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In 1960 Rényi in his Michigan State University lectures asked for the number of
random queries necessary to recover a hidden bijective labeling of n distinct objects.
In each query one selects a random subset of labels and asks, which objects have these
labels? We consider here an asymmetric version of the problem in which in every query
an object is chosen with probability p > 1/2 and we ignore “inconclusive” queries.
We study the number of queries needed to recover the labeling in its entirety (Hn),
to recover at least one element (Fn), and to recover a randomly chosen element (Dn).
This problem exhibits several remarkable behaviors: Dn converges in probability but
not almost surely; Hn and Fn exhibit phase transitions with respect to p in the
second term. We prove that for p > 1/2 with high probability (whp) we need Hn =
log1/p n+ 1

2
logp/(1−p) logn+o(log logn) queries to recover the entire bijection. This

should be compared to its symmetric (p = 1/2) counterpart established by Pittel and
Rubin, who proved that in this case one requires Hn = log2 n+

√

2 log2 n+o(
√
logn)

queries. As a bonus, our analysis implies novel results for random PATRICIA tries,
as it turns out that the problem is probabilistically equivalent to the analysis of
the height, fillup level, typical depth, and profile of a PATRICIA trie built from n
independent binary sequences generated by a biased(p) memoryless source.

1. Introduction

In his lectures in the summer of 1960 at Michigan State University, Alfred Rényi discussed

several problems related to random sets [19]. Among them there was a problem regarding

† Research partially supported by the Austrian Science Foundation FWF Grant No. F50-02.
‡ Research supported by NSF Center for Science of Information (CSoI) Grant CCF-0939370.
§ Research partially supported by the NSF Center for Science of Information (CSoI) Grant CCF-
0939370, and in addition by the NSF Grants CCF-1524312, and NIH Grant 1U01CA198941-01.



2 M. Drmota, A. Magner, and W. Szpankowski

recovering a labeling of a set X of n distinct objects by asking random subset questions

of the form “which objects correspond to the labels in the (random) set B?” For a

given method of randomly selecting queries, Rényi’s original problem asks for the typical

behavior of the number of queries necessary to recover the hidden labeling.

Formally, the unknown labeling of the set X is a bijection φ from X to a set A of labels

(necessarily with equal cardinality n), and a query takes the form of a subset B ⊆ A.

The response to a query B is φ−1(B) ⊆ X .

Our contribution in this paper is a precise analysis of several parameters of Rényi’s

problem for a particular natural probabilistic model on the query sequence. In order to

formulate this model precisely, it is convenient to first state a view of the process that

elucidates its tree-like structure. In particular, a sequence of queries corresponds to a

refinement of partitions of the set of objects, where two objects are in different partition

elements if they have been distinguished by some sequence of queries. More precisely, the

refinement works as follows: before any questions are asked, we have a trivial partition

P0 = X consisting of a single class (all objects). Inductively, if Pj−1 corresponds to

the partition induced by the first j − 1 queries, then Pj is constructed from Pj−1 by

splitting each element of Pj−1 into at most two disjoint subsets: those objects that are

contained in the preimage of the jth query set Bj and those that are not. The hidden

labeling is recovered precisely when the partition of X consists only of singleton elements.

An instance of this process may be viewed as a rooted binary tree (which we call the

partition refinement tree) in which the jth level, for j ≥ 0, corresponds to the partition

resulting from j queries; a node in a given level corresponds to an element of the partition

associated with that level. A right child corresponds to a subset of a parent partition

element that is included in the subsequent query, and a left child corresponds to a subset

that is not included. See Example 1 for an illustration.

Example 1 (Demonstration of partition refinement). Consider an instance of

the problem where X = [5] = {1, ..., 5}, with labels (d, e, a, c, b) respectively (so A =

{a, b, c, d, e}). Consider the following sequence of queries:

1 B1 = {b, d} 7→ {1, 5}
2 B2 = {a, b, d} 7→ {1, 3, 5},
3 B3 = {a, c, d} 7→ {1, 3, 4},

{1, 2, 3, 4, 5}

{2,3,4}

{2,4}

2 4

3

{1,5}

{1, 5}

5 1

Each level j ≥ 0 of the tree depicts the partition Pj, where a right child node corresponds

to the subset of objects in the parent set which are contained in the response to the jth

query. Singletons are only explicitly depicted in the first level in which they appear. We

can determine the labels of all objects using the tree and the sequence of queries: for ex-

ample, to determine the label of the object 3, we traverse the tree until we reach the leaf
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corresponding to 3. This indicates that the label corresponding to 3 is in the singleton set

¬B1 ∩B2 = {a, c, e} ∩ {a, b, d} = {a}.
Note that leaves of the tree always correspond to singleton sets.

In this work we consider a version of the problem in which, in every query, each label is

included independently with probability p > 1/2 (the asymmetric case) and we ignore

inconclusive queries. In particular, if a candidate query fails to non trivially split some

element of the previous partition, we modify the query by deciding again independently

whether or not to include each label of that partition element with probability p. We

perform this modification until the resulting query splits every element of the previous

partition non trivially. See Example 2.

Example 2 (Ignoring inconclusive queries). Continuing Example 1, the query B2

fails to split the partition element {1, 5}, so it is an example of an inconclusive query

and would be modified in our model to, say, B′
2 = φ({1, 3}). The resulting refinement of

partitions is depicted as a tree here. Note that the tree now does not contain non-branching

paths and that B2 is ignored in the final query sequence.

1 B1 = {b, d} 7→ {1, 5}
2 B′

2 = {a, d} 7→ {1, 3}
3 B3 = {a, c, d} 7→ {1, 3, 4}.

{1, 2, 3, 4, 5}

{2,3,4}

{2,4}

2 4

3

{1,5}

5 1

We study three parameters of this random process: Hn, the number of such queries

needed to recover the entire labeling; Fn, the number needed before at least one element

is recovered; and Dn, the number needed to recover an element selected uniformly at

random. Our objective is to present precise probabilistic estimates of these parameters

and to study the distributional behavior of Dn.

The symmetric version (i.e., p = 1/2) of the problem (with a variation) was discussed

by Pittel and Rubin in [18], where they analyzed the typical value of Hn. In their model,

a query is constructed by deciding whether or not to include each label from A inde-

pendently with probability p = 1/2. To make the problem interesting, they added a

constraint similar to ours: namely, a query is, as in our model, admissible if and only if it

splits every nontrivial element of the current partition. In contrast with our model, how-

ever, Pittel and Rubin completely discard inconclusive queries (rather than modifying

their inconclusive subsets as we do). Despite this difference, the model considered in [18]

is probabilistically equivalent to ours for the symmetric case. Our primary contribution

is the analysis of the problem in the asymmetric case (p > 1/2), but our methods of

proof allow us to recover the results of Pittel and Rubin.

The question asked by Rényi brings some surprises. For the symmetric model (p = 1/2)
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Pittel and Rubin [18] were able to prove that the number of necessary queries is with

high probability (whp) (see Theorem 2.1)

Hn = log2 n+
√

2 log2 n+ o(
√

logn). (1.1)

In this paper, we develop a different method that could be used to re-establish this result

and prove that for p > 1/2 the number of queries grows whp as

Hn = log1/p n+
1

2
logp/q logn+ o(log logn), (1.2)

where q := 1−p. Note a phase transition in the second term. We show that another phase

transition, also in the second term, occurs in the asymptotics for Fn (see Theorem 2.2):

Fn =

{

log1/q n− log1/q log logn+ o(log log logn) p > q

log2 n− log2 logn+ o(log logn) p = q = 1/2.
(1.3)

We also state in Theorem 2.3 some interesting probabilistic behaviors of Dn. We have

Dn/ logn→ 1/h(p) (in probability) where h(p) := −p log p− q log q, but we do not have

almost sure convergence.

