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Sums of independent random variables and
powers of generating functions

Coin tossing

• P{ct = head} = P{ct = tail} = 1
2.

• random variable ξ = I{ct=tail} =

{
1 if tail
0 if head

• n independent runs: ξ1, ξ2, . . . , ξn, P{ξj = 1} = P{ξj = 0} =
1

2
.

• Xn = ξ1 + ξ2 + · · ·+ ξn ... the number of tails within n runs

P{Xn = k} =

(
n
k

)
2n



Sums of independent random variables and
powers of generating functions

Counting generating function

an = 2n ... total number of possible n-runs

an,k =
(
n
k

)
... the number of n-runs with k tails

An(u) =
∑
k≥0

an,ku
k =

∑
k≥0

(n
k

)
uk = (1 + u)n ... counting gen. func.

An(1) =
∑
k≥0

an,k = an = (1 + 1)n = 2n



Sums of independent random variables and
powers of generating functions

Probability generating function

EuXn =
∑
k≥0

P{Xn = k} · uk

=
∑
k≥0

1

2n

(n
k

)
· uk

=
(1 + u)n

2n
=
An(u)

An(1)

P{Xn = k} =
an,k

an
=⇒ EuXn =

An(u)

An(1)



Sums of independent random variables and
powers of generating functions

Powers of probability generating functions

Euξ =
1

2
+

1

2
u =

1 + u

2

=⇒ EuXn = Euξ1+···+ξn

= E
(
uξ1 · · ·uξn

)
= E

(
uξ1

)
· · ·E

(
uξn

)
ξj independent !!!

=
(
1 + u

2

)n



Sums of independent random variables and
powers of generating functions

General fact

Xn = ξ1 + ξ2 + · · ·+ ξn , where the r.v.’s ξj are iid∗

=⇒ EuXn =
(
Euξ1

)n

∗ Notation. “iid” ... independently and identically distributed



Sums of independent random variables and
powers of generating functions

Relation to moment generating function mZ(v) = E evZ

E (Zr) ... r-th moment of Z

=⇒
∑
r≥0

E (Zr)
vr

r!
= E

∑
r≥0

Zrvr

r!

 = E evZ = EuZ with u = ev .



A central limit theorem

Binomial coefficients

(n
k

)
=

n!

k!(n− k)!
=

2n√
πn/2

exp

(
−

(k − n
2)

2

n/2

)
+O(2n/n)



A central limit theorem

Standard normal distribution

density: f(t) =
1√
2π
e−

1
2t

2
.

normal distribution function: Φ(x) =
1√
2π

∫ x
−∞

e−
1
2t

2
dt



A central limit theorem

Normally distributed random variable

Definition

A random variable Z has standard nomal distribution N(0,1) if

P{Z ≤ x} = Φ(x) .

A random variable Z is normally distributed (or Gaussian) with mean

µ and variance σ2 if its distribution function is given by

P{Z ≤ x} = Φ
(
x− µ

σ

)
,

Notation. L(Z) = N(µ, σ2) .



A central limit theorem

Moment generating function of N(µ, σ2):

mZ(v) = E evZ = eµv−
1
2σ

2v2 .

Characteristic function of N(µ, σ2):

ϕZ(t) = E eitZ = eiµt−
1
2σ

2t2 .

Standard normal distribution: µ = 0, σ2 = 1

E evZ = e
1
2v

2
, E eitZ = e−

1
2t

2



A central limit theorem

Definition We say, that a sequence of random variables Xn satisfies a

central limit theorem with (scaling) mean µn and (scaling) variance

σ2
n if

P{Xn ≤ µn + x · σn} = Φ(x) + o(1)

as n→∞.

Example. Xn = number of tails in n runs of coin tossing:

P{Xn ≤ n/2 + x ·
√
n/4} =

∑
k≤n/2+x·

√
n/4

1

2n

(n
k

)

∼
∑

k≤n/2+x·
√
n/4

1√
πn/2

exp

(
−

(k − n
2)

2

n/2

)
∼ Φ(x).

Xn satisfies a central limit theorem with mean n
2 and variance n

4.



Central Limit Theorem

Definition Weak convergence:

Xn
d−→ X :⇐⇒ lim

n→∞P{Xn ≤ x} = P{X ≤ x}

for all points of continuity

of FX(x) = P{X ≤ x}

Reformulation:

Xn satisfies a central limit theorem with (scaling) mean µn and

(scaling) variance σ2
n is the same as

Xn − µn

σn

d−→ N(0,1) .



A central limit theorem

Weak convergence via moment generating functions

lim
n→∞E evXn = E evX (v ∈ R) =⇒ Xn

d−→ X

Moreover, we have convergence of all moments: E (Xr
n) → E (Xr).

Recall: E evXn = E ((ev)Xn) = EuXn for u = ev.



