ON ROBSON’S CONVERGENCE AND BOUNDEDNESS
CONJECTURE CONCERING THE HEIGHT OF BINARY
SEARCH TREES

MICHAEL DRMOTA

ABSTRACT. Let Cj, denote the number of nodes in a random binary search tree
(of n nodes) at the maximal level. In this paper we present a direct proof of
Robson’s boundedness conjecture saying that the expected values E Cj, remain
bounded as n — co. We also prove that E Cj, is asymptotically (multiplica-
tively) periodic which shows that Robson’s convergence conjecture (that is,
E C,, is convergent) is only true if the limiting periodic function C(z) is con-
stant. Interestingly it can be shown that C(z) is almost constant in the sense
that possible oscillations are very small. There are also strong indications that
C‘(w) is not constant which would imply a disproof of the convergence conjec-
ture.
‘We present similar properties for the variance of the height Var H,,, too.

Keywords: binary search tree, height distribution, average case analysis, gen-
erating functions

1. INTRODUCTION

A binary search tree T, of n (internal) nodes is constructed from n distinct keys
Z1,---,%Zy in random order by inserting each key step by step. The first key z; is
put into the root. Then the next key x5 is put to left of the root if it is smaller
than the first key and put to the right of the root if it is larger. In this way one
proceeds further. If z1,... ,x; are already “stored” then one goes to the left subtree
of the root z; if ;1 is smaller than z; and to the right subtree if it is larger. This
procedure is recursively applied until one reaches an empty place where z;, is put
there.

It is usually assumed that the keys zy = Xi,...,z, = X, are iid random
variables with a (common) continuous distribution function. Equivalently one can
assume that every permuation of (given distinct values) 1, ... , z, are equally likely.

It is sometimes useful to consider the n internal nodes together with the (empty)
n + 1 external nodes. Namely, the above probabilistic model for binary search trees
is also induced in the following way. One starts with Tj consisting just of 1 external
node. Now, suppose that T}, is given. Then T}, 1 is generated from T,, by replacing
randomly (with equal probability 1/(n + 1)) one of the n + 1 external nodes by an
internal node (together with two adjacent external ones).
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The height H,, of T}, is then a random variable which has been considered by
several authors. It is now known (see Reed [10]) that the expected value is given by

EH, = clogn — loglogn + O(1),

3c
2(c—1)
where ¢ = 4.31107... is the largest solution of the equation (2¢)° = e. (Previous
results concerning EH,, are due to Robson [11], Pittel [9], Devroye [2], Devroye and
Reed [4], and Drmota [5].)

It has been also a long standing conjecture that the variance Var H,, = E(H,, —
EH,)? remains bounded as n — oo. This conjecture has been proved independently
by Reed [10] and by Drmota [6, 7].

Previoulsy Robson [13] could show that there exists an infinite subsequence ny
for which the variance Var H,,, stays bounded. He also showed that boundedness
of the variance is equivalent to the statement that the expected value of the number
C), of nodes in the highest level (that is, the number of nodes which constitute the
height) is bounded. In a previous paper ([12]) Robson has stated two conjectures
on the expeced value EC),. The convergence conjecture says that the sequence
E C,, converges and the boundedness conjecture that the sequence E (), is bounded.
In view of [13] and the results of Reed [10] and Drmota [6, 7] the boundedness
conjecture is true.

The purpose of the present paper is to discuss the expected values EC,, in
more detail. First we present a direct proof of the boundedness conjecture. Second
we prove that E C,, is asymptotically (multiplicatively) periodic which shows that
Robson’s convergence conjecture is only true if a corresponding limiting periodic
function C(z) (see (11)) is constant. Interestingly C(z) looks constant (numerically)
and it can be shown that the possible oscillation are very small. However, there are
strong indications that C(z) is not constant. Thus, we are confronted here with a
new almost constancy phenomenon. Interestingly this observation seems to be in
contrast to Robson’s numerical experiments that show that the sequence E C,, is
increasing for 7 < n < 100000. However, this is no contradiction to (expected)
non-convergence since the oscillations are very small and the error term in (7) is
surely relatively large for moderate n.

We will prove similar properties for the sequence of variances Var H,,, too.