We establish these results in a novel way by considering first the external profile Bn,k,

whose analysis was, until recently, an open problem of its own (the second and third

authors gave a precise analysis of the external profile in an important range of parameters

in [13, 14], but the present paper requires really nontrivial extensions). The external

profile at level k is the number of bijection elements revealed by the kth query (one

may also define the internal profile at level k as the number of non-singleton elements

of the partition immediately after the kth query). Its study is motivated by the fact

that many other parameters, including all of those that we mention here, can be written

in terms of it. Indeed, Pr[Dn = k] = E[Bn,k]/n, Hn = max{k : Bn,k > 0}, and

Fn = min{k : Bn,k > 0} − 1.

We now discuss our new results concerning the probabilistic behavior of the external

profile. We establish in [14, 13] precise asymptotic expressions for the expected value and

variance of Bn,k in the central range, that is, with k ∼ α logn, where, for any fixed ǫ > 0,

α ∈ (1/ log(1/q) + ǫ, 1/ log(1/p) − ǫ) (the left and right endpoints of this interval are

associated with Fn and Hn, respectively). Specifically, it was shown that both the mean

and the variance are of the same (explicit) polynomial order of growth (with respect to

n). More precisely, expected value and variance grow for k ∼ α logn as

H(ρ(α), logp/q(p
kn))

nβ(α)√
C log n

where β(α) ≤ 1 and ρ(α) are complicated functions of α, C is an explicit constant, and

H(ρ, x) is a function that is periodic in x. The oscillations come from infinitely many

regularly spaced saddle points that we observe when inverting the Mellin transform of the

Poisson generating function of E[Bn,k]. Finally, in [14] we prove a central limit theorem;

that is, (Bn,k − E[Bn,k])/
√

Var[Bn,k] → N (0, 1) where N (0, 1) represents the standard

normal distribution.

In order to establish the most interesting results claimed in the present paper for Hn

and Fn, the analysis sketched above does not suffice: we need to estimate the mean and
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the variance of the external profile beyond the range α ∈ (1/ log(1/q)+ǫ, 1/ log(1/p)−ǫ);
in particular, for Fn and Hn we need expansions at the left and right side, respectively,

of this range.

Having described most of our main results, we mention an important equivalence

pointed out by Pittel and Rubin [18]. They observed that their version of the Rényi

process resembles the construction of a digital tree known as a PATRICIA trie1 [12, 21].

In fact, the authors of [18] show that Hn is probabilistically equivalent to the height

(longest path) of a PATRICIA trie built from n binary strings generated independently

by a memoryless source with bias p = 1/2 (that is, with a “1” generated with probability

p; this is often called the Bernoulli model with bias p); the equivalence is true more

generally, for p ≥ 1/2. It is easy to see that Fn is equivalent to the fillup level (depth

of the deepest full level), Dn to the typical depth (depth of a randomly chosen leaf),

and Bn,k to the external profile of the tree (the number of leaves at level k; the internal

profile at level k is similarly defined as the number of non-leaf nodes at that level). We

spell out this equivalence in the following simple claim.

Lemma 1.1 (Equivalence of parameters of the Rényi problem with those of

PATRICIA tries). Any parameter (in particular, Hn, Fn, Dn, and Bn,k) of the Rényi

process with bias p that is a function of the partition refinement tree is equal in distribution

to the same function of a random PATRICIA trie generated by n independent infinite

binary strings from a memoryless source with bias p ≥ 1/2.

Proof. In a nutshell, we couple a random PATRICIA trie and the sequence of queries

from the Rényi process by constructing both from the same sequence of binary strings

from a memoryless source. We do this in such a way that the resulting PATRICIA trie

and the partition refinement tree are isomorphic with probability 1, so that parameters

defined in terms of either tree structure are equal in distribution.

More precisely, we start with n independent infinite binary strings S1, . . . , Sn generated

according to a memoryless source with bias p, where each string corresponds, in a way to

be made precise below, to a unique element of the set of labels (for simplicity, we assume

that A = [n], and Sj is associated to the object j, for j ∈ [n]; intuitively, Sj encodes

the decision, for each query, of whether or not to include j). These induce a PATRICIA

trie T , and our goal is to show that we can simulate a Rényi process using these strings,

such that the corresponding tree TR is isomorphic to T as a rooted plane– oriented tree

(see Example 2). The basic idea is as follows: we maintain for each string Sj an index kj ,

initially set to 1. Whenever the Rényi process demands that we make a decision about

whether or not to include label j in a query, we include it if and only if Sj,kj = 1, and

then increment kj by 1.

Clearly, this scheme induces the correct distribution on queries. Furthermore, the re-

1 We recall that a trie is a binary digital tree, where data that are represented by binary strings are
stored at leaves of the tree according to finite prefixes of the corresponding binary strings in a minimal
way such that all appearing prefixes are different. A PATRICIA trie is a trie in which non-branching
paths are compressed ; that is, there are no unary paths.
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sulting partition refinement tree (ignoring inconclusive queries) is easily seen to be iso-

morphic to T . Since the trees are isomorphic, the parameters of interest are equal in each

case.

Thus, our results on these parameters for the Rényi problem directly lead to novel results

on PATRICIA tries, and vice versa. In addition to their use as data structures, PATRICIA

tries also arise as combinatorial structures which capture the behavior of various processes

of interest in computer science and information theory (e.g., in leader election processes

without trivial splits [10] and in the solution to Rényi’s problem which we study here

[18, 2]).

Similarly, the version of the Rényi problem that allows inconclusive queries corresponds

to results on tries built on n binary strings from a memoryless source. We thus discuss

them in the literature survey below.

Now we briefly review known facts about PATRICIA tries and other digital trees when

built over n independent strings generated by a memoryless source. Profiles of tries in

both the asymmetric and symmetric cases were studied extensively in [16]. The expected

profiles of digital search trees in both cases were analyzed in [6], and the variance for the

asymmetric case was treated in [11]. Some aspects of trie and PATRICIA trie profiles

(in particular, the concentration of their distributions) were studied using probabilistic

methods in [4, 3]. The depth in PATRICIA for the symmetric model was analyzed in

[2, 12] while for the asymmetric model in [20]. The leading asymptotics for the PATRICIA

height for the symmetric Bernoulli model was first analyzed by Pittel [17] (see also [21]

for suffix trees). The two-term expression for the height of PATRICIA for the symmetric

model was first presented in [18] as discussed above (see also [2]). Finally, in [13, 14],

the second two authors of the present paper presented a precise analysis of the external

profile (including its mean, variance, and limiting distribution) in the asymmetric case,

for the range in which the profile grows polynomially. The present work relies on this

previous analysis, but the analyses for Hn and Fn involve a significant extension, since

they rely on precise asymptotics for the external profile outside this central range.

Regarding methodology, the basic framework (which we use here) for analysis of digital

tree recurrences by applying the Poisson transform to derive a functional equation, con-

verting this to an algebraic equation using the Mellin transform, and then inverting using

the saddle point method/singularity analysis followed by depoissonization, was worked

out in [6] and followed in [16]. While this basic chain is common, the challenges of ap-

plying it vary dramatically between the different digital trees, and this is the case here.