A central limit theorem

Weak convergence via characteristic functions (Levy’s Criterion)

lim
n→∞E eitXn = E eitX (t ∈ R) ⇐⇒ Xn

d−→ X

Moreover, if for all t ∈ R

ψ(t) := lim
n→∞E eitXn

exists and ψ(t) is continous at t = 0 then ψ(t) is the characteristic

function of a random variable X for which we have Xn
d−→ X.



Central Limit Theorem

Theorem

ξ1, ξ2, . . . iid, E ξ2i <∞, Xn = ξ1 + ξ2 + . . .+ ξn

=⇒ Xn − EXn√
VXn

d−→ N(0,1)

Remark. ⇐⇒ P{Xn ≤ EXn + x
√

VXn} = Φ(x) + o(1).

Proof

µ = E ξi, σ2 = V ξi = E (ξ2i )− (E ξi)2 =⇒ EXn = nµ, VXn = nσ2.



Central Limit Theorem

ϕξi(t) = E eitξi = eitµ−
1
2σ

2t2 (1+o(1)) (t→ 0)

ϕXn(t) = ϕξi(t)
n

Zn := (Xn − µn)/
√
σ2n

=⇒ ϕZn(t) = E eitZn

= e−it
√
nµ/σ · E

(
e(it/(

√
nσ))(ξ1+···+ξn)

)
= e−it

√
nµ/σ ·

(
E e(it/(

√
nσ)ξ1

)n
= e−it

√
nµ/σ · eit

√
nµ/σ−1

2t
2 (1+o(1))

= e−
1
2t

2 (1+o(1)) → e−
1
2t

2
.

+ Levy’s criterion.



A central limit theorem

Quasi-Power Theorem (Hwang)

Let Xn be a sequence of random variables with the property that

EuXn = A(u) ·B(u)λn ·
(
1 +O

(
1

φn

))

holds uniformly in a complex neighborhood of u = 1, λn →∞ and

φn →∞ , and A(u) and B(u) are analytic functions in a neighborhood

of u = 1 with A(1) = B(1) = 1. Set

µ = B′(1) and σ2 = B′′(1) +B′(1)−B′(1)2.

=⇒ EXn = µλn +O (1 + λn/φn) , VXn = σ2λn +O (1 + λn/φn) ,

Xn − EXn√
VXn

d−→ N(0,1) (σ2 6= 0).



Bivariate generating functions

Bivariate counting generating function

A(x, u) =
∑

n,k≥0

(n
k

)
uk xn =

∑
n≥0

(1 + u)nxn =
1

1− x(1 + u)
.

Observation: this is a rational function!



Bivariate generating functions

Rational functions

P (x, u), Q(x, u) polynomials:

A(x, u) =
∑

n,k≥0

an,k u
k xn =

P (x, u)

Q(x, u)

Assumption: factorization of denominator

Q(x, u) =
r∏

j=1

(
1−

x

ρj(u)

)

with

|ρ1(u)| < max
2≤j≤r

|ρj(u)| for |u− 1| < ε.



Bivariate generating functions

Central limit theorem for rational functions

Suppose that A(x, u) =
∑
an,k u

k xn with an,k ≥ 0 is rational and satis-

fies the assumptions from above.

Let Xn be a sequence of random variables with

P{Xn = k} =
an,k

an

with an =
∑
k an,k.

Then Xn satisfies a central limit theorem with

µn = −n
ρ′1(1)

ρ1(1)
and σ2

n = n

(
−
ρ′′1(1)

ρ1(1)
−
ρ′1(1)

ρ1(1)
+
ρ′1(1)2

ρ1(1)2

)
.



Bivariate generating functions

Proof

Partial fraction decomposition:

A(x, u) =
C1(u)

1− x/ρ1(u)
+ · · ·+

Cr(u)

1− x/ρr(u)

=⇒ An(u) =
∑
k≥0

an,k u
k = C1(u)ρ1(u)

−n+· · ·+Cr(u)ρr(u)
−n ∼ C1(u)ρ1(u)

−n

=⇒ EuXn =
An(u)

An(1)
∼
C1(u)

C1(1)

(
ρ1(1)

ρ1(u)

)n

=⇒ central limit theorem.



Bivariate generating functions

Integer compositions

3 = 1 + 1 + 1 = 2 + 1 = 1 + 2 = 3 ... 4 compositions of 3.

an = number of compositions of n, A(x) =
∑
anxn:

A(x) = 1 +A(x)(x+ x2 + x3 + · · · ) = 1 +A(x)
x

1− x
.

=⇒ A(x) =
1

1− x
1−x

=
1− x

1− 2x

=⇒ an = 2n−1



Bivariate generating functions

Integer compositions

an,k = number of integer composition of n with k summands

A(x, u) =
∑
an,ku

kxn:

A(x, u) = 1 + uA(x, u)(x+ x2 + x3 + · · · ) = 1 +A(x, u)
xu

1− x
.

