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Abstract. We analyze special random network models – so-called thick-
ened trees – which are constructed by random trees where the nodes are
replaced by local clusters. These objects serve as model for random real
world networks. It is shown that under a symmetry condition for the
cluster sets a local-global principle for the degree distribution holds: the
degrees given locally through the choice of the cluster sets directly af-
fect the global degree distribution of the network. Furthermore, we show
a superposition property when using clusters with different properties
while building a thickened tree.

1 Introduction

There has been substantial interest in random graph models where vertices are
added to the graph successively and are connected to several already existing
nodes according to some given law. The so-called Albert-Barabási model (see [1])
joins a new node to an existing one with probability proportional to the degree.
This is called preferential attachment and the motivation for introducing such
models is to model various real-word graphs like the internet or social networks.

It turns out that the preferential attachment rule of the Albert-Barabási
model is not in an unambiguous way. One rigorous approach is due to [3]. They
introduced a random multigraph which is built of random forests which are then
formed into multigraphs by partitioning the vertex set and identifying vertices in
the same block of the partition. It was shown in [4] that the degree distribution
of these graphs satisfies asymptotically a power law, that is, the graphs are scale
free. Furthermore, the models fulfils the preferential attachment rule given by
Albert and Barabási.

2 Thickened trees

The model of thickened trees was introduced in [5]. The starting point was
to construct a model of scale free graphs which is locally clustered, but the
global structure is tree-like. This fits with observations from real world networks.
In particular the design of this model was motivated to describe cooperation
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networks, where one usually has small groups with a stong interaction and some
connections to other groups. Of course, there might be circles in a cooperation
network but they are usually rare so that we neglect them.

The idea how to get such a graph is to start with a scale free tree and then
“thicken” the tree by substituting the nodes by clusters. Then the initial tree
causes the global tree-like structure while the inserted clusters cause the local,
highly clustered structure.

The clusters are not produced by an evolution process. Nevertheless we think
that our model has several advantages and can be used to explain several prop-
erties that are observed in practice:

– There is large flexibility in choosing the structure of local clusters and, thus,
can be adapted to the situation.

– The model is feasable for an analytic treatment.
– It can be used to study (analytically) the influence of local changes of the

network to the global behaviour.

In the following we present a brief explanation how the model is constructed:
We first introduce an evolution process that leads to a labelled plane rooted tree.
The process starts with the root that is labeled with 1. Then inductively at step
j a new node (with label j) is attached to any previous node of out-degree k
with probability proportional to k + 1. These kinds of trees are also called plane
oriented recursive trees (PORTs).

Note that if a node v of a plane (rooted) tree has out-degree k, then there are
exactly k+1 ways of attaching a new node to v, each leading to a different plane
tree. Of course, if v is different from the root then its degree d equals d = k + 1.

PORTs are scale free trees. The degree distribution is given by

lim
n→∞

pn(d) =
4

d(d + 1)(d + 2)
∼

4

d3
,

where pn(d) denotes the probability that a random node in random PORT of
size n has degree d (see [9] or [8]).

Now, we introduce a substitution process that creates random graphs that
have a global tree structure that is governed by plane oriented recursive trees.

For every k ≥ 0 let Tk denote a non-empty set of labelled graphs with half
edges attached to their nodes in such a way that each graph receives in total
k + 1 half edges. The half edges are also ordered from 0 to k. Now consider the
following random process. Take a tree T according to the PORT-model. Then
we substitute every node v of out-degree k in the following way: cut v and one
half of each edge incident with v. Then take a randomly chosen graph G of Tk

and glue the k+1 half edges of G to those left in T by the cutting of v respecting
the given order, that is, the half edge coming from the predecessor of v is glued
to the 0th half edge of G and the 1st, 2nd,. . . , kth successor of v is attached to
the 1st, 2nd, . . . , kth half edge of G, respectively. Further we relabel all nodes in
the new graph G = G(T ) in a way that is consistent with the original labelling.
We denote the graphs that are obtained by this process thickened trees or more
precisely thickened PORTs.
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Fig. 1. A simple example of a thickened PORT. The original tree has only nodes of
out-degree 0,1, or 2. So the choice of all sets Tk with k > 2 is not relevant for the
thickening process. For example, the node with label 2 is cut along the circular dashed
line. Since it has out-degree 2, we choose one of the three graphs in T2 (here the first one
was chosen) and glue it into the corresponding space. Applying the same procedure to
all nodes and relabelling afterwards yields the graph on the right hand side, a thickened
PORT.