2. RESULTS

We first introduce the polynomials
ye(z) ==Y P[H, <klz" (k> 0). 1)
n>0

These polynomials are recursively given by yo(z) = 1 and by

Yo (z) =1+ / w(®2dt (k> 0). @)
0
Alternatively we can characterize them by

Yit1 (@) = yi(2)?

and y(0) = 1.
The sequence yi(1) plays an important role in the analysis of the distribution
behaviour of the height H,, (see [6]). It is rapidly growing and one has the limiting
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relation (see [7])

yk+1(1)

_ /e _
=e/°=1.2610.... 3

More precisely, the sequence of ratios satisfies yxy1(1)/yr(1) > €'/¢ and decreases
to its limit e'/¢.
Furthermore, let ¥(y), y > 0, denote the unique solution of the integral equation

mMWéﬂr=Aﬂwwww—Ada (4)

which is monotonically decreasing and satisfies ¥(0) = 1, limy_,o, ¥(y) = 0 and
Jo° ®(y)dy = 1. (Existence and uniqueness of ¥(y) has been shown in [7]. One
even knows that proper tail estimates, see Lemma, 5)

With help of the sequence y(1) and the derivative of the function ¥(y) one can

introduce the function
1 x T
Cla) = —1 _q,(_> 5
(@) 2 ,;0 yr (1) yr (1) )

Due to proper tail estimates for ¥'(y) (see Lemma 5) it follows that C(z) is a
bounded function for z > 0. Furthermore, the limiting relation (3) implies that
C(z) is almost periodic in the sense that

C(etex) = C(x) + o(1) (x = ). (6)
With help of this function we can formulate our main result:

Theorem 1. Let C,, denote the number of nodes in Ty, at level H,. Then the
sequence E C,, remains bounded for n — oo. It is asymptotically given by

EC,=C(n)+0(1) (n — o0) (7
and it is asymptotically periodic in the sense that
E CLEI/CnJ =EC, + 0(1) (n — OO) (8)
Furthermore, the sequence E C,, is almost constant. There exists ng such that
c
EC, - —‘ <1074,
max |ECy — 5] <10 9)
and we have
le!/°n]
i EC, 1
LD DY 10
=n

and

The periodicity behaviour of E C), can be stated in a little bit more precise form.
Set

C(z) == —% i ze R ey (:ce_k/c) (11)
k=—o00

Then C(z) is in fact (multiplicatively) periodic, that is, C'(e'/z) = C(z) and we
have, as © — oo,

X

C(;c):é( )+0(1) (z = 00)

yho (z)
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where ho(x) is uniquely defined by yp,(x)(1) < = < Ypg(a)+1(1) (compare with
Lemma 6). Consequently

EC,=C (yho(n)) +o(1)  (n— o).

Thus, it follows that the limits lim, o, C(z) and limit lim, . E C,, exist if and
only if C'(z) is constant. In fact, C'(x) equals § up to at least 4 decimals and there
are strong indications that C(z) is not constant.

As announced there is a similar theorem for the variance. Set
2

ve=geen (-0 (G)) - (202 () )

This function has similar properties as C(z). V(z) is a bounded function for z > 0
and it is almost periodic in the above sense:

V(el/ca:) =V(z) +0o(1) (z = 00). (13)

Theorem 2. The variance Var H,, remains bounded for n — oo. It is asymptoti-
cally given by

Var H, =V (n) + o(1) (n — o0) (14)
and it is asymptotically periodic in the sense that
Var H|1/c,,) = Var H, + o(1) (n = o0). (15)
Furthermore, the sequence Var H,, is almost constant. There exists ny such that
rr;ax |Var H,, — vy| < 1073, (16)
n-ny
and we have
Le!/n]
) Var H;, g
1 =— 17
lim. I; - - (17)
in which
* —1/c du
vg = ¢ (E(u) + E(ue™ "/ ¢))¥(u) o= 2.085687 ...
0
and

Ew) =Y (1 - \I'(ue_k/c)) .

k>0
3. THE BOUNDEDNESS PROPERTY

In this section we present a short proof of the property that E C,, remains
bounded as n — oo.

Lemma 1. We have
n+1

EC, = —5— (EHu1 — EH,) (18)

and

Y EC,s" Y n@ 0+ @ Dp@) . (19

n>0 k>0
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Remark . Note that (7) and (18) reprove that
E H,, ~ clogn.

Proof. Let D,, denote that number of external nodes at level H,, + 1, i.e. there are
no further (external or internal) nodes at higher level. Then D,, = 2C,,.