=⇒ A(x, u) =
1

1− xu
1−x

=
1− x

1− x(1 + u)

=⇒ central limit theorem with µn = n
2 and σ2 = n

4.



Bivariate generating functions

Systems of linear equations

Suppose, that several generating functions

A1(x, u) =
∑
n,k

a1;n,ku
kxn, . . . , Ar(x, u) =

∑
n,k

ar;n,ku
kxn

satisfy a linear system of equations.

Then all generating functions Aj(x, u) are rational and a central limit

theorem for corresponding random variables is expected.



Bivariate generating functions

Meromorphic functions

The function A(x, u) is meromorphic in x when u is considered as a

parameter and there exists a dominant root ρ1(u) such that (locally)

A(x, u) =
C(x, u)

1− x
ρ1(u)

=⇒ An(u) ∼ C(ρ1(u), u) · ρ1(u)−n

=⇒ EuXn ∼ C(ρ1(u), u)

C(ρ1(1),1)

(
ρ1(1)

ρ1(u)

)n
=⇒ central limit theorem.



Bivariate generating functions

Number of cycles in permutations

pn,k = number of permutations of {1,2, . . . , n} with k cycles

P̂ (x, u) =
∑

n,k≥0

pn,k · uk ·
xn

n!
= e

u·log 1
1−x =

1

(1− x)u

Remark: pn,k = (−1)n−ksn,k, where sn,k are the Stirling number of

the first kind.



Excursion: Singularity Analysis

Lemma 1 Suppose that

y(x) = (1− x/x0)
−α .

Then

yn = (−1)n
(−α
n

)
x−n0 =

nα−1

Γ(α)
x−n0 +O

(
nα−2

)
x−n0 .

Remark: This asymptotic expansion is uniform in α if α varies in a

compact region of the complex plane.



Excursion: Singularity Analysis

Lemma 2 (Flajolet and Odlyzko) Let

y(x) =
∑
n≥0

yn x
n

be analytic in a region

∆ = {x : |x| < x0 + η, | arg(x− x0)| > δ},

x0 > 0, η > 0, 0 < δ < π/2.

Suppose that for some real α

y(x) = O
(
(1− x/x0)

−α
)

(x ∈ ∆).

Then

yn = O
(
x−n0 nα−1

)
.



Excursion: Singularity Analysis

∆-region

D

x0



Bivariate generating functions

Number of cycles in permutations (continued)

P̂ (x, u) = e
u log 1

1−x =
1

(1− x)u

=⇒ pn(u) =
∑
k≥0

pn,ku
k

∼ n!
nu−1

Γ(u)

= n!
e(u−1) logn

Γ(u)

=⇒ EuXn ∼ 1

Γ(u)
(eu−1)logn

=⇒ central limit theorem with µn = logn and σ2
n = logn.

Generalization: Exp-Log-Schemes: F (x, u) = e
h(u) log 1

1−x+R(x,u).



Bivariate generating functions

Catalan trees gn = number of Catalan trees of size n.

G(x) = x(1 +G(x) +G(x)2 + · · · ) =
x

1−G(x)

G(x) =
1−

√
1− 4x

2
=⇒ gn =

1

n

(2n− 2

n− 1

)
.

(Catalan numbers)



Bivariate generating functions

Catalan trees with singularity analysis

G(x) =
1−

√
1− 4x

2
=

1

2
−

1

2

√
1− 4x

=⇒ gn ∼ −
1

2
·
4nn−3/2

Γ(−1
2)

=
4n−1

√
π · n3/2



Bivariate generating functions

Number of leaves of Catalan trees

gn,k = number of Catalan trees of size n with k leaves.

G(x, u) = xu+ x(G(x, u) +G(x, u)2 + · · · = xu+
xG(x, u)

1−G(x, u)

=⇒ G(x, u) =
1

2

(
1 + (u− 1)x−

√
1− 2(u+ 1)x+ (u− 1)2x2

)

=⇒ G(x, u) = g(x, u)− h(x, u)

√
1−

x

ρ(u)

for certain analytic function g(x, u), h(x, u), and ρ(u).



Bivariate generating functions

Application of singularity analysis

Considering u as a parameter we get

Gn(u) =
∑
k≥0

gn,ku
k ∼

h(ρ(u), u) · ρ(u)−n · n−3/2

2
√
π

=⇒ EuXn =
Gn(u)

Gn(1)
∼
h(ρ(u), u)

h(ρ(1),1)

(
ρ(1)

ρ(u)

)n

=⇒ central limit theorem with µn = n
2 and σ2

n = n
8



Bivariate generating functions

Cayley trees

rn,k = number of Cayley trees of size n with k leaves

R(x, u) =
∑

n,k≥0

rn,k u
k x

n

n!

=⇒ R(x, u) = xeR(x,u) + x(u− 1)

=⇒ ?????