As we discuss later (see (2.5) and the surrounding text), this variation starts with the

quite different forms of the Poisson functional equations, which lead to unique analytic

challenges.

The plan for the paper is as follows. In the next section we formulate more precisely

our problem and present our main results regarding Bn,k, Hn, Fn, and Dn, along with

sketches of the derivations. Complete proofs for Hn (and a roadmap for the proof for

Fn) are provided in Section 3. Finally Section 4 provides some background on the de-

poissonization step.
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2. Main Results

In this section, we formulate precisely Rényi’s problem and present our main results. Our

goal is to provide precise asymptotics for three natural parameters of the Rényi problem

on n objects with each label in a given query being included with probability p ≥ 1/2:

the number Fn of queries needed to identify at least a single element of the bijection, the

number Hn needed to recover the bijection in its entirety, and the number Dn needed to

recover an element of the bijection chosen uniformly at random from the n objects. If one

wishes to determine the label for a particular object, these quantities correspond to the

best, worst, and average case performance, respectively, of the random subset strategy

proposed by Rényi.

We recall that we can express Fn, Hn, and Dn in terms of the profile Bn,k:

Fn = min{k : Bn,k > 0} − 1, Hn = max{k : Bn,k > 0}, Pr[Dn = k] =
E[Bn,k]

n
. (2.1)

Using the first and second moment methods, we can then obtain upper and lower bounds

on Hn and Fn in terms of the moments of Bn,k:

Pr[Hn > k] ≤
∑

j>k

E[Bn,j ], Pr[Hn < k] ≤ Var[Bn,k]

E[Bn,k]2
, (2.2)

and

Pr[Fn > k] ≤ Var[Bn,k]

E[Bn,k]2
, Pr[Fn < k] ≤ E[Bn,k]. (2.3)

The analysis of the distribution of Dn reduces simply to that of E[Bn,k], as in (2.1).

Having reduced the analyses of Fn, Hn, and Dn to that of the moments of Bn,k, we

now explain our approach to the latter analysis, starting in Section 2.1 with a review of

the work done in [13]. We will then show in Section 2.2 how the present paper requires

extensions far beyond [13, 14] to give new results on the quantities of interest in the

Rényi problem.

2.1. Basic facts for the analysis of Bn,k
Here we recall some facts, worked out in detail in [13], which will form the starting point

of the analysis in the present paper. In order to derive our main results, we need proper

asymptotic information about E[Bn,k] and Var[Bn,k] at the boundaries of this region.

We start by deriving a recurrence for the average profile, which we denote by µn,k :=

E[Bn,k]. It satisfies

µn,k = (pn + qn)µn,k +
n−1
∑

j=1

(

n

j

)

pjqn−j(µj,k−1 + µn−j,k−1) (2.4)

for n ≥ 2 and k ≥ 1, with some initial/boundary conditions; most importantly, µn,k = 0

for k ≥ n and any n. Moreover, µn,k ≤ n for all n and k owing to the elimination

of inconclusive queries. This recurrence arises from conditioning on the number j of

objects that are included in the first query. If 1 ≤ j ≤ n − 1 objects are included,

then the conditional expectation is a sum of contributions from those objects that are



8 M. Drmota, A. Magner, and W. Szpankowski

included and those that aren’t. If, on the other hand, all objects are included or all are

excluded from the first potential query (which happens with probability pn + qn), then

the partition element splitting constraint on the queries applies, the potential query is

ignored as inconclusive, and the contribution is µn,k.

The tools that we use to solve this recurrence (for details see [13, 14]) are similar to

those of the analyses for digital trees [21] such as tries and digital search trees (though

the analytical details differ significantly). We first derive a functional equation for the

Poisson transform G̃k(z) =
∑

m≥0 µm,k
zm

m! e
−z of µn,k, which gives

G̃k(z) = G̃k−1(pz) + G̃k−1(qz) + e−pz(G̃k − G̃k−1)(qz) + e−qz(G̃k − G̃k−1)(pz).

This we write as

G̃k(z) = G̃k−1(pz) + G̃k−1(qz) + W̃k,G(z), (2.5)

and at this point the goal is to determine asymptotics for G̃k(z) as z → ∞ in a cone

around the positive real axis. When solving (2.5), W̃k,G(z) significantly complicates the

analysis because it has no closed-form Mellin transform (see below). Finally, depois-

sonization [21] will allow us to directly transfer the asymptotic expansion for G̃k(z) back

to one for µn,k since µn,k is well approximated by G̃k(n).

To convert (2.5) to an equation that is more easy to handle, we use theMellin transform

[7], which, for a function f : R → R is given by

f∗(s) =

∫ ∞

0

zs−1f(z) dz.

Using the Mellin transform identities and defining T (s) = p−s + q−s, we end up with an

expression for the Mellin transform G∗
k(s) of G̃k(z) of the form

G∗
k(s) = Γ(s+ 1)Ak(s)(p

−s + q−s)k = Γ(s+ 1)Ak(s)T (s)
k,

where Ak(s) is an infinite series arising from the contributions coming from the function

W̃k,G(z), and the fundamental strip of G̃k(z) (as sketched below) contains (−k − 1,∞).

It involves unknown µm,j − µm,j−1 for various m and j (see [13, 15]), that is:

Ak(s) =
k
∑

j=0

T (s)−j
∑

m≥j
T (−m)(µm,j − µm,j−1)

Γ(m+ s)

Γ(s+ 1)Γ(m+ 1)
. (2.6)

Locating and characterizing the singularities of G∗
k(s) then becomes important. In [14]

it is shown that for any k, Ak(s) is entire, with zeros at s ∈ Z ∩ [−k,−1], so that G∗
k(s)

is meromorphic, with possible simple poles at the negative integers less than −k. The
fundamental strip of G̃k(z) then contains (−k − 1,∞).

We then must asymptotically invert the Mellin transform to recover G̃k(z). The Mellin

inversion formula for G∗
k(s) is given by

G̃k(z) =
1

2πi

∫ ρ+i∞

ρ−i∞
z−sG∗

k(s) ds =
1

2πi

∫ ρ+i∞

ρ−i∞
z−sΓ(s+ 1)Ak(s)T (s)

k ds, (2.7)

where ρ is any real number inside the fundamental strip associated with G̃k(z).
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2.2. Main results via extension of the analysis of Bn,k
Having explained the relevant functional equations and the integral representation (2.7)

for G̃k(z), we now move on to describe the main results of this paper. For Theorem 2.1

and 2.2 we start with a sketch of the derivation whereas the proof of Theorem 2.3 is

given immediately, The complete proof of Theorem 2.1 and a roadmap for Theorem 2.2,

both for the case p > q, is given in Section 3.

2.2.1. Result on Hn Our first aim is to derive two-term expansions for the typical

values of Hn and Fn. To do this for, e.g., Hn, we define, for p ≥ q,

k∗ = log1/p n+ ψ∗(n),

where ψ∗(n) = o(logn) is a function to be determined. We also define

ψL(n) = (1 − ǫ)ψ∗(n) kL = log1/p n+ ψL(n) (2.8)

ψU (n) = (1 + ǫ)ψ∗(n) kU = log1/p n+ ψU (n), (2.9)

for arbitrarily small ǫ > 0. We require that ψ∗(n) be such that

E[Bn,kL ] → ∞, E[Bn,kU ] → 0, (2.10)

and a proper upper bound for Var[Bn,kL ] (see Lemma 3.4). However, in order to make

the following pre-analysis more transparent we will not dwell on the variance.

