type 2, and the root is of type 2.

t1(x, y) =
∑

m1,m2

t1,m1,m2

xm1

m1!

ym2

m2!
, t2(x, y) =

∑
m1,m2

t2,m1,m2

xm1

m1!

ym2

m2!
,

t1(x, y) = xet2(x,y), t2(x, y) = yet1(x,y)

Generating Functions

Bipartite Trees

t̃m1,m2 ... number of bipartite unrooted trees with m1 nodes of type

1 and m2 nodes of type 2.

t̃(x, y) =
∑

m1,m2

t̃m1,m2

xm1

m1!

ym2

m2!
,

t̃(x, y) = t1(x, y) + t2(x, y)− t1(x, y)t2(x, y)

Lemma. [Scoins, 1962]

t̃m1,m2 = m
m2−1
1 m

m1−1
2

Generating Functions

Bipartite Trees

Remark 1 t1,m1,m2
= m1t̃m1,m2, t2,m1,m2

= m2t̃m1,m2,

Remark 2 t1(x, x) = t2(x, x) = t(x) is the usual tree function given by

t(x) = xet(x).

Remark 3 tm1,m2,n ... number of unrooted labeled bipartite trees with

m1 nodes of type 1, m2 nodes of type 2, and n (labeled) edges.

∑
m1,m2,n

tm1,m2,n
xm1

m1!

ym2

m2!

un

n!
=

1

u
t̃(xu, yu).

Generating Functions

Lemma

g◦(x, y, u) =
∑

m1,m2,n
#G◦m1,m2,n

xm1

m1!

ym2

m2!

un

n!
=

e
1
u t̃(xu,yu)√

1− t1(xu, yu)t2(xu, yu)
.

Proof.

Cyclic component with 2k cyklic points:
1

2k
t1(xu, yu)kt2(xu, yu)k

=⇒ g◦(x, y, u) = exp

1

u
t̃(xu, yu) +

∑
k≥1

1

2k
t1(xu, yu)kt2(xu, yu)k



Generating Functions

Corollary

#G◦m1,m2,n =
m1!m2!n!

(m1 + m2 − n)!
[xm1ym2]

t̃(x, y)m1+m2−n√
1− t1(x, y)t2(x, y)

= −
m1!m2!n!

4π(m1 + m2 − n)!

×
∫
|x|=x0

∫
|y|=y0

t̃(x, y)m1+m2−n√
1− t1(x, y)t2(x, y)

dx

xm1+1

dy

ym2+1
.

−→ DOUBLE SADDLE POINT

Generating Functions

Extensions

E.g., in

e
1
u t̃(xu,yu)+x(w−1)+y(w−1)√
1− t1(xu, yu)t2(xu, yu)

.

the additional variable w counts the number of isolated nodes

(= tree components of size 1).

etc.

Double Saddle Point

Lemma

f(x, y), g(x, y) ... analytic functions around (0,0)

(+ minor technical assumptions)

=⇒ [xm1ym2]g(x, y)f(x, y)k =
g(x0, y0)f(x0, y0)

k

2πx
m1
0 y

m2
0 k
√

∆

(
1 +

h

24∆3

1

k
+ O

(
1

k2

))
,

where x0 and y0 are uniquely defined by

m1

k
=

x0

f(x0, y0)

[
∂

∂x
f(x, y)

]
(x0,y0)

,
m2

k
=

y0

f(x0, y0)

[
∂

∂y
f(x, y)

]
(x0,y0)

and are contained in a finite interval of the positive real line, that is,

m1, m2, and k have to be of the same order of magnitude.

Double Saddle Point

Set

κij =

[
∂i

∂ui

∂j

∂vj
log f(x0e

u, y0e
v)

]
(0,0)

, κij =

[
∂i

∂ui

∂j

∂vj
log g(x0e

u, y0e
v)

]
(0,0)

.

Then ∆ = κ20κ02 − κ2
11 , and with

α = 54κ21κ11κ12κ20κ02 + 6κ22κ20κ02κ
2
11 − 12κ22κ

4
11 + 4κ03κ

3
11κ30

+ 36κ21κ
3
11κ12 + 6κ22κ

2
20κ

2
02 + 6κ03κ11κ30κ20κ02,

β = −5κ3
02κ

2
30 + 30κ2

02κ30κ11κ21 − 24κ02κ30κ12κ
2
11 − 6κ2

02κ30κ12κ20

− 12κ11κ
2
02κ31κ20 − 36κ02κ

2
21κ

2
11 − 9κ2

02κ
2
21κ20 + 3κ3

02κ40κ20

− 3κ2
02κ40κ

2
11 + 12κ3

11κ02κ31,

γ = 12∆
(
κ2

02κ30 − κ11κ20κ03 − 3κ21κ11κ02 + κ12κ
2
11 + κ12(κ02κ20 + κ2

11)
)
,

δ = 24∆(κ11κ20κ02 − κ3
11),

η = 12∆(κ02κ
2
11 − κ2

02κ20)

we have

h = α + β + β̂ + γκ10 + γ̂κ01 + δκ10κ01 + ηκ2
10 + η̂κ2

01 + 4ηκ20 + 4η̂κ02 + 4δκ11 ,

whereˆindicates to replace all functions of type κij by κji.

Double Saddle Point

Proof of Theorem 1

m1 = m2 = m, n = (1− ε)m for some ε > 0

−→ x0 = y0 = (1− ε)eε−1 <
1

e
.

Application with f(x, y) = t̃(x, y) and k = 2m− n = (1 + ε)n

−→ Theorem 1.

Double Saddle Point

Proof of Theorem 2

• Saddle point x0 = y0 = 1
e and squareroot singularity coincide !!!

• Apply Lagrange inversion for t1 = x exp(yet1).

• Series expansion for 1/
√

1− v

• Infinite series of double saddle point integrals

(one integral with scale e−t2/2 ,

the second integral with scale e−cs3)

• Lommel functions (similar to Airy functions)

• (Explicit) Mellin transform of Lommel function

−→
√

2

3
(Theorem 2)

Double Saddle Point

Lommel Functions

• Fundamental system of the inhomogeneous Bessel equation

x2y′′+ xy′ − (x2 + ν2) = kxµ+1.

• Closely related to the integral∫ ∞
0

e−t3+ktt dt.

Double Saddle Point

Remark

The analytic structure of generating functions for bipartite random

graphs is more difficult than that of usual random graphs. This is due

to the double saddle point (that comes from the additional variable)

and the squareroot singularity that is now in 2 variables (instead of 1).

Nevertheless the results look the same. Thus, one can expect that

most properties of random graphs have a counterpart in random bi-

partite graphs (birth of giant component etc.)

Thank You!