Functional equations

Catalan trees: G(x, u) = xu+ xG(x, u)/(1−G(x, u))

Cayley trees: R(x, u) = xeR(x,u) + x(u− 1)

Recursive structure leads to functional equation for gen. func.:

A(x, u) = Φ(x, u,A(x, u))



Functional equations

Linear functional equation: Φ(x, u, a) = Φ0(x, u) + aΦ1(x, u)

=⇒ A(x, u) =
Φ0(x, u)

1−Φ1(x, u)

Usually techniques similar to those used for rational resp. meromorphic

functions work and prove a central limit theorem.



Functional equations

Non-linear functional equations: Φaa(x, u, a) 6= 0.

Suppose that A(x, u) = Φ(x, u,A(x, u)) , where Φ(x, u, a) has a power

series expansion at (0,0,0) with non-negative coefficients and

Φaa(x, u, a) 6= 0.

Let x0 > 0, a0 > 0 (inside the region of convergence) satisfy the system

of equations:

a0 = Φ(x0,1, a0), 1 = Φa(x0,1, a0) .

Then there exists analytic function g(x, u), h(x, u), and ρ(u) such that

locally

A(x, u) = g(x, u)− h(x, u)

√
1−

x

ρ(u)
.



Functional equations

Idea of the Proof.

Set F (x, u, a) = Φ(x, u, a)− a. Then we have

F (x0,1, a0) = 0

Fa(x0,1, a0) = 0

Fx(x0,1, a0) 6= 0

Faa(x0,1, a0) 6= 0.

Weierstrass preparation theorem implies that there exist analytic func-

tions H(x, u, a), p(x, u), q(x, u) with H(x0,1, a0) 6= 0, p(x0,1) = q(x0,1) =

0 and

F (x, u, a) = H(x, u, a)
(
(a− a0)

2 + p(x, u)(a− a0) + q(x, u)
)
.



Functional equations

F (x, u, a) = 0 ⇐⇒ (a− a0)
2 + p(x, u)(a− a0) + q(x, u) = 0.

Consequently

A(x, u) = a0 −
p(x, u)

2
±

√
p(x, u)2

4
− q(x, u)

= g(x, u)− h(x, u)

√
1−

x

ρ(u)
,

where we write

p(x, u)2

4
− q(x, u) = K(x, u)(x− ρ(u))

which is again granted by the Weierstrass preparation theorem and we

set

g(x, u) = a0 −
p(x, u)

2
and h(x, u) =

√
−K(x, u)ρ(u).



Functional equations

A central limit theorem for functional equations

Suppose that A(x, u) = Φ(x, u,A(x, u)) , where Φ(x, u, a) has a power

series expansion at (0,0,0) with non-negative coefficients and Φaa(x, u, a) 6=
0 (+ minor technical conditions). Set

µ =
x0Φx(x0,1, a0)

Φ(x0,1, a0)
and σ2 = “long formula′′.

Then then random variable Xn defined by P{Xn = k} = an,k/an satisfies

a central limit theorem with

µn = nµ and σ2
n = nσ2.



Functional equations

Number of leaves in Cayley trees (R(x) = xeT (x))

R(x, u) = xeR(x,u) + x(u− 1)

x0 =
1

e
, r0 = R(x0) = 1.

=⇒ central limit theorem with µn = 1
e n and σ2 = e−2

e2
n.



Functional equations

Systems of functional equations

Suppose, that several generating functions

A1(x, u) =
∑
n,k

a1;n,ku
kxn, . . . , Ar(x, u) =

∑
n,k

ar;n,ku
kxn

satisfy a system of non-linear equations

Aj(x, u) = Φj(x, u,A1(x, u), . . . , Ar(x, u)) ,

where Φj(x, u, a1, . . . , ar) is non-linear in a1, . . . , ar for some j and has

a power series expansion at (0,0,0) with non-negative coefficients (for

all j).

Let x0 > 0, a0 = (a0,0, . . . , ar,0) > 0 (inside the region of convergence)

satisfy the system of equations: (Φ = (Φ1, . . . ,Φr))

a0 = Φ(x0,1, a0), 0 = det(I−Φa(x0,1, a0) .



Functional equations

Suppose further, that the dependency graph of the system

a = Φ(x, u, a) is strongly connected.

Then there exists analytic function gj(x, u), hj(x, u), and ρ(u) (that is

independent of j) such that locally

Aj(x, u) = gj(x, u)− hj(x, u)

√
1−

x

ρ(u)
.

If A(x, u) =
∑
n,k

an,kx
nuk = F (x, u,A1(x, u), . . . , Aj(x, u)) (for some ana-

lytic function F satisfying certain conditions) then then random variable

Xn defined by P{Xn = k} = an,k/an satisfies a central limit theorem

with

µn = nµ and σ2
n = nσ2,

where µ and σ2 can be computed.