To determine a candidate for ψ∗(n), we start with the inverse Mellin integral repre-

sentation for G̃k∗(n):

G̃k∗(n) =
1

2πi

∫ ρ+i∞

ρ−i∞
Jk∗(n, s) ds, (2.11)

where we define

Jk(n, s) = n−sT (s)kΓ(s+ 1)Ak(s)

=

k
∑

j=0

n−sT (s)k−j
∑

m≥j
T (−m)(µm,j − µm,j−1)

Γ(m+ s)

Γ(m+ 1)
. (2.12)

Note that by depoissonization (see Section 4) we have

µn,k∗ = G̃k∗(n)−
n

2
G̃′′
k∗(n) +O(n−1+ǫ).

Indeed, because of the exponential decay of Ak(s)Γ(s+1) along vertical lines, the entire

integral is at most of the same order as the integrand on the real axis (we justify this

more carefully in Section 3.1). Furthermore, since the second derivative has an additional

factor s(s+1)n−2 in the integrand we will get a similar bound for n
2 G̃

′′
k∗
(n) which is just

ρ2/n times the corresponding bound for G̃k∗(n) and, thus, negligible in comparison to

G̃k∗(n).

In this proof roadmap we focus on estimating the integrand Jk∗(n, ρ), ρ ∈ R, as

precisely as possible. Using Lemma 3.1, we find (see (3.7) in Section 3.1) that the jth

term in the representation (2.12) of Jk∗(n, ρ) is of order

n−ρT (ρ)k∗−jpj
2/2+O(j log j), (2.13)
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where ρ < 0 and T (ρ) = p−ρ + q−ρ. Hence, by setting j0 = − log1/p T (ρ) we have

Jk∗(n, ρ) = O
(

n−ρT (ρ)k∗p−j
2
0/2+O(j0 log j0)

)

. (2.14)

Next we have to choose ρ ∈ R− that minimizes this upper bound. Here we distinguish

between the symmetric case p = q = 1/2 and the case p > q.

In the symmetric case we have T (ρ) = 2ρ+1 and j0 = −ρ− 1 and, thus,

Jk∗(n, ρ) = O
(

n−ρ2(ρ+1)(log2 n+ψ∗(n))+ρ
2/2+O(|ρ| log |ρ|)

)

.

Consequently by disregarding the error term O(|ρ| log |ρ|) the optimal choice of ρ is

ρ = −ψ∗(n) which gives the upper bound

Jk∗(n, ρ) = O
(

2log2 n−ψ∗(n)
2/2+O(|ψ∗(n)| log |ψ∗(n)|)

)

.

Hence, the threshold for this upper bound is ψ∗(n) =
√

2 log2 n. In particular it also

follows that

JkU (n, ρ) = O
(

2−(2ǫ+ǫ2) log2 n+O(
√
logn log log n)

)

,

where kU = log1/p n + (1 + ǫ)
√

2 log2 n. We also note that we get the same bound if

ρ = −ψ∗(n) +O(1).

In the case p > q we have to be slightly more careful. Nevertheless we can start with

the upper bound (2.14) and obtain

Jk∗(n, ρ) = O
(

p(ρ−log1/p T (ρ)) log1/p n−ψ∗(n) log1/p T (ρ)−(log1/p T (ρ))2/2+O(j0 log j0)
)

.

¿From the representation T (ρ) = p−ρ(1 + (p/q)ρ) we obtain

log1/p T (ρ) = ρ+
(p/q)ρ

log(1/p)
+O

(

(p/q)2ρ
)

.

It is clear that we have to choose ρ < 0 that tends to −∞ if n→ ∞. Hence, log1/p T (ρ) =

ρ+ o(1) and consequently a proper choice for ρ is the solution of the equation

∂

∂ρ

(

− (p/q)ρ

log(1/p)
log1/p n− ψ∗(n)ρ−

ρ2

2

)

=
(p/q)ρ log(p/q)

log(1/p)
log1/p n− ψ∗(n)− ρ = 0.

Actually this gives ρ < −ψ∗(n) and, thus,

ρ = − logp/q logn+O(log log logn).

With this choice the upper bound for Jk∗(n, ρ) writes as

Jk∗(n, ρ) = O

(

p(ψ∗(n)+ρ)/ log(p/q)−ψ∗(n)ρ− ρ2

2
+O(j0 log j0)

)

= O

(

p−ψ∗(n)ρ− ρ2

2
+O(j0 log j0)

)

.

This implies that the threshold for this upper bound is given by

ψ∗(n) = −ρ
2
=

1

2
logp/q logn+O(log log logn).

In particular, if we replace ψ∗(n) by ψU (n) =
1
2 (1 + ǫ) logp/q logn we obtain

JkU (n, ρ) = O
(

pǫ(logp/q logn)2/2+O(log log n log log log n
)

(2.15)
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and for ψL(n) = (1− ǫ) 1
2 logp/q logn,

JkL(n, ρ) = O
(

p−ǫ(logp/q logn)2/2+O(log logn log log logn
)

. (2.16)

The above pre-analysis suggests asymptotic estimates for G̃k(n) and, thus, by depois-

sonization estimates for µn,k, which imply a two-term expansion for Hn. The complete

proof of this result is given in Section 3.1. In summary, we formulate below our first main

result.

Theorem 2.1 (Asymptotics for Hn). With high probability,

Hn =

{

log1/p n+ 1
2 logp/q logn+ o(log logn) p > q

log2 n+
√

2 log2 n+ o(
√
log n) p = q

for large n.

2.2.2. Result on Fn We take a similar approach for the derivation of Fn, with some

differences. We set

k∗ = log1/q n+ φ∗(n)

with

φL(n) = (1 + ǫ)φ∗(n), φU (n) = (1− ǫ)φ∗(n),

and kL and kU , respectively, defined with φL (respectively, φU ) in place of φ∗. The

derivation of an estimate for the jth term of Jk∗(n, ρ), ρ ∈ R, is similar to that in

Section 2.2.1, except now the asymptotics of Γ(ρ+ 1) play a role (this is reflected in the

proof, where Γ(ρ+1) determines the location of the saddle points of the integrand). We

find that the jth term is at most qλj(n,ρ), where

λj(n, ρ) = ρ(j − φ∗(n)) + (j − φ∗(n)− log1/q n) log1/q(1 + (q/p)ρ)− ρ log1/q ρ+O(ρ).(2.17)

Optimizing over j gives j = 0. The behavior with respect to ρ depends on whether or

not p = q, because log1/q(1 + (q/p)ρ) = 1 when p = q and is dependent on ρ otherwise.

Taking this into account and minimizing over all ρ gives an optimal value of

ρ =

{

2−φ∗(n)−1/ log 2 p = q = 1/2,

logp/q logn p > 1/2.

Note that this corresponds to the real part of the saddle points in the proof. Plugging

this into (2.17), setting the resulting expression equal to 0, and solving for φ∗(n) gives

φ∗(n) =

{ − log2 logn+O(1) p = q = 1/2

− log1/q log logn p > 1/2.

This heuristic derivation suggests that the following theorem holds. More details are

given in Section 3.2.
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Theorem 2.2 (Asymptotics for Fn). With high probability,

Fn =

{

log1/q n− log1/q log logn+ o(log log logn) p > q

log2 n− log2 logn+ o(log logn) p = q

for large n.