We now use the property that a random binary search trees T, with n + 1
internal nodes is obtained from 7}, by replacing (with equal probability 1/(n + 1)
one of the n+1 external noded of T, by an internal one (with two adjacent external

ones). Thus
Dy
1—
! ( n+ 1)

D
E(Hn+1|Tn) = (Hn + 1)n .

and consequently

EELHJ,:

This proves (18).
Next we use the representation

> EH,z" =) (1-P[H, <k)z"

n>0 n>0 k>0

g(l_w—yk ))

and (18) to obtain

> ED,2" =) (n+1)(EH,y1 — EH,) 2"
n>0 n>0

=|(1—2)) EH,z"

!

n>0
=Y (- (1 - Dy(a))’
k>0
=1+ (4(@) + (@ = Dyr-1(x))
k>1
=1+2(yk($)_yk1 +Zyk1 )1+ (2 — Dyg—1(z))
k>1 k>1
L+ (z = Dyw(2),
k>0
which proves (19). u

Lemma 2. Set ap j, := P[H, < k]. Then for n > 1 we have

n+1
Z (Gnk — Qnt1k) (20)

EC, =
2
k>0
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and
1 1l
EC, = 5 + 5 Z Z am,k(an_m_l,k — an_m,k). (21)
k>0 m=0
Proof. (20) follows from
EH, =) (1—any)
£>0
and from (18), and (21) is just a translation of (19). |

In order to estimate the expected value E C;,, we make use of the following tail
estimates which have been (implicitly) established in [6].

Lemma 3. Set ho(n) := max{k > 0 : yx(1) < n}. Then there exists a constant
C > 0 such that

P[H, < k] < Ce (ro(mM=k)/c for | < ho(n) (22)
and
P[H, > k] < Ce~k=ho(m)/e  for k > ho(n). (23)
Proof. In [6] it was shown that
1
P[H, <K < Cy’“T() for n > yx(1)
and
n
P[H, <k]|<C——= forn <yg(l).
[ = ] = yk(l) > yk( )
Since yp11(1) > e'/y,(1) these inequalities immediately translate to (22) and (23).
|
We want to note that these tail estimates can easily be used to show that
EH, =) (1—ank) =ho(n) +O(1). (24)
£>0
Thus, (22) and (23) directly yield exponential tails of the form
P[|H, — EH,| >n) < C'e7"/¢ (25)

for some constanst C' > 0. Obviously, (25) implies boundedness of all centralized
moments (such as the variance).
It is now quite easy to show that E C), remains bounded.

Lemma 4. We have, as n — 00,
EC,=0(). (26)

Proof. As above, set an := P[H, < k]. Since ag,x; = 1 and anpy1,x < apn,k we have
for every L <n
n—1 L—-1

Z am,k(anfmfl,k - anfm,k) S Z (anfmfl,k - anfm,k:)
m=0 m=0
n—1
+ ar k Z (anfmfl,k - anfm,k)
m=L

= (ap-r — ank) + ar k(1 — an_rx).
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Especially, we will work with L = |2 and obtain the upper bound

1 1 1
EC, < 5 + 5 Z(a[n/z],k —Qn k) + 5 Za[n/2j,k(1 — Qrp/27,k)
k>0 k>0

=1+4+51 +5;.
First, by using the tail estimates (22) and (23) from Lemma 3 we have

a|—n/2-|,k - an7k S a[n/2'|,k
< Ce(holln/2])=k)/c

for k < ho([n/2]) and

arny2)k = Ongke <1 — Gn ik
< Ce(k=ho(m)/e

for k > ho(n). Thus,

Yoo+ D> | @ik —ans) =0(1).

k<[n/2]  k>ho(n)
Since yr11(1)/yx(1) > e'/¢ and €%/¢ > 2 it directly follows that
max{k : yx(1) < n} —max{k : yx(1) < [n/2]} < 3.

Hence, there are at most 2 terms (of magnitude < 1) missing and consequently
S =0(1).

In order to estimates the second sum Sy we proceed in a similar way. For k& <
ho([n/2]) we have

a|ns2) k(1 = apn/21k) < Qns2)k
< Ce(holln/2)-B)/e.

Consequently
Yo app k(= ampmE) =0(1).
k<ho(ln/2])
Similarly for k > ho([n/2]) we get

ajpn/2), k(1 = arpya1k) <1 —app 21k
< Cetk—holln/2))/e

and

S app k= apmE) =0(1).
k>ho([n/2])

Since ho([n/2]) — ho([n/2]) < 1 there is at most one term (of magnitude < 1)
missing and we finally have proved that S2 = O (1), too. |
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FIGURE 1. Picture of ¥(y)

4. ASYMPTOTICS FOR THE SOLUTION OF A FIXED POINT EQUATION

In section 2 we already mentioned the fixed point equation (4) which has been
discussed in [7]. In this section we also show that the derivative ¥'(y) exists and
has proper tail estimates which will be used for the proof of Theorem 1.