Patterns in Trees

Pattern M



Patterns in Trees

Pattern M



Patterns in Trees

Occurence of a pattern M



Patterns in Trees

Occurence of a pattern M



Patterns in Trees

Occurence of a pattern M



Patterns in Trees

Occurence of a pattern M



Patterns in Trees

Occurence of a pattern M in a labelled tree

2

3
11

1
13

84

12

6

910

5

7

14

15



Patterns in Trees

Cayley’s formula

rn = nn−1 ... number of rooted labelled trees with n nodes

tn = nn−2 ... number of labelled trees with n nodes

Generating functions

R(x) =
∑
n≥1

rn
xn

n!
:

R(x) = xeR(x)

t(x) =
∑
n≥1

tn
xn

n!
:

T (x) = R(x)−
1

2
R(x)2



Patterns in Trees

Theorem

M ... be a given finite tree.

Xn ... number of occurences of of M in a labelled tree of size n

=⇒ Xn satisfies a central limit theorem with

EXn ∼ µn and VXn ∼ σ2n.

µ > 0 and σ2 ≥ 0 depend on the pattern M and can be computed

explicitly and algorithmically and can be represented as polynomials

(with rational coefficients) in 1/e.



Patterns in Trees

Partition of trees in classes ( ... out-degree different from 2)

a a

a

a

aa

a

a a a a
7

65

0

43

21

98 10



Patterns in Trees

Recurrences A3 = xA0A2 + xA0A3 + xA0A4

a3

a0
a2 a3

a4

= + +
a0 a0

Aj(x) =
∑
n,k

aj;n
xn

n!

aj;n ... number of trees of size n in class j



Patterns in Trees

Recurrences A3 = xuA0A2 + xuA0A3 + xuA0A4

a3

a0
a2 a3

a4

= + +
a0 a0

Aj(x, u) =
∑
n,k

aj;n,k
xn

n!
uk

aj;n,k ... number of trees of size n in class j with k occurences of M



Patterns in Trees

A0 = A0(x, u) = x+ x
10∑
i=0

Ai + x
∞∑
n=3

1

n!

 10∑
i=0

Ai

n ,
A1 = A1(x, u) =

1

2
xA2

0,

A2 = A2(x, u) = xA0A1,

A3 = A3(x, u) = xA0(A2 +A3 +A4)u,

A4 = A4(x, u) = xA0(A5 +A6 +A7 +A8 +A9 +A10)u
2,

A5 = A5(x, u) =
1

2
xA2

1u,

A6 = A6(x, u) = xA1(A2 +A3 +A4)u
2,

A7 = A7(x, u) = xA1(A5 +A6 +A7 +A8 +A9 +A10)u
3,

A8 = A8(x, u) =
1

2
x(A2 +A3 +A4)

2u3,

A9 = A9(x, u) = x(A2 +A3 +A4)(A5 +A6 +A7 +A8 +A9 +A10)u
4,

A10 = A10(x, u) =
1

2
x(A5 +A6 +A7 +A8 +A9 +A10)

2u5.



Patterns in Trees

Final Result for M =

Central limit theorem with

µ =
5

8e3
= 0.0311169177 . . .

and

σ2 =
20e3 + 72e2 + 84e− 175

32e6
= 0.0764585401 . . . .



Degree distribution in random trees

Nodes of given degree

` = 5

X
(`)
n = number of nodes of degree ` in trees of size n satisfies a central

limit theorem with

µ(`) =
1

e (`− 1)!
and (σ(`))2 =

1 + (`− 2)2

e2(`− 1)!2
+

1

e (`− 1)!



Degree distribution in random trees

dn,` ... probability that a random node in a random labelled tree of

size n has degree `:

EX(`)
n = ndn,`

d` := lim
n→∞ dn,` =

1

e (`− 1)!
= µ(`)

Probability generating function of the degree distribution:

p(w) :=
∑
`≥1

d`w
` = wew−1



Degree distribution in random planar graphs

• Outerplanar graph: no K4 and no K2,3 as a minor.

• Series-parallel graph: no K4 as a minor.

• Planar graph: no K5 and no K3,3 as a minor.

Remark.

outerplanar ⊆ series-parallel ⊆ planar



Degree distribution in random planar graphs

Outerplanar Graphs

gn ... number of labelled outer-planar graphs with n vertices:

G(x) =
∑
n≥0

gn
xn

n!

G(x) = eC(x),

C′(x) = eB
′(xC′(x)),

B′(x) = x+
1

2
xA(x),

A(x) = x(1 +A(x))2 + x(1 +A(x))A(x)

=
1− 3x−

√
1− 6x+ x2

4x
.