2.3. Result on Dn

We move to our results concerning Dn. To state them, we first need to observe that there

is a natural way to define the sequence {Dn}n≥0 on a single probability space, so that we

may ask whether or not Dn, properly normalized, converges almost surely, and to what

limiting value. This common space is defined by appealing to the correspondence between

the sequence of Rényi problem queries and the growth of a random PATRICIA trie. For

each n ≥ 0, we define a tree Tn which is a PATRICIA trie constructed on n strings

(equivalently, a terminating sequence of Rényi queries recovering a bijection between two

sets of n elements): T0 is an empty tree, and Tn+1 is constructed from Tn by generating

an independent string of i.i.d. Bernoulli(p) random variables and inserting this string

into Tn. Then, for each n, Dn is the depth of a leaf chosen uniformly at random (and

independent of everything else) from the leaves of Tn.

With this construction in mind, we have the following result about the convergence of

Dn. Its proof combines known facts about the profile with the new ones proved here, as

well as a proof technique that was used before in, e.g., [17].

Theorem 2.3 (Asymptotics of Dn). For p > 1/2, the normalized depth Dn/ logn

converges in probability to 1/h(p) where h(p) := −p log p − q log q is the entropy of a

Bernoulli(p) random variable, but not almost surely. In fact,

lim inf
n→∞

Dn/ logn = 1/ log(1/q), lim sup
n→∞

Dn/ logn = 1/ log(1/p) (2.18)

almost surely.

Proof. The fact that Dn/ logn converges in probability to 1/h(p) follows directly from

the central limit theorem for Dn given in [21].

Next we show that (2.18) holds. Clearly Fn ≤ Dn ≤ Hn. Now let us consider the

following sequences of events: An is the event that Dn = Fn+1, and A′
n is the event that

Dn = Hn. We note that all elements of the sequences are independent, and Pr[An] ≥ 1/n,

Pr[A′
n] ≥ 1/n. This implies that

∑∞
n=1 Pr[An] =

∑∞
n=1 Pr[A

′
n] = ∞, so that the Borel-

Cantelli lemma tells us that both An and A′
n occur infinitely often almost surely.

In the next step we show that, almost surely, Fn/ logn→ 1/ log(1/q) and Hn/ logn→
1/ log(1/p). Then (2.18) is proved. We cannot apply the Borel-Cantelli lemmas directly,

because the relevant sums do not converge. Instead, we apply a trick which was used

in [17]. We observe that both (Fn) and (Hn) are non-decreasing sequences. Next, we

show that, on some appropriately chosen subsequence, both of these sequences, when

divided by logn, converge almost surely to their respective limits. Combining this with

the observed monotonicity yields the claimed almost sure convergence, and, hence, the

equalities in (2.18).



Combinatorics, Probability & Computing 13

We illustrate this idea more precisely for Hn. By our analysis above, we know that

Pr[|Hn/ logn− 1/ log(1/p)| > ǫ] = O(e−Θ(log log n)2).

Then we fix t, and we define nr,t = 2t
222r . On this subsequence, by the probability bound

just stated, we can apply the Borel-Cantelli lemma to conclude that Hnr,t/ log(nr,t) →
1/ log(1/p) · (t + 1)2/t2 almost surely. Moreover, for every n, we can choose r such that

nr,t ≤ n ≤ nr,t+1. Then

Hn/ logn ≤ Hnr,t+1/ lognr,t,

which implies

lim sup
n→∞

Hn

logn
≤ lim sup

r→∞

Hnr,t+1

lognr,t+1

lognr,t+1

lognr,t
=

1

log(1/p)
· (t+ 1)2

t2
.

Taking t → ∞, this becomes 1/ log(1/p), as desired. The argument for the lim inf is

similar, and this establishes the almost sure convergence of Hn. The derivation is entirely

similar for Fn.

3. Proof of Theorems 2.1 and 2.2

We give a detailed proof of Theorem 2.1 and indicate the main lines of the proof of

Theorem 2.2. We also concentrate just on the case p > q. The proof of the symmetric

case can be done by the same techniques (properly adapted) but it just reproves the

result by Pittel and Rubin [18].

3.1. Proof of Theorem 2.1

3.1.1. A-Priori Bounds for µn,k For the analysis of the profile around the height

level, we need precise information about µn,k with n → ∞ when k close to n. This is

captured in the following lemma, which first appeared in a similar form in [15].

We consider µn,k where k is close to n, so we set k = n− ℓ and represent it as

µn,k = µn,n−ℓ = n!C∗(p)p
(n−ℓ)(n−ℓ+1)2/2qn−ℓξℓ(n),

where

C∗(p) =
∞
∏

j=2

(1− pj − qj)−1 · (1 + (q/p)j−2),

ξ1(1) = 1/C∗(p) and for n > ℓ ≥ 1

ξℓ(n)(1 − pn − qn) =
ℓ
∑

J=1

ξℓ+1−J(n− J)

J !
q−1pℓ−n(pn−JqJ + pJqn−J). (3.1)

Note that ξℓ(n) = 0 for n ≤ ℓ.

Lemma 3.1 (Asymptotics for µn,k, k → ∞ and n near k). Let p ≥ q.

(i) Precise estimate: For every fixed ℓ ≥ 1 and n→ ∞

µn,n−ℓ ∼ n!C∗(p)p
(n−ℓ)2/2+(n−ℓ)/2qn−ℓξℓ,



14 M. Drmota, A. Magner, and W. Szpankowski

where the sequence ξℓ, ℓ ≥ 1 satisfies the recurrence

ξℓ = q−1pℓ
ℓ
∑

J=1

ξℓ+1−J
J !

(q/p)J (3.2)

with ξ1 = 1. Furthermore we have (for some positive constant C)

|ξℓ+1−J (n− J)− ξℓ+1−J | ≤ C(pn−ℓ−1 + (q/p)n−ℓ−1)/(ℓ− J)!, (3.3)

(ii) Upper bound: We have ξℓ(n) ≤ C1/(ℓ − 1)! for some constant C1 and, thus, for

1 ≤ k < n (and some constant C)

µn,k ≤ C
n!

(n− k − 1)!
p(k

2+k)/2qk. (3.4)

Proof. From the recurrence (3.1) it follows easily that for each ℓ ≥ 1 the limit ξℓ =

limn→∞ ξℓ(n) exists, and in particular for ℓ = 1 we have ξ1 = 1. Clearly this limits satisfy

the recurrence (3.2).

Next we show by induction a uniform upper bound of the form ξℓ(n) ≤ C1/(ℓ−1)! The

induction step for n > ℓ > ℓ1 runs as follows (where C1 and ℓ1 is appropriately chosen

such that the upper bound is true for ℓ ≤ ℓ1 and that 2/(qℓ1(1 − pℓ1 − qℓ1) ≤ 1):

ξℓ(n) ≤ C1

1− pn − qn

(

ℓ
∑

J=1

pℓ−JqJ−1

J !(ℓ− J)!
+

ℓ
∑

J=1

pℓ+J−nqn−J−1

J !(ℓ− J)!

)

≤ C1

ℓ!(1− pn − qn)

(

1

q

ℓ
∑

J=0

(

ℓ

J

)

pℓ−JqJ +
(q/p)n−ℓ

q

ℓ+1
∑

J=0

(

ℓ

J

)

pJqℓ−J
)

≤ C1

(ℓ− 1)!

1

ℓ1(1− pℓ1 − qℓ1)

2

q
≤ C1

(ℓ − 1)!
.