Lemma 5. There uniquely exists a function ¥(y), y > 0, with the following prop-
erties:

L yw/e) = (e -2 ds

. /Ooo\Il(y)dyzl.

. U(y) — 1 ~cry¢Llogy as y — 0+ for some constant c;.
4. For every v < (clog2)/(clog2 — 1) there exists C > 0 and yo such that
U(y) < e~ fory > yo.
5. ¥(y), 0 <y < o0, is decreasing.
oo
¥(y)

W N

c=—1

(y) = / e *Y  dG(z) for a proper distribution function G(z), z > 0.
0
7. U(y) is continuously differentiable for y > 0 and the derivative ¥'(y) is
bounded by
0< - (y) < CryPe @V, (27)
for some > 0.
Proof. Existence and Uniqueness of ¥(y) (together with the stated properties 2.-5.)
have been established in [7, Lemma23]. The representation 6. is proved in [1].

By property 6. it follows that the derivative ¥’ (y) exists. By differentiation prop-
erty 1. we obtain that ¥'(y) satisfies the functional equation

B(y/et/e) = B(y) + y/e!/ T (y)e!/) = /0 L)W (y - 2) dz.
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However, it seems to be a non-trivial problem to establish the bounds (27) directly.
Therefore, we proceed indirectly.
First, we will solve the functional equation

Ty /) — W(y) + /e /"Ry e)e) = / "YR@-2dz  (28)

and derive certain properties of a one-dimensional variety of continuous solutions.
In a second step we will show that one of these solutions has the property that

14 /Oy R(z)dz = U(y).

Thus, ¥'(y) is continuous and equals R(y).
Let R denote the set of continuous functions R(y), y > 0, such that R(y) =
O(y¢~2) for y > 0 and consider the mapping

F:R—>R

defined by
/e

FR0) = [ ¥R - ds+ 1 (Ve - 90)).

It is easy to establish that F is indeed a mapping from R to R, and obviously, a
fixed point of F is a solution of (28). Furthermore, observe that R adjusted with
the metric

d(Ry, Ry) := sup R
y>0

constitutes a complete metric space.
We will now show that F is a contraction on R. Let Ry, Ry € R with d(Ry, R2) =
6 > 0. Then
/e

FE)0) - FEIWI < [ U6 [Rie e - 2) ~ Falye - )] ds

1/c

1 [ve
< [0 IRE - R a2
YJo
yelle
Sé/ Z671
Y Jo
=/
=0 y°3.

c—2
and consequently d(F(Ry), F(Ry)) < L-d(Ry, Ry) with L = (e(¢=2/¢) /(¢ —2) < 1.
Thus, there is a unique solution Ry € R of (28). However, at the moment it is not
clear whether Ry = ¥’ or not. The reason is that Ry is not the unique solution of
(28).
We next show that the equation

y/e /o R(y ) = / "SRGy - 2) dz (20)

has infinitely many solutions. Let 7 denote the set of non-negative continuous
functions

Ry)=y"+0 (@) (y>0),
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where 0 < 8 < 1 is the solution of the equation
eB/e = g 41
and c is a fixed real number. If we adjust 7 with the metric

Ri(y) — Ry(y) ‘
y2

d(Ry, Ry) := sup
y>0

then 7 is again a complete metric space. As above, it now follows that the mapping
G:T — T, defined by

ww = | " B)RE - 2)dz,

is a contraction with Lipschitz constant L = e3/¢ /3 < 1. Thus, there is a unique
fixed point Ry € T of G. Consequently, all functions of kind

R(y) = Ro(y) + ARi(y) (A €R)

are solutions of (28).

Our next aim is to show that the Laplace transforms of Ry and R; exist and
constitute entire functions. For this purpose it suffices to show that Ry(y) and
R:(y) decrease to 0 (as y — oo) faster than exponentially. We fix some « with
1 < a<e'/c. Then vy := (log2)/(log 2—log @) satisfies 1 < v < (clog2)/(clog2—1).
Thus, we know that for some constant C' > 0 and y > yo

U(y) <e” V.
We first show that there is another constant C; > 0 such that for all y > 0
0 < —Roy(y) < Crye V7. (30)
We set