3 Generating functions for thickened PORTs and a

Local-Global-Principle

Consider the formal solution y = y(z, x0, x1, x2, . . .) of the differential equation

y′ =
∑

k≥0

xkyk,

where ′ denotes differentiation with respect to z. Then y = y(z, x0, x1, x2, . . .)
can be considered as a power series in z, x0, x1, . . . By construction the coefficient

[znxk0

0 xk1

1 . . .] y(z, x0, x1, x2, . . .)

is exactly the number of PORTs T of size n and with kj nodes of out-degree j
(j ≥ 0).

For every k ≥ 0 let Tk denote a non-empty set of labelled graphs with k + 1
additional half edges ẽ0, ẽ1, . . . , ẽk. Furthermore, let

tk(z) =
∑

G∈Tk

z|G|

|G|!

denote the exponential generating function of these graphs.
The generating function of the numbers gn of thickened trees with n vertices,

g(z) =
∑

n≥1 gn
zn

n! , is then

g(z) = y(z, t0(z)/z, t1(z)/z, . . .).
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We are interested in the number Nd(G) of nodes of degree d in a graph G.
Therefore we consider the bivariate generating function

t
(d)
k (z, u) =

∑

G∈Tk

z|G|

|G|!
uNd(G),

Here the the half-edges ẽ0, . . . , ẽk contribute to the node degrees as well. Then
the generating function

g(z, u) = y(z, t
(d)
0 (z, u)/z, t

(d)
1 (z, u)/z, . . .)

encodes the distribution of nodes of degree d of thickened trees.
Set

Td(z, y, u) =
1

z

∑

k≥0

t
(d)
k (z, u)yk.

Then the following results were shown in [5].

Lemma 1. Set

Gd(z, y, u) =

∫ y

0

dt

Td(z, t, u)
.

Then g(z, u) satisfies the functional equation

Gd(z, g, u) = z.

Theorem 1. Let Tk be substitution sets (as described above) such that the equa-
tion

X =

∫ 1

0

dt

Td(X, t, 1)

has a unique positive solution X = ρ in the region of convergence of Td(z, y, u)
and that Td(z, y, u) can be represented as

Td(z, y, u) =
C0(z, y) + C1(z, y)(1 − y)r′

yd+α(u − 1) + O
(

(1 − y)r′

(u − 1)2
)

(1 − y)r
,

(1)
where r′ and r are real numbers with 0 < r′ ≤ r, α is an integer, C0(z, y)
and C1(z, y) are power series that contain z = ρ and y = 1 in their regions of
convergence and that satisfy Ci(ρ, y) 6= 0 for i = 0, 1 and 0 ≤ y ≤ 1. Moreover,
assume that the O (·)-term is uniform in a neighbourhood of z = ρ and y = 1.

Let pn(d) denote the probability that a random node in a thickened PORT of
size n has degree d. Then the limits

lim
n→∞

pn(d) =: p(d)

exist and we have, as d → ∞,

p(d) ∼
C

dr+r′+1
.
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Furthermore, for every d ≥ 0 let X
(d)
n denote the number of nodes of degree

d in a random thickened PORT of size n. Then X
(d)
n satisfies a central limit

theorem
X

(d)
n − E X

(d)
n

V X
(d)
n

d
−→ N(0, 1),

where E X
(d)
n and V X

(d)
n are both asymptotically proportional to n.

The above theorem shows that thickened trees, where the generating function
Td(z, y, u) has the form (1), are scale free. Furthermore, the tail of the degree
distribution has the order r + r′ + 1. The parameters r and r′ just depend on
the structure of the cluster sets. Thus, a local change of the model, that is, a
modification of the cluster sets, changes the global degree distribution.

In what follows we will show that the (quite technical) condition (1) is sat-
isfied in very general situations. Furthermore we focus on the question how the
structure of the cluster sets influences the paramters r and r′. In fact, we will
formulate a proper local-global-principle for the order of the degree distribution.

We start with the following

Definition 1. Let M be a set of graphs, where some vertices are marked and
some or all of the marked vertices have (outgoing) half edges attached to them.
Additionally we assume that one vertex is attached to a distinguished (ingoing)
half edge. We say that M satisfies the symmetry condition if the following prop-
erty holds. Suppose that G ∈ M has k′ marked vertices and k (outgoing) half
edges. Then every graph of that kind, where k (outgoing) half edges are attached
to these k′ marked vertices in an arbitrary way is also contained in M.

Note that the above definition assumes marked nodes in the graphs whereas
the graphs in the cluster sets Tk do not have marked nodes. In order to apply
Definition 1 we mark nodes in the graphs of Tk according to the following scheme.
First, partition Tk into isomorphy classes. Now consider one particular isomorphy
class and mark in each graph all those nodes, for which another graph of the
class exists which has an outgoing half edge attached to the corresponding node.