In a similar way we obtain the approximation estimate (3.3). We leave the details to the

reader.

3.1.2. Upper bound on Hn Now we set

k = kU = log1/p n+ ψU (n) = log1/p n+
1

2
(1 + ǫ) logp/q logn. (3.5)

just as in (2.9). We will first estimate the value of Jk(n, s) (which is defined in (2.12))

for s = ρ = −2ψU(n) +O(1) ∈ Z
− − 1/2 (as hinted at in Section 2).

Lemma 3.2. Suppose that p > q, that ǫ > 0, that kU is given by (3.5), and that

ρ′ = ⌊ρ⌋+ 1
2 , where ρ = − logp/q logn+O(log log log n) is the solution of the equation

(p/q)ρ log(p/q)

log(1/p)
log1/p n+ ψU (n) + ρ = 0.

Then we have for k ≥ kU

Jk(n, ρ
′) = O

(

T (ρ′)k−kU pǫ(logp/q log n)2/2+O(log logn·log log logn
)

. (3.6)
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Proof. First we observe that the assumption ρ′ ∈ Z
−−1/2 assures that |Γ(m+ ρ′)/Γ(m+ 1)| ≤

1 for all m ≥ 0. Next by (3.4) of Lemma 3.1 we have µm,j = O
(

mj+1pj
2/2+O(j)

)

which

implies that
∑

m≥j
T (−m)µm,j = O

(

pj
2/2+O(j log j)

)

.

Hence, the jth term in the representation (2.12) of Jk(n, ρ
′) can be estimated by

∣

∣

∣

∣

∣

∣

n−ρ′T (ρ′)k−j
∑

m≥j
T (−m)(µm,j − µm,j−1)

Γ(m+ ρ′)

Γ(m+ 1)

∣

∣

∣

∣

∣

∣

(3.7)

≤ n−ρ′T (ρ′)k−j
∑

m≥j
T (−m)(µm,j + µm,j−1) = O

(

n−ρ′T (ρ′)k−jpj
2/2+O(j log j)

)

.

Thus, we have shown (2.14) which implies (3.6) for k = kU (see (2.15). However, it is

easy to extend it to larger k. Actually we get uniformly for k ≥ kU

Jk(n, ρ
′) = O

(

T (ρ′)k−kU pǫ(logp/q logn)2/2+O(log logn log log logn
)

for large n.

Our next goal is to evaluate the integral (2.11) and to obtain a bound for µn,k.

Lemma 3.3. Suppose that p > q, that ǫ > 0, and that kU and ρ′ are given as in

Lemma 3.2. Then we have (for some δ > 0)

µn,k = O
(

T (ρ′)k−kU pǫ(logp/q logn)2/2+O((log logn)1−δ)
)

+O(n−1+ǫ) (3.8)

uniformly for k ≥ kU .

Proof. Letting C denote the vertical line ℜ(s) = ρ′, we evaluate the integral (2.11) by

splitting it into an inner region CI and outer tails CO:
CI = {ρ′ + it : |t| ≤ e(log logn)2−δ}, CO = {ρ′ + it : |t| > e(log log n)2−δ},

where 0 < δ < 1 is some fixed real number. The inner region we evaluate by showing that

it is of the same order as the integrand on the real axis, and the outer tails are shown to

be negligible by the exponential decay of the Γ function.

It is easily checked that |n−sT (s)k−jΓ(m+ s)| ≤ n−ρ′T (ρ′)k−j |Γ(m+ ρ′)|. Thus,

|Jk(n, s)| ≤ T (ρ′)k−kU
k
∑

j=0

n−ρ′T (ρ′)kU−j
∑

m≥j
T (−m)|µm,j − µm,j−1|

|Γ(m+ ρ′)|
Γ(m+ 1)

,

which can be upper bounded as in the proof of Lemma 3.2. Multiplying by the length of

the contour, we get
∣

∣

∣

∣

∫

CI

Jk(n, s) ds

∣

∣

∣

∣

= O
(

T (ρ′)k−kU pǫ(logp/q logn)2/2+O((log logn)2−δ)
)

.

We use the following standard bound on the Γ function: for s = ρ′ + it, provided that
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|Arg(s)| is less than and bounded away from π and |s| is sufficiently large, we have

|Γ(s)| ≤ C|t|ρ′−1/2e−π|t|/2.

This is applicable on CO, and we again use the fact that |T (s)| ≤ T (ρ′) and |µm,j −
µm,j−1| ≤ m, which yields an upper bound of the form
∣

∣

∣

∣

∣

∣

∑

m≥j
T (−m)(µm,j − µm,j−1)

Γ(m+ s)

Γ(m+ 1)

∣

∣

∣

∣

∣

∣

= O





∑

m≥j
T (−m)m

|t|m+ρ′−1/2e−π|t|/2)

Γ(m+ 1)





= O
(

p|t|ρ′+1/2e−π|t|/2ep|t|
)

,

where we have used the inequality

|t|ρ′−1/2e−π|t|/2
∑

m≥j

m(p|t|)m
m!

≤ p|t|ρ′+1/2e−π|t|/2ep|t| = e−Θ(|t|).

Note that −π/2 + p < 0, so that we are left with e−Θ(|t|)+(ρ′+1/2) log |t|. By our choice of

|t|, this is simply e−Θ(|t|), uniformly in j.

Furthermore, since T (ρ′) < 1 we have

k
∑

j=0

n−ρ′T (ρ′)k−j = O(n−ρ′ ) = O
(

elogn log logn
)

.

Hence, integrating this on CO gives
∣

∣

∣

∣

∫

CO

Jk(n, s) ds

∣

∣

∣

∣

= O

(

T (ρ′)k−kU elogn log logne−Θ(e(log log n)2−δ
)

)

= O

(

T (ρ′)k−kU e−Θ(e(log log n)2−δ
)

)

.

Adding these together gives

G̃k(n) ≤
∣

∣

∣

∣

∫

CI

JkU (n, s) ds+

∫

CO

JkU (n, s) ds

∣

∣

∣

∣

= O
(

T (ρ′)k−kU pǫ(logp/q logn)2/2+O((log logn)2−δ)
)

.

Similarly we get a bound for G̃′′
k(n):

G̃′′
k(n) = O

(

ρ′
2
T (ρ′)k−kU pǫ(logp/q logn)2/2+O((log logn)2−δ)

)

.

Hence by depoissonization (see (4.5) from Section 4) we get

µn,k = O
(

T (ρ′)k−kU pǫ(logp/q logn)2/2+O((log logn)2−δ)
)

+O(n−1+ǫ)

as needed.

Our original goal was to bound the tail Pr[Hn > kU ] by the following sum which we
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split into two part:

Pr[Hn > kU ] ≤
∑

k≥kU
µn,k =

⌈(log n)2⌉
∑

k=kU

µn,k +

n
∑

k=⌈(log n)2⌉+1

µn,k.

The initial part can be bounded using (3.8), and the final part we handle using (3.4) in

Lemma 3.1. Indeed, since T (ρ′) < 1 the first sum can be bounded by

⌈(logn)2⌉
∑

k=kU

µn,k ≤ e−Θ(ǫ log logn)2 .

The second sum is at most
∞
∑

k=⌈(log n)2⌉+1

µn,k =
n
∑

k=⌈(log n)2⌉+1

µn,k ≤ ne−Θ(logn)4 = e−Θ(logn)4 .