—y1 for0<y<1
B = { —eg*cy7 for y > Z{;_

and inductively R+ = F(R®). Since F is a contraction it follows that
lim; oo R = Ry and that there is uniform constant Cy such that 0 < —R®(y) <
Cay°®~3 for all i > 0 and y > 0. Thus there exists y; > yo/(e'/¢ — 1) and a constant
C; > 0 such that the function y — ye~C¥" is decreasing for y > y;, that

0 < —RO(y) < Crye™ V"
for 0 <y <y, that

0< —RO(y) < Crye=V"
(even) for y > y;, and that

1

> (v - wen) < (1- 2/) Crye V",

Now we proceed by induction and suppose that we already know

0 < —RD(y) < Crye Y’
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for all y > 0. It is sufficient to consider the case y > y1. If 0 < 2z < yo we have
(since y1 > yo/(e!/° — 1))
—W()RD(e!/oy — 2) < Cy(e!/ey — 2)e=CC v
< Cy(eMey — 2)e=CY
If yo < z < e'/¢y we also get

—C27—C(e cy—2)"

(ey —2)e
< o} (61/Cy _ ’2)6720(e1/cy/2)'y
= Cy(e'/°y — z)e*C(e”“/a)y”
< Cy(eMey — 2)e= Y’
Thus, in all cases we obtain for y > y;

1/e 1/e

1o (i) (1/c D B AN
s U (2)R"Y(e/y — 2)dz < Ce A (e/y —2)dz
2/c
= 62 Crye= Y’
and consequently (for y > y1)
. 1 ey :
—RHD (y) = 3 / (2)RD (e oy — 2) dz
0
1 1/c
o (2 ey
< Crye V.
Of course, this also proves (30).
For R; we use a similar approach. We define
50, yP for0<y<1
) = { —eC=Y" fory>1,

and inductively R —¢g (R(i)). Again the goal is to prove an inequality of the
kind

0< B (y) < CayPeCV

for all i > 0 and y > 0. We do not work out all the details. We just mention the
crucial relation

1 e elB+1)/c
— e —2)Pdz = =P,
" /0 (e°y —2) Fr1 Y Y
Thus, we also have
0 < Ri(y) < Cay’e™ V. (31)

Now, let
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and
Si0) = [ Rty dy
denote the Laplace transforms of Rg and R;. Since S1(0) > 0 there exists Ag such
that
S0(0) + Ao S1(0) = —1.

The major step of the proof of Lemma 5 is now to show that R(y) := Ro(y) +
Mo Ri (y) is exactly the derivative of ¥(y).
Let

o0
D (u) ::/ U(y)e ¥ dy
0
the Laplace transform of ¥ which satisfies the differential equation
—e2/°®' (e °u) = ®(u)? (32)

with initial condition ®(0) = 1. It is easy to show that (32) has a unique entire
solution. (Note that ®(u) is surely an entire function because of the tail estimates
of ¥(y).) One just has to observe that the coefficients of the Taylor series ®(u) =
> k>0 cku® satisfy the recurrence

k
— (k42
Ch+1 = —€ (k+2)/c E CiCl—gp-

=0

Thus, they are uniquely determined by ¢y = ®(0) = 1.
Similarly if we assume that R(y) is a solution of (28) for which the Laplace
transform S(u) is analytic. It then follows from

et/ed (et cu) — ®d(u) — e?/°S" (e u) = ®(u)S(u) (33)
that the Taylor coefficients of S(u) =3y, dru® satisfy the recurrence

k
dk+1 =Ck — e_(k+1)/ch - 6_(k+1)/c Z deCr_g.
=0

Consequently, they are (again) uniquely determined by do = S(0).
Furthermore, the entire function

S(u) =u®(u) —1
satisfies (33) and has (initial value) S(0) = —1. Thus,
u®(u) — 1 = So(u) + Ao S1(u)
and consequently R(y) = Ro(y) + Mo Ri(y) satisfies

1+ /y R(2)dz = ®(y).
0

This shows that ®(y) is continuously differentiable and ®'(y) = R(y) has the pro-
posed properties. |
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5. ALMOST CONSTANCY PHENOMENA

We will now have a more precise look at the functions C'(z) and V(z). As already
indicated they can be approximated with help of the following functions:

C(z) := —% i ze eg! (xe_k/")
k=—o00

(which was alredy defined in (11)) and

Viz) := i (E(Z-e*k/c) +E($67(k+1)/C)) T (e e,

k=—o00

where

E(z)=Y" (1 - \Il(me_k/c)) .

k>0

Lemma 6. The functions C(z) and V(z) are bounded for x > 0 and multiplica-
tively periodic:

C(etex) =C(x), V(eY°x) =V(x).
Furthermore, let ho(z), x > 0, be uniquely defined by
Yho(z)(1) < T < Yng(z)41(1)-

Then we have, as x — 00

~ z
Cz)=C (yho(w)) +0(1) (34)
and
- z
V)=V (yho(z)) + o(1). (35)

Proof. First of all, the tail estimates for ¥'(y) of Lemma 5 show that C(z) is a
bounded function, and by definition we have C(e'/¢z) = C(x).
Next we show that

]. X €x
Cz) = -3 v ( )
2 zz%(n) Yho(n)+¢(1) Yho(n)+¢(1)

is close to

~ T 1 & T T
() =2 ¥ ()
Yho(a) 2 2 Yhom)€° " \Wno(m)et/*

{=—0
Note that g, (n)+¢(1) > Yno(m) (1)e/® for £> 0 (and g, (my+£(1) < Yao(m) (1)e’/* for
¢ < 0). Thus
x x
< 7
Yno(n)+2(1) = Uno(ny(1)et/¢
< yho(n)-i-l e—f/c
yho(n)
< Ce—l/c




14 MICHAEL DRMOTA

for £ > 0 and an absolute constant C' > 0. Similarly we have
x
L o
Yho(n)+¢(1) —

for £<0Q.
Now, fix some ¢ > 0. Due to the tail estimates of ¥'(y) from Lemma 5 (and the
above considerations) there exist L = L(¢) > 0 such that for all z > 1

ad o' ( a ) <e
57, Yrom+e(L) " \Una(n)+¢(1)
and
x z
o’ ( ) <e
l¢|>L yho(n)ef/c yho(n)ee/c

Furthermore, for |¢| < L we have

c < S <c
Yho(n)+e(1)

and

T
c <  ijc <ep
Yho(n)€"'°

for certain constants ¢1,ce > 0 (depending on ¢).
Hence, by applying the limiting relation (3) we obtain for every £ with |[¢| < L

X xr xXr X
Hm( w( )_ v( )):a
200 \ Ypo(n)+e(1) Yho(n)+e(1) Yho(n)et/® Yho(n)et/®

Consequently,

limsup‘C(a:) - C’( ? )‘ <e.
yho(z)

T— 00
Since € > 0 was arbitrary, we have thus proved that, as x — oo,
) + o(1).

Zr
yho(z)

mm:é(

This completes the proof of the properties of C(x) in Lemma, 6.
The proof of the corresponding properties of V' (z) is similar, however, it is con-
venient to introduce another auxiliary function:

V(o) =32k +1) (1= (e ) = [ 3 (1- w(ae /7))

k>0 k>0

2

As above it follows that (compare also with [7])

eho<w>/c) +o(1).

Viz)=V (
yho(m)

Next, it is another easy exercise to derive an alternate representation for V(z):

V(z) = Z (E(a:e_k/c) + E(a:e_(k+1)/c) T(ze"/°).
k>0
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Since E(z) = O (z°7') as z — 0+ it finally follows that

V(z) =V (z) +o(1)

as r — 00. Thus

V(z)=V (Leho(w)/c> +0(1)
yho(m)
% ( " ) +o(1)
yho(m)
and the proof of Lemma 6 is completed. |

Since C(z) and V(zx) are periodic in the sense that C(e'/¢z) = C(z) and
V(e'/cx) = V(x), we get another verification of the oscillation properties of E C,,
and Var H,,. Furthermore, Lemma 6 also shows that lim,_,. C(z) exists if and
only if C(z) is constant (and similary for V(z)).

We will next show that the functions C'(z) and V() are (at least) almost con-
stant.

Lemma 7. We have
max ‘(:'(a:) - §| <10™*
and

max ‘V(m) — Uo‘ <1073,

xr
where

vg = c/OOO(E(u) + E(ueil/c))\I'(u)(i—u =2.085...