Degree distribution in random planar graphs

Series-Paralles Graphs

gn,m ... number of labelled series-parallel graphs with n vertices and

m edges:

G(x, y) =
∑
n≥0

gn,m
xn

n!
ym

G(x, y) = eC(x,y)

∂C(x, y)

∂x
= exp

(
∂B

∂x

(
x
∂C(x, y)

∂x
, y

))
,

∂B(x, y)

∂y
=
x2

2

1 +D(x, y)

1 + y
,

D(x, y) = (1 + y)eS(x,y) − 1,

S(x, y) = (D(x, y)− S(x, y))xD(x, y).



Degree distribution in random planar graphs

Planar Graphs

gn,m ... number of labelled planar graphs with n vertices and m edges:

G(x, y) =
∑
n≥0

gn,m
xn

n!
ym

G(x, y) = exp (C(x, y)) ,

∂C(x, y)

∂x
= exp

(
∂B

∂x

(
x
∂C(x, y)

∂x
, y

))
,

∂B(x, y)

∂y
=
x2

2

1 +D(x, y)

1 + y
,

M(x,D)

2x2D
= log

(
1 +D

1 + y

)
−

xD2

1 + xD
,

M(x, y) = x2y2
(

1

1 + xy
+

1

1 + y
− 1−

(1 + U)2(1 + V )2

(1 + U + V )3

)
,

U = xy(1 + V )2,

V = y(1 + U)2.



Degree distribution in random planar graphs

[Gimenez+Noy (2005)]

gn .... number of all labelled planar graphs

gn ∼ c · n−
7
2 γn n! , γ = 27.22...



Degree distribution in random planar graphs

Outerplanar graphs

Theorem

X
(`)
n ... number of vertices of degree ` in random 2-connected, con-

nected or unrestricted labelled outerplanar graphs with n vertices.

=⇒ X
(`)
n satisfies a central limit theorem with

EX(`)
n ∼ µ(`)n and VX(`)

n ∼ (σ(`))2n.



Degree distribution in random planar graphs

Outerplanar graphs d` = µ(`), p(w) =
∑
`≥1

d`w
`

• 2-connected

p(w) =
2(3− 2

√
2)w2

(1− (
√

2− 1)w)2

• connected or unrestricted:

p(w) =
c1w

2

(1− c2w)2
exp

(
c3w+

c4w
2

(1− c2w)

)
(with certain constants c1, c2, c3, c4 > 0).



Degree distribution in random planar graphs

Series-parallel graphs

Theorem

X
(`)
n ... number of vertices of degree ` in random 2-connected, con-

nected or unrestricted labelled series-parallel graphs with n vertices.

=⇒ X
(`)
n satisfies a central limit theorem with

EX(`)
n ∼ µ(`)n and VX(`)

n ∼ (σ(`))2n.



Degree distribution in random planar graphs

2-connected series-parallel graphs d` = µ(`), p(w) =
∑
`≥1

d`w
`:

p(w) =
B1(1, w)

B1(1,1)
,

where B1(y, w) is given by the following procedure ...



Degree distribution in random planar graphs

E0(y)3

E0(y)− 1
=

(
log

1 + E0(y)

1 +R(y)
− E0(y)

)2

,

R(y) =

√
1− 1/E0(y)− 1

E0(y)
,

E1(y) = −
(

2R(y)E0(y)2(1 +R(y)E0(y))2

(2R(y)E0(y) +R(y)2E0(y)2)2 + 2R(y)(1 +R(y)E0(y))

)1

2

,

D0(y, w) = (1 + yw)e
R(y)E0(y)

1+R(y)E0(y)
D0(y,w) − 1,

D1(y, w) =
(1 +D0(y, w))R(y)E1(y)D0(y,w)

1+R(y)E0(y)

1− (1 +D0(y, w))R(y)E0(y)D0(y,w)
1+R(y)E0(y)

,

B0(y, w) =
R(y)D0(y, w)

1 +R(y)E0(y)
−
R(y)2E0(y)D0(y, w)2

2(1 +R(y)E0(y))
,

B1(y, w) =
R(y)D1(y, w)

1 +R(y)E0(y)
−
R(y)2E0(y)D0(y, w)D1(y, w)

1 +R(y)E0(y)

−
R(y)2E1(y)D0(y, w)(1 +D0(y, w)/2)

(1 +R(y)E0(y))2
.



Degree distribution in random planar graphs

Theorem

X
(`)
n ... number of vertices of degree ` in random 3-connected, 2-

connected, connected or unrestricted labelled planar graphs with n

vertices.

=⇒ EX(`)
n ∼ µ(`)n

For ` ≤ 2, X(`)
n satisfies also a central limit theorem.



Degree distribution in random planar graphs

unrestricted planar graphs d` = µ(`), p(w) =
∑
`≥1

d`w
`:

d1 d2 d3 d4 d5 d6

0.0367284 0.1625794 0.2354360 0.1867737 0.1295023 0.0861805

p(w) = −eB0(1,w)−B0(1,1)B2(1, w) + eB0(1,w)−B0(1,1)1 +B2(1,1)

B3(1,1)
B3(1, w)

where Bj(y, w) are given by the following procedure ...