Adding these upper bounds together shows that Pr[Hn > kU ] = e−Θ(ǫ(log logn)2) → 0, as

desired.

3.1.3. Upper bound on the variance of the profile We consider now the case

k = kL = log1/p n+ ψL(n) = log1/p n+ ψ(n), ψ(n) =
1

2
(1− ǫ) logp/q logn. (3.9)

and start with an upper bound for the variance of the profile Var[Bn,k].

Lemma 3.4. Suppose that p > q, that ǫ > 0, and that kL is given by (3.9). Then we

have

Var[Bn,k] = O
(

p−ǫ(logp/q logn)2/2+O((log logn)2−δ)
)

. (3.10)

Proof. The proof technique here is the same as for the proof of the upper bound on

µn,k. Our goal is to upper bound the expression

Ṽk(n) =
∑

n≥0

E[B2
n,k]

nn

n!
e−n − G̃k(n)

2 =
1

2πi

∫ ρ′+i∞

ρ′−i∞
J
(V )
k (n, s) ds,

where

J
(V )
k (n, s) = n−sT (s)kΓ(s+ 1)Bk(s),

and

Bk(s) = 1− (s+ 1)2−(s+2) +
k
∑

j=1

T (s)−j
W ∗
j,V (s)

Γ(s+ 1)
,

with

W ∗
j,V (s) =

∑

m≥j

Γ(m+ s)

m!
[ T (−m)(cm,j − cm,j−1 + µm,j − µm,j−1)
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+T (s)2−(s+m)
m
∑

ℓ=0

µℓ,j−1µm−ℓ,j−1

+2
m
∑

ℓ=0

µℓ,j−1µm−ℓ,j−1p
ℓqm−ℓ − 2−(m+s)

m
∑

ℓ=0

µℓ,jµm−ℓ,j

]

.

As above we need a bound on the moments of Bm,j for m sufficiently close to j: for

µm,j = E[Bm,j ], this is (3.4) in Lemma 3.1. It turns out that cm,j = E[Bm,j(Bm,j − 1)]

satisfies a similar recurrence as µm,j (see [14]) and also similar inequality: for j → ∞
and m ≥ j,

cm,j ≤
m!

(m− j − 1)!
pj

2/2+O(j).

The proof is by induction and follows along the same lines as that of the upper bound in

Lemma 3.1. Using this, we can upper bound the inverse Mellin integral as in the upper

bound for G̃k(n).

In particular it follows that

ṼkL(n) = O
(

p−ǫ(logp/q logn)2/2+O((log logn)2−δ)
)

and similarly we have

Ṽ ′′
kL(n) = O

(

ρ′
2
n−2p−ǫ(logp/q logn)2+O((log logn)2−δ)

)

,

where ρ′ = − logp/q logn+O(log log log n). With the help of depoissonization, see (4.6),

we thus obtain (3.10).

3.1.4. Lower bound on Hn The most difficult part of the proof of Theorem 2.1 is

to prove a lower bound for the expected profile.

Lemma 3.5. Suppose that p > q, that ǫ > 0, and that kL is given by (3.9). Then we

have

µn,kL = Ω
(

p−ǫ(logp/q logn)2/2+O(log log n log log log n
)

. (3.11)

By combining Lemma 3.4 and Lemma 3.5 it immediately follows that

Pr[Hn < kL] ≤
Var[Bn,kL ]

µ2
n,kL

→ 0

which proves the lower bound on Hn.

The plan to prove Lemma 3.5 is as follows: we evaluate the inverse Mellin integral

exactly by a residue computation. This results in a nested summation, which we sim-

plify using the binomial theorem and the series of the exponential function. From this

representation we will then detect several terms that contribute to the leading term in

the asymptotic expansion.
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Lemma 3.6. Suppose that ρ < 0 but not an integer. Then we have

G̃k(n) =
k
∑

j=0

∑

m≥j
κm,j (µm,j − µm,j−1) , (3.12)

where

κm,j =
T (−m)nm

m!

∞
∑

ℓ=(−⌈m+ρ⌉+1) ∨ 0

(−n)ℓ
ℓ!

T (−m− ℓ)k−j (3.13)

and x ∨ y denotes the maximum of x and y.

Proof. By shifting the line of integration and collecting residues we have

1

2πi

∫ ρ+i∞

ρ−i∞
n−sT (s)k−jΓ(m+ s) ds =

∑

l≥max{0,−m−ρ}

nm+ℓ(−1)ℓ

ℓ!
T (−ℓ−m)k−j .

Hence the lemma follows.

We now choose ρ as ρ = −j∗−1 and set j0 = ⌈j∗⌉, where j∗ is the root of the equation

(q/p)j∗(kL − j∗) =
log(1/p)

log(p/q)
(j∗ − ψL(n)), (3.14)

where ψL(n) =
1
2 (1− ǫ) logp/q logn.

In particular it follows that

r0 := (q/p)j0(kL − j0) ≤ r1 :=
log(1/p)

log(p/q)
(j0 − ψL(n)), (3.15)

If j > j0 and m ≥ j then we certainly have (−⌈m+ ρ⌉ + 1) ∨ 0 = 0, whereas for

j = j0 we have (−⌈j0 + ρ⌉+ 1) ∨ 0 = 1.

Asymptotically we have j∗ = logp/q logn− logp/q log logn+O(1). Hence we also have

j0 = logp/q logn− logp/q log logn+O(1) and ρ = − logp/q logn− logp/q log logn+O(1).

We also want to mention that j∗ can be considered as a function of ǫ. By implicit

differentiation it follows that this function has bounded derivative. Thus j∗ is almost

constant and, thus, ρ is really constant for sufficiently small ǫ.

In what follows we will encounter several different asymptotic behaviors. In particular

we will show that

G̃k(n) = D(p)C∗(p)p
j0(j0+1)/2qj0−1nj0pj0(k−j0)er0Φ

(

r1 − r0√
r0

)

(3.16)

+ O

(

pj0(j0+1)/2qj0−1nj0pj0(k−j0)
r0
r1

Γ(r1 + 1)

)

,

where

D(p) =
∑

L,M≥0

ξL+1
(−1)M

M !
p((L+M)2+L−M)/2q−L−M . (3.17)

Note that r0 ≤ r1 which implies that Φ
(

r1−r0√
r0

)

≥ 1
2 . Furthermore r0

r1/Γ(r1 + 1) =
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O(er0/
√
r0). Thus, the first term is the asymptotically leading one and since G̃k(n) > 0

it also follows that D(p) ≥ 0. Unfortunately it seems that D(p) is identically zero (which

is conjectural relation as we verified by extensive symbolic and numerical calculations).

If D(p) would be positive then the proof of the lower bound would be finished. However

we have to deal also with the case D(p) = 0. For this purpose we have to deal with the

second order term more precisely. It follows that

G̃k(n) ≥ C(p)pj0(j0+1)/2qj0−1nj0pj0(k−j0)
r0
r1

Γ(r1 + 1)
(3.18)

for some constant C(p) > 0. This is a quite involved calculation. Thus, in order to demon-

strate the method we will concentrate only on few instances. Note also that this lower

bound implies (3.11) since by definition r1 < (p/q) r0 so that E := e−r0r0r1/Γ(r1 + 1) =

eΩ(log log n). E := e−r0r0r1/Γ(r1 + 1) = eΩ(log logn).