Example 1. In [5] thickened trees with cluster set as shown in Figure 1 where
studied. Here the sets Tk satisfy the symmetry condition. Since each Tk with
k ≥ 2 contains a triangular graph where both end vertices of the bottom are
incident to a half edge, the two bottom vertices have to be marked in every
graph of T . The symmetry condition requires now, that all triangular graphs
where the half edges are attached to the two bottom vertices (not necessarily
involving both of them) are elements of Tk, which is indeed true.

We will first show that the condition (1) is satisfied for a very special cluster
set.

Theorem 2. Consider a family of thickened trees such that all cluster sets Tk,
k ≥ k0 sufficiently large, contain only isomorphic copies of one graph (the same
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Fig. 2. Cluster sets containing all triangular graphs where the outgoing half edges are
separated from the ingoing half edge.

for all k ≥ k0) of size m and k′ marked vertices and satisfy the symmetry
condition. Then we have

Td(z, y, u) =
zm−1

m!

1 + C(y)(1 − y)(u − 1) + O
(

(1 − y)(u − 1)2
)

(1 − y)k′
, (2)

where
C(y) = ck′−1 + ck′−2(1 − y) + · · · + c0(1 − y)k′−1

is a polynomial of degree k′ − 1, that is, c0 6= 0.

Corollary 1. Suppose that the conditions of Theorem 2 are satisfied. Then (by
applying Theorem 1) we obtain for the resulting thickened PORT family (with
r = k′, r′ = 1)

p(d) = lim
n→∞

pn(d) ∼
C

dk′+2
.

This result means that a tail behaviour of the form C d−3 for usual PORTs is
changed into a behaviour of this form. The difference in the exponent equals
k′ − 1 which can be seen as the additional degree of freedom we have when we
choose the k half edges among the k′ marked vertices.

Overall, this means that (under the symmetry condition or by assuming (1))
the local structure of the clusters determine in a relatively simple way the global
behaviour of the degree distribution. This can be seen as a local-global-principle.

Proof. For k ≥ k0 there are k′ marked vertices for attaching a half edge to the
graph in Tk and by the symmetry condition every distribution of the half edges

among those k′ places must lead to a graph in Tk. Hence we obtain
(

k+k′−1
k′−1

)

possible configurations. Since this implies that

t
(d)
k (z, 1) =

(

k + k′ − 1

k′ − 1

)

zm

m!
.

Thus

Td(z, y, u) =
zm−1

m!

1 + O ((1 − y)(u − 1))

(1 − y)k′
.

Now let a
(d)
k (u) = m!t

(d)
k (z, u)/zm. Since the coefficient of u in a

(d)
k (u) is the

number of configurations where exactly one vertex has degree d is of order kk′−2
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we surely have ck′−1 6= 0. Similar arguments show that all the coefficients of the

higher powers of u in a
(d)
k (u) are polynomials in k of degree less than k′. This

implies the shape of the error term in (2) and completes the proof.

Remark 1. Theorem 2 applies to the triangular cluster set of Example 1, where
we have k′ = 2 and consequently a tail of resulting degree distribution of the
form p(d) ∼ C k−4. This is in accordance with the exact result (see [5])

p(d) =
12

(d − 1)d(d + 1)(d + 2)
(d ≥ 4).

Another example (which is also discussed in [5]) is again based on triangular
graphs, however, we distinguish now between left half edges and right half edges
that can be additionally attached to the vertex with the ingoing half edge, see
Figure 3. This distinction is necessary by the interpretation of PORTs as plane
(or ordered) trees. Formally, such a cluster set can be handled by giving two
marks to this vertex, that is, k′ = 2 + 1 + 1 = 4. Obviously, Theorem 2 applies
in such a situation, too. Hence, the tail of the resulting degree distribution is of
the form p(d) ∼ C d−6. This is again in accordance with the exact result (see
[5])

p(d) =
1600

(d − 1)d(d + 1)(d + 2)(d + 3)(d + 4)
(d ≥ 4).

... ...

..
.

...

Fig. 3. Triangular cluster where the vertex with the ingoing half edge has two marks
and the two other vertices just one.