Proof. By definition the function C;(x) = C(z) is periodic with period 1/c and the
(complex) Fourier coefficients are given by

1/c )
cp=c¢ Cy (z)e 2mche gy

[
— __/ ex\I;I(ea:)e—Zﬂ'ichw dr

—0o0

Il
|
|
h
8
<
—~
S5
SN—r
®
b
3
S.
3
=
S
o
<
U
<

where

denotes the Fourier transform of e*¥’'(e®). Figure 2 shows |Fy(t)| for 0 < ¢ < 30.
This picture indicates that the Fouriercoefficients ¢; are very small. In fact, by
numerical calculations we (surely) have |c1| < 107 and |ca| < 3-10°. We now
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0.2 q
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FIGURE 2. Picture of |Fy(t)|

give a theoretical justification for the property that Fj (¢) is small. By using property
6. of Lemma 5 we directly get

Fi(t) = —/0 /0 (c — 1)ze(cDme=2¢“T" e=ite 4o 4G(2)
__ /Oo Lit/(e=1) /oo =0yt dy dG(2)
0 0

it R
_ 1— it/(c—1) .
=-I ( p 1)/0 Z dG(z)

By Stirling’s formula we have (for real s)

T(1+is) ~V2rse 5%

Consequently it follows that

o o
23 fen| < ¢ [Fi(—2mich)| < 1075
h=3 h=2
Hence, the maximal deviation of (;'(;c) from ¢y = ¢/2 is bounded by 10~%.
A similar procedure works for V(x). Here we have to consider the Fouriertrans-
form
R 3
By(t) = / (B(e?) + E(e"Y/°))B(e?)e=it® d.
— o0
The Fouriercoefficients of V (e?) are then given by dj = ¢Fy(2nch). With help of

numerical calculations it follows that |di| < 3-107° and |d2| < 5-107°
As above it follows that

Fy(t) = H 7702(2 — bk,0) (wc"—H — (w+ z(2/c)k)%) dG(2) dG(w).
0

c—1
o k>0
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Thus, we can again estimate the deviation of V(z) from vy = do = cF>(0) =
2.085... and obtain (after proper numerical calculations) a (crude) upper bound
1073. |

Note that Lemma 7 provides just upper bounds for the deviation from the mean.
By calculating C(z) and V (x) directly one observes that these bounds are surely far
away from beeing optimal. And these calculations cannot decide, either, whether
C(zx) or V(x) are constant or not. The accuracy of the numerical calculations (the
author uses) is not sufficient to answer this question. The problem is that the cal-
culations for the tail of ¥(y) are very sensitive. And the tail is, of course, important
for the order of magniture of F(t) and F»(t). Nevertheless, one gets the impression
that Fy »(t) are non-zero for all ¢ which would implies that ¢, # 0 and dj, # 0 for
all integers h and consequently C(x) and V() are not constant.

6. PROOF OF THEOREM 1

The unique solution ¥(y) of the fixed point equation (4) (compare with Lemma 5)
is also very important for the distribution of the height H,,. The following theorem
is one of the main results of [7].

Theorem 3. Let U(y) be the unique solution of the fixed point equation (4) (with
side conditions ¥(0) = 1, limy_,oc ¥(y) =0, and [;° ¥(y)dy = 1). Then, as n —
00,

n
yr(1)

where the error term is uniform for all k > 0.

P[H, <k =T ( ) +o(1), (36)

In view of (18) and (20) this suggests that

EC, ~ n;_l ]g) (‘I’ <y,:z1)> - (Zk-fl;))
—%Z yk”zl)qﬂ (:w:zl)>

k>0

= C(n).

Whereas the second approximation step is easy to verify, the first one cannot be
directly checked. Therefore we will use (21) instead in order to prove the above
approximation E C, = C(n) + o(1) rigorously.

Proof. (Theorem 1) For convenience, set

Q

n—1

An,k = Z A,k (an—m—l,k - an—m,k)- (37)

m=0

In the proof of Lemma 4 we have (implicitly) proved that
Apr=0 (e*(ho(”)*k)/c) for k < ho(n)
and

A =0 (& Emo/E) - for k> ho(n).



18 MICHAEL DRMOTA

Thus, for any given € > 0 there exists L = L(¢) such that for all n > 1
An,k S €.

|[k—ho(n)| 2L

Note that

1
L:O(logg).

Furthermore, there exist constants ¢; = ¢1(€),ca = ca(e) > 0 such that

for all n, k with |k — ho(n)| < L.