Degree Distribution

• Implicit equation for D0(y, w):

1 +D0 = (1 + y w ) exp

(√
S(D0(t− 1) + t)

4(3t+ 1)(D0 + 1)
−

−
D2

0(t
4 − 12t2 + 20t− 9) +D0(2t4 + 6t3 − 6t2 + 10t− 12) + t4 + 6t3 + 9t2

4(t+ 3)(D0 + 1)(3t+ 1)

)
,

where t = t(y) satisfies y+1 =
1 + 2t

(1 + 3t)(1− t)
exp

(
−

1

2

t2(1− t)(18 + 36t+ 5t2)

(3 + t)(1 + 2t)(1 + 3t)2

)
.

and S = (D0(t− 1) + t)(D0(t− 1)3 + t(t+ 3)2).

• Explicit expressions in terms of D0(y, w):

D2(y, w), D3(y, w), B0(y, w), B2(y, w), B3(y, w)

• Explict expression for p(w):

p(w) = −eB0(1,w)−B0(1,1)B2(1, w) + eB0(1,w)−B0(1,1)1 +B2(1,1)

B3(1,1)
B3(1, w)



Dissections

A ... set of dissections

(unlabelled planar graphs, where all nodes are on the outer face, one

edge is marked, and there are at least 3 edges)



Dissections

an ... number of dissections with n+ 2 nodes, n ≥ 1,

(the nodes of the marked edge are not counted)

A(x) =
∑
n≥1

anxn ... generating function of dissections

+A
+A

+A AA = +
1

1
1

A(x) = x(1 +A(x))2 + x(1 +A(x))A(x)



Dissections

Quadratic equation:

A2 +
3x− 1

2x
A+

1

2
= 0

Solution:

A(x) =
1− 3x−

√
1− 6x+ x2

4x

Radius of convergence: ρ1 = 3− 2
√

2.

Lagrange inversion formula:

an =
1

n

n−1∑
`=0

(n
`

)( n

`+ 1

)
2`.



2-Connected Outer Planar Graphs

4

1

3

7

8

6

2

5

9

bn ... number of 2-connected vertex labelled outer planar graphs



2-Connected Outer Planar Graphs

B(x) =
∑
n≥1

bn
xn

n! ... exponential generating function of 2-connected

labelled outer planar graphs:

B′(x) = x+
1

2
xA(x)

The derivative B′(x) can be also interpreted as the exponential gen-

erating function B•(x) of 2-connected labelled outer planar graphs,

where one node is marked (and is not counted).



2-Connected Outer Planar Graphs

4

1

3
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8

6

2

5

9

bn =
1

2
an−2 · (n− 1)! (n ≥ 3)



2-Connected Outer Planar Graphs
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2
an−2 · (n− 1)! (n ≥ 3)



2-Connected Outer Planar Graphs
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2
an−2 · (n− 1)! (n ≥ 3)



2-Connected Outer Planar Graphs

4

1

3

7

8

6

2

5

bn =
1

2
an−2 · (n− 1)! (n ≥ 3)



Connected Outer Planar Graphs

B° B°

B°

xC°
xC°

xC°xC°

xC°

xC°

xC°

C•(x) = eB
•(xC•(x))



Connected Outer Planar Graphs



Generating Functions

G

C

C
C

C
C

G(x) = exp (C(x))



Nodes of Given Degree

Dissections:



Nodes of Given Degree

• v2 counts the number of nodes with degree 2,

• v3 counts the number of nodes with degree 3,

• v counts the number of nodes with degree > 3, and

• in all cases the two nodes of the rooted edge are are not taken

into account.



Nodes of Given Degree

• A22(v2, v3, v) ... generating function of dissections with the prop-

erties that both nodes of the rooted edge have degree 2,

• A23(v2, v3, v) ... generating function of dissections with the prop-

erties that the left node of the rooted edge has degree 2 and right

one has degree 3,

• A33(v2, v3, v) ... generating function of dissections with the prop-

erties that both nodes of the rooted edge have degree 3,



Nodes of Given Degree

• A2>(v2, v3, v) ... generating function of dissections with the prop-

erties that the left node of the rooted edge has degree 2 and the

right has degree > 3,

• A3>(v2, v3, v) ... generating function of dissections with the prop-

erties that the left node of the rooted edge has degree 3 and the

right one has degree > 3, and

• A>>(v2, v3, v) ... generating function of dissections with the prop-

erties that both nodes of the rooted edge have degree > 3.



Nodes of Given Degree

The sum

A(v2, v3, v) = A22 + 2A23 +A33 + 2A2> + 2A3> +A>>

is the generating function of all dissections (with the corresponding

counting in v2, v3, v).

In particular,

A(x) = A(x, x, x) =
1− 3x−

√
1− 6x+ x2

4x
.