4 Inserting Clusters of Different Type

Theorem 2 only applies if the cluster set is of a very simple form. We will next
investigate what happens if we choose cluster sets containing clusters of different
type, that is, of different degrees of freedom for attaching half edges. In order to
understand in which way different tail behaviours caused by classes of clusters
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compete, it suffices to consider the case of two different types. Since t
(d)
k (z, u) is

the generating function counting all clusters with respect to size and number of
nodes of degree d, adding another class of clusters to the cluster sets results in
adding the corresponding generating function to the first one. The same holds
for the functions Td(z, y, u). Hence the problem reduces to an analysis of what
happens if two behaviours of the forms (1) from Theorem 2 are added.

Theorem 3. Let Tk be cluster sets (as described above) such that the equation

X =

∫ 1

0

dt

Td(X, t, 1)

has a unique positive solution X = ρ in the region of convergence of Td(z, y, u)
and that Td(z, y, u) can be represented as

Td(z, y, u) =
C0(z, y) + C1(z, y)(1 − y)r′

1yd+α(u − 1) + O
(

(1 − y)r′

1(u − 1)2
)

(1 − y)r1

+
C2(z, y) + C3(z, y)(1 − y)r′

2yd+β(u − 1) + O
(

(1 − y)r′

2(u − 1)2
)

(1 − y)r2
,

where r′i and ri, i = 1, 2, are real numbers with 0 < r′i ≤ ri and r1 > r2; α and
β are integers, Ci(z, y), i = 1, 2, 3, 4, are power series that contain z = ρ and
y = 1 in their regions of convergence and that satisfy Ci(ρ, y) 6= 0 for i = 1, 3
and 0 ≤ y ≤ 1 as well as C0(ρ, y) + C2(ρ, y)(1 − y)r1−r2 6= 0 for 0 ≤ y ≤ 1.
Moreover, assume that the O (·)-terms are uniform in a neighbourhood of z = ρ
and y = 1.

Let pn(d) denote the probability that a random node in a thickened PORT of
size n has degree d. Then the limits

lim
n→∞

pn(d) =: p(d)

exist and we have, as d → ∞,

p(d) ∼
C

dmin{r1+r′

1
+1,2r1−r2+r′

2
+1}

.

Furthermore, for every d ≥ 0 let X
(d)
n denote the number of nodes of degree

d in a random thickened PORT of size n. Then X
(d)
n satisfies a central limit

theorem
X

(d)
n − E X

(d)
n

V X
(d)
n

d
−→ N(0, 1),

where E X
(d)
n and V X

(d)
n are both asymptotically proportional to n.

Remark 2. This theorem is – in some sense – a superposition principle for cluster
sets. Note that (if r2 ≤ r1)

min{r1 + r′1 + 1, 2r1 − r2 + r′2 + 1} = 1 + 2 max{r1, r2} − max{r1 − r′1, r2 − r′2}.
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Hence, the resulting exponent in the tail of the degree distribution is determined
by the bevaviour rj and the differences rj − r′j . For those (basic) cluster sets
which are covered in Theorem 2 we actually have r′j = 1. Consquently, we
obtain r1 + 2 = max{r1, r2} + 1 as the resulting exponent. This means that if
we interprete r1 as the degree of freedom to select half edges then the maximum
degree of freedom is responsible for the exponent in the degree distribution.

This extends the above formulated local-global-principle.

Proof. We start by inspecting the generating function g(z) of all thickened
PORTs. For simplicity we assume that the substitution sets Tk are of a form
that gn > 0 for sufficiently large n ≥ n0, that is, we exclude, for example, the
case that the number of nodes of graphs in Tk are all congruent to 1 modulo
some integer m > 1.1 Then it follows that |g(z)| < g(|z|) if z is not contained in
the positive real line.

We first observe that ρ > 0 is the only singularity on the circle of convergence
|z| ≤ ρ and that g(ρ) = 1, that is, g(z) is convergent at z = ρ. First it is clear
that g(z) can be analytically continued starting with g(0) = 0 and the functional
equation Gd(z, g(z), 1) = z. However, if g(z0) 6= 1 for some z0 contained in the
region of convergence of g(z) then we have

(

∂

∂y
Gd

)

(z0, g(z0), 1) =
1

Td(z0, g(z0), 1)

=
(1 − g(z0))

r1

C0(z0, g(z0)) + C2(z0, g(z0))(1 − g(z0))r1−r2
6= 0.

Thus, we can continue analytically with help of the implicit function theorem.
Hence, if g(z) has a singularity ρ and if g(ρ) is convergent, then g(ρ) = 1. Since
g(z) is monotone and analytic it certainly reaches a value with g(ρ) = 1 where
it has to be singular. Further, ρ is characterized by the equation Gd(ρ, 1, 1) = ρ.