The next step is to show that for k with |k — ho(n)| < L we have uniformly, as
n — 00,

/() n
App = /0 T(2) T (yk - z) dz + o(1). (38)

First of all, we have for all £ > 1

ln/t]—1

Ank < ik (@n—anyek — Gnjek) + ansejek (L= Gnopnyeger)  (39)
i=0

and similarly

[n/t]—1

j=0
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Since both bounds are of almost the same shape we just consider the first one. First
of all we replace a,,r by ¥(n/yx(1)) + o(1): and suppose that [ = |ne|:

[n/e)—1

D ek (@n—inek — njer) + apnseier (1= annjejen)
Jj=0

[n/€]-1 it
= v 1 ) Ca;

;0 ( (yk(1)> +of )) (@n—(j+1)ek — Qn—jt,k)
n/l|l

+ (\1: (L /(lJ ) +o(1)) (1= an_pyesen)

Ln/l!] 1

J4
G4k — On—jek) + ¥ (y;j(l)) (1= ap_nseer) +0(1)

e
- () (0 () -+ ) )
g ) (oo (5582) ) o
5o () (¢ (55 ()
o () - (55) o

By the mean value theorem we know that

L Gw) v (o) * .
o () (- (22 (50

for some ¢ € [j¢, (j + 1)£]. Consequently

") (S ) -+ (i)

yktl) j(Hm v (y;jl)) v (Zkzlj) éz

Ln/lJ 1 (

J

V4
(1




20 MICHAEL DRMOTA

Now we suppose that | = |yr(1)e] which gives

Awf—ykin * (am) ) ™
l

- /0 R T (2) W (y,:(Ln - z) dz

+o(1)+o (ykL(l)6> +0(e).

As already mentioned, we obtain a lower bound of the same kind by starting with
(40) instead of (39). Thus,

4 /’"/yk(l) ( ) , n p
nk = — U)WV (— — 2| dz
T (yk(l) )

+o(1) +o0 (ykL(l)e) +0 ().

Summing over all k£ and using the fact that

n/yr(1) n
— ¥ (2) ¥ ( — z) dz = O (e~ (ho(M)=k)/c)  for |k < ho(n
/ @ (s ( ) < ho(n)

and

n/yr(1) n
— ¥ (2) 0 (— —z) dz = O (e E=ho(m/e)  for k> ho(n).
/ @ (s ( ) > ho(n)

(which follows as above by using the tail estimates for ¥(y) and ¥’ (y) from Lemma, 5
instead of (22) and (23) from Lemma 3) we end up with

S = [ v ow (1) 0

£>0 E>0
1
+o(L) +o(Lee) + O (5 log E) ,

where the o-terms tend to 0 as n — oo. Since € > 0 was arbitrary this also shows
that

ZAnk— Z/n/yk(l)lIl (2 III’( D —z) dz + o(1)

k>0 k>0

as n — oo.
Now, since

/y U(2)¥'(y - 2)dz = U(ye /) = T(y) + ye™ /' (ye™ /)
0

we thus get

% =2 (i)~ () - S ()

k>0 k>0
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Hence, in order to complete the proof of Theorem 1 (and in view of (21) and (37))
we just have to show that

g;<m<ﬁ%i>_m<ﬁéimﬁ>=—l+dU (41)

B 7 (R T S R 7 (L
Z k(l)el/C\IJ (yk(l)el/c> _Zyk(l)w (yk(1)> +o(1) (42)

k>0 Y £>0
as n — oo.

The idea of the proof of (41) is to approximate yx(1)e'/¢ by yr41(1). Let € > 0
be given. By another use of the tail estimates for ¥(y) of Lemma 5 it follows that

there exists L such that

khoz(n)|2L (\IJ (ykL(l)>) -V (W) <e.

Furthermore, we have for k with |k — ho(n)| < L (with some constants ¢;, ca > 0)

<" <
C1 < < Co.
yr(1)

with some constants c¢1,ca > 0 (depending on ). Hence, by using the limiting
relation (3) it follows that

*(awer)) - (o

_yk(1)el/e
Yrt1(1)

and

|[k—ho(n)|<L

n

=0 RO

|k—ho(n)| <L
=o(1)

as n — oo. Consequently (by another use of the tail estimates of ¥(y))

% (+ Gw) ~ Gawee)) - 2 (+ )~ (i)

2 Gm) ~* )

=-140(1)+0(e).

Since & > 0 can be chosen arbitrarily small, (41) follows.

The proof of (42) is quite similar. We only have to use corresponding tail esti-
mates for ¥'(y) and the property that ¥ (y) is bounded. This completes the proof
of Theorem 1. |

7. PROOF OF THEOREM 2

By definition we have

Var Hn = Z(2k + 1)(1 - an,k) - Z(l - an,k) )

k>0 k>0
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where (as above) ap r = P[H, < k]. Thus, with V() from (5) we get

Var H, = V(n) + o(1).

We just have to proceed as in the proof of Theorem 1. (We apply the approximation
of Theorem 3 for those k which are close to hg(n) and estimate the remaining ones
with help of the tail estimates of Lemma 3 and Lemma 5.)

(1]
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