Nodes of Given Degree

Lemma 3

A22 = v2

+ v2A22 + v3A23 + vA2>,

A23 = v3A22 + v(A23 +A2>)

+A
+A

+A AA = +
1

1
1

= v2A23 + v3A33 + vA3>,

A33 = v(A22 +A23 +A2>)2

+ v(A22 +A23 +A2>)(A23 +A33 +A3>),

A2> = v3A23 + v(A33 +A3>) + v(A2> +A3> +A>>)

+ v2A2> + v3A3> + vA>>,

A3> = v(A23 +A33 +A3>)(A2> +A3> +A>>)

+ v(A22 +A23 +A2>)(A2> +A3> +A>>),

A>> = v(A23 +A33 +A3> +A2> +A3> +A>>)2

+ v(A23 +A33 +A3> +A2> +A3> +A>>)(A2> +A3> +A>>).



Nodes of Given Degree

• B•1(v1, v2, v3, v) ... exponential genenerating functions of 2-connected

labelled and marked outer planar graphs, where the root node (that

is not counted) has degree 1.

• B•2(v1, v2, v3, v) ... exponential genenerating functions of 2-connected

labelled and marked outer planar graphs, where the root node (that

is not counted) has degree 2.

• B•3(v1, v2, v3, v) ... exponential genenerating functions of 2-connected

labelled and marked outer planar graphs, where the root node (that

is not counted) has degree 3.

• B•>(v1, v2, v3, v) ... exponential genenerating functions of 2-connected

labelled and marked outer planar graphs, where the root node (that

is not counted) has degree > 3.



Nodes of Given Degree

Lemma 4

B•1(v1, v2, v3, v) = v1,

B•2(v1, v2, v3, v) =
1

2
(v2A22 + v3A23 + vA2>) ,

B•3(v1, v2, v3, v) =
1

2
(v2A23 + v3A33 + vA3>) ,

B•>(v1, v2, v3, v) =
1

2
(v2A2> + v3A3> + vA>>) .

4

1

3

7

8

6

2

5



Nodes of Given Degree

• C•0(v1, v2, v3, v) ... exponential generating functions of connected

labelled and marked outer planar graphs, where the root node (that

is not counted) has degree 0.

• C•1(v1, v2, v3, v) ... exponential generating functions of connected

labelled and marked outer planar graphs, where the root node (that

is not counted) has degree 1.

• C•2(v1, v2, v3, v) ... exponential generating functions of connected

labelled and marked outer planar graphs, where the root node (that

is not counted) has degree 2.



Nodes of Given Degree

• C•3(v1, v2, v3, v) ... exponential generating functions of connected

labelled and marked outer planar graphs, where the root node (that

is not counted) has degree 3.

• C•>(v1, v2, v3, v) ... exponential generating functions of connected

labelled and marked outer planar graphs, where the root node (that

is not counted) has degree > 3.



Nodes of Given Degree

Lemma 5

C•0(v1, v2, v3, v) = 1,

C•1(v1, v2, v3, v) = B•1(W1,W2,W3,W ),

C•2(v1, v2, v3, v) =
1

2!
(B•1(W1,W2,W3,W ))2 +B•2(W1,W2,W3,W ),

C•3(v1, v2, v3, v) =
1

3!
(B•1(W1,W2,W3,W ))3

+
1

1!1!
B•1(W1,W2,W3,W )B•2(W1,W2,W3,W )

+B•3(W1,W2,W3,W ),

C•>(v1, v2, v3, v) = eB
•
1(W1,W2,W3,W )+B•2(...)+B•3(...)+B•>(W1,W2,W3,W )

− 1−B•1(W1,W2,W3,W )−B•2(...)−B•3(...)

−
1

1!
(B•1(W1,W2,W3,W ))2 −

1

3!
(B•1(W1,W2,W3,W ))3

−
1

1!1!
B•1(W1,W2,W3,W )B•2(W1,W2,W3,W ),

where on the right hand side



W1 = v1C
•
0 + v2C

•
1 + v3C

•
2 + v(C•3 + C•>),

W2 = v2C
•
0 + v3C

•
1 + v(C•2 + C•3 + C•>),

W3 = v3C
•
0 + v(C•1 + C•2 + C•3 + C•>),

W = v(C•0 + C•1 + C•2 + C•3 + C•>).

B° B°

B°

xC°
xC°

xC°xC°

xC°

xC°

xC°



Nodes of Given Degree

Counting nodes of degree 3:

C(v1, v2, v3, v) ... exponential generating function of all connected la-

belled outer planar graphs

Cd=3(x, u) ... exponential generating function that counts the number

of nodes with x and the number of nodes of degree d = 3 with u:

Cd=3(x, u) = C(x, x, xu, x).

Also:

∂Cd=3(x, u)

∂x
= C•1 + C•2 + uC•3 + C•> and

∂Cd=3(x, u)

∂u
= xC•3



Thanks for your attention!