Next we characterize the kind of singularity of g(z) at z = ρ. By Lemma 1
we have

z =

∫ g

0

(1 − t)r1

C0(z, t) + C2(z, t)(1 − t)r1−r2
dt

=

∫ 1

0

(1 − t)r1

C0(z, t) + C2(z, t)(1 − t)r1−r2
dt −

∫ 1

g

(1 − t)r1

C0(z, t) + C2(z, t)(1 − t)r1−r2
dt

=: G(z) − H(z, g) (3)

Hence, by expanding

1

C0(z, t) + C2(z, t)(1 − t)r1−r2
= c0(z) + c1(z)(1 − t) + c2(z)(1 − t)2 + . . .

1 We call this the aperiodic case. In the periodic case we have to deal with m singular-
ities on the boundary of the circle of convergence of g(z) which are all of the same
kind.
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we get

G(z) − z = c0(z)(1 − g(z))r1+1 (1 + O (|1 − g(z)|))

which is equivalent to

(

G(z) − z

c0(z)

)1/(r1+1)

= (1 − g(z)) (1 + O (|1 − g(z)|)) . (4)

Since G(ρ) = ρ and C0(z, y) is analytic in z we can represent (G(z)− z)/c0(z) =
K(z)(1 − z/ρ). Furthermore, we can invert relation (4) and obtain

g(z) = 1 − K(z)1/(r1+1)

(

1 −
z

ρ

)1/(r1+1)

+ O

(

∣

∣

∣

∣

1 −
z

ρ

∣

∣

∣

∣

2/(r1+1)
)

. (5)

Since there are no other singularities on the circle |z| ≤ ρ and g(z) can be
analytically continued to a larger range (despite at the point z = ρ) it follows
from [6] that

gn ∼ K(ρ)1/(r1+1) ρ−nn−
r1+2

r1+1

−Γ
(

− 1
r1+1

) .

Next we determine the asymptotics of the average value E X
(d)
n . Set S(z) =

∂
∂ug(z, 1). Then it follows from Lemma 1 that

S(z) = −
C0(z, g(z)) + C2(z, g(z))(1 − g(z)r1−r2

(1 − g(z))r1

×

[

∫ g(z)

0

C1(z, t)

(C0(z, t) + C2(z, t)(1 − t)r1−r2)2
(1 − t)r1+r′

1td+α dt

+

∫ g(z)

0

C3(z, t)

(C0(z, t) + C2(z, t)(1 − t)r1−r2)2
(1 − t)2r1−r2+r′

2td+β dt

]

By (5) and a decomposition of the integral as in (3) we can transform this to

S(z) =
1

K(z)
r1

r1+1 (1 − z/ρ)
r1

r1+1

[
∫ 1

0

C̃0(z, t)(1 − t)r1+r′

1td+α dt

+

∫ 1

0

C̃1(z, t)(1 − t)r2+r′

2td+β dt

]

+
1

K(z)
r2

r1+1 (1 − z/ρ)
r2

r1+1

[
∫ 1

0

C̃2(z, t)(1 − t)r1+r′

1td+α dt

+

∫ 1

0

C̃3(z, t)(1 − t)2r1−r2+r′

2td+β dt

]

+ O (1) ,
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where C̃i(z, t) are analytic functions. This proves that

E X(d)
n = n ·

r1 + 1

K(ρ)

∫ 1

0

[
∫ 1

0

C̃0(z, t)(1 − t)r1+r′

1td+α dt

+

∫ 1

0

C̃1(z, t)(1 − t)2r1−r2+r′

2td+β dt

]

+ O
(

n
r2+1

r1+1

)

.

Thus, the limit p(d) = limn→∞ E X
(d)
n /n exists and is asymptotically given by

p(d)

=
r1 + 1

K(ρ)

[
∫ 1

0

C̃0(z, t)(1 − t)r1+r′

1td+α dt +

∫ 1

0

C̃1(z, t)(1 − t)2r1−r2+r′

2td+β dt

]

∼
C′

dr1+r′

1
+1

+
C′′

d2r1−r2+r′

2
+1

for some constants C′, C′′ > 0.
Finally the proof that the limiting distribution is normal follows from the

results and methods in [5, 7] and (5).

Example 2. Let us continue the example where the cluster set Tk all triangular
graphs depicted in Figure 2 and the graph consistung of one single node. That
means that – when building the thickened tree – in each substitution step we
may substitute a node by a triangular graph or leave the node unchanged (no
local clustering in this particular place). Then Theorem 3 says that the exponent
−4 in the tail p(d) ∼ C d−4 of the degree distribution remains but the constant
C changes.
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