Before we start with the core part of the proof we mention that we will have also error

terms that are smaller by a factor pj0 or (q/p)j0 compared to the asymptotic leading

term. However, it is easy to check that pj0 = o(E) and (q/p)j0 = o(E) for 1
2 < p < 1 so

that we can safely neglect those error terms.

Note that for j ≤ j0 and j ≤ m ≤ j0 we have

κm,j =
T (−m)nm

m!

k−j
∑

r=0

(

k − j

r

)

pm(k−j−r)qmr



e−np
k−j−rqr −

∑

ℓ≤j0−m

(−n)ℓ
ℓ!

(pk−j−rqr)ℓ





and otherwise

κm,j =
T (−m)nm

m!

k−j0
∑

r=0

(

k − j

r

)

pm(k−j−r)qmr)e−np
k−j−rqr .

In view of the above discussion we can thus replace the term T (−m) (in κm,j) by p
m;

the resulting sum will be denoted by κm,j. And we can also replace µm,j − µm,j−1 by

νm,j := −C∗(p)m!pj(j−1)/2qj−1ξm−j+1.

It is an easy exercise (by using the methods from below) to show that

G̃k(n) = C∗(p)
k
∑

j=0

∑

m≥j
κm,jξm−j+1m!pj(j−1)/2qj−1

+ O
(

nj0T (−j0)k−j0pj0(j0+1)/2qj0
(

pj0 + (q/p)j0
)

)

.

In order to analyze the sum representation (3.12) we split it into several parts:

T1 :=
∑

j>j0

∑

m≥j
κm,jνm,j, T2 :=

∑

j≤j0

∑

m>j0

κm,jνm,j, T3 :=
∑

j≤j0

j0
∑

m=j

κm,jνm,j .

The most interesting part is third term that we will discuss first. Note that the exponential

function e−np
k−j−rqr = e−(q/p)r−r1(j)

behaves completely different for r ≤ r1(j) and for

r > r1(j) where r1(j) = (j − ψ(n))
log(1/p)
log(p/q) . Hence it is convenient to split T3 into three

parts T30+T31+T32, where the T30 and T31 correspond to the terms with r ≤ r1(j) and
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T32 for those with r > r1(j). T30 involves the exponential function e−np
k−j−rqr whereas

T31 takes care of the polynomial sum
∑

ℓ≤j0−m
(−n)ℓ
ℓ! (pk−j−rqr)ℓ.

The most interesting term is T31. However, it is more convenient to start with the

other terms T30, T32, T1, and T2:

Lemma 3.7. We have

−T30 ≤ C1(p)p
j0(j0+1)/2qj0nj0pj0(k−j0

r0
r1

Γ(r1 + 1)
,

where C1(p) is positive and depends on p.

Proof. We first note that all summands of T30 are negative. So −T30 has just positive

terms. We then use the upper bound ξℓ ≤ C/(ℓ − 1)! and thus, led to consider the

following sum which can be again upper bounded be estimating the m-sum with the help

of the exponential function enp
k−j−r+1qr :

C
∑

j≤j0
pj(j−1)/2qj

j0
∑

m=j

pmnm

(m− j)!

∑

r≤r1(j)

(

k − j

r

)

pm(k−j−r)qmre−np
k−j−rqr

≤ C
∑

j≤j0
pj(j+1)/2qjnj

∑

r≤r1(j)

(

k − j

r

)

pj(k−j−r)qjre−np
k−j−rqr(1−p).

Let us start with the term related to j = j0:

pj0(j0+1)/2qj0−1nj0
∑

r≤r1

(

k − j0
r

)

pj0(k−j0−r)qj0re−np
(k−j0−r)qr+1

.

Recall that r0 < r1. Thus, the sum r ≤ r1 covers those r around r0 for which the binomial

part
(

k−j0
r

)

pj0(k−j0−r)qj0r is maximal. However, the exponential part e−np
(k−j0−r)qr+1

=

e−q(q/p)
r−r1

is small enough so that the whole r-sum is dominated by the last summand:

∑

r≤r1

(

k − j0
r

)

pj0(k−j0−r)qj0re−np
(k−j0−r)qr ≤ C′

1(p)p
j0(k−j0) r0

r1

Γ(r1 + 1)
.

If j < j0 then we have

∑

r≤r1(j)

(

k − j

r

)

pj(k−j−r)qjre−np
k−j−rqr+1 ≤ C′′

1 (p)p
j(k−j) (k − j)r1(j)

Γ(r1(j) + 1)

(

q

p

)jr1(j)

.

The situation is here even easier since the summands are monotonically increasing in r

(if r ≤ r1(j)). Now observe that

(k − j)r1(j)

Γ(r1(j) + 1)

(

q

p

)j0r1(j)

=
r0
r1

Γ(r1 + 1)
eO(j−j0).

Hence we obtain (up to a constant) the upper bound

r0
r1

Γ(r1 + 1)

∑

j<j0

pj(j+1)/2qjnjeO(j−j0)
(

q

p

)(j−j0)r1(j)
pj(k−j)
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= pj0(j0+1)/2qj0nj0pj0(k−j0)
r0
r1

Γ(r1 + 1)

∑

j<j0

p(j−j0)
2/2+O(j−j0)qj−j0 .

Note that we have used the relation npk−j = (q/p)−r1(j). This proves the lemma.

Lemma 3.8. We have

|T32| ≤ C2(p)p
j0(j0+1)/2qj0nj0pj0(k−j0

r0
r1

Γ(r1 + 1)
,

where C2(p) is positive and depends on p.

Proof. By using the inequalities ξℓ ≤ C/(ℓ−1)! and |e−x−∑ℓ≤L x
ℓ/ℓ!| ≤ xL+1/(L+1)!,

0 ≤ x ≤ 1, that we apply for x = npk−j−rqr = (q/p)r−r1(j) ≤ 1 (for r > r1(j)) it is

sufficient to consider the sum

∑

j≤j0
pj(j−1)/2qj

j0
∑

m=j

pmnm

(m− j)!

∑

r>r1(j)

(

k − j

r

)

pm(k−j−r)qmr
(npk−j−rqr)j0−m+1

(j0 −m+ 1)!

= nj0+1
∑

j≤j0
pj(j−1)/2qj

j0
∑

m=j

pm

(m− j)!(j0 −m+ 1)!

∑

r>r1(j)

(

k − j

r

)

p(j0+1)(k−j−r)q(j0+1)r.

Clearly, the sum
∑j0
m=j p

m/((m− j)!(j0 −m+ 1)!) is bounded from the above by pj(1+

p)j0−j+1/(j0− j+1)!. Furthermore we use a usual tail estimate of a binomial sum to get

∑

r>r1(j)

(

k − j

r

)

p(j0+1)(k−j−r)q(j0+1)r ≤ C′
2p

(j0+1)(k−j) (k − j)r1(j)

Γ(r1(j) + 1)

(

q

p

)(j0+1)r1(j)

≤ C′
2

r0
r1

Γ(r1 + 1)
eO(j−j0)p(j0+1)(k−j)

(

q

p

)r1(j)

.

Hence we obtain (up to a constant) the upper bound

r0
r1

Γ(r1 + 1)
nj0

∑

j≤j0
pj(j+1)/2qj

eO(j−j0)

(j0 − j + 1)!
p(j0−j)j0

= pj0(j0+1)/2qj0nj0pj0(k−j0)
r0
r1

Γ(r1 + 1)

∑

j≤j0

p(j−j0)
2/2+O(j−j0)qj−j0

(j0 − j + 1)!
,

which completes the proof of the lemma. Note that we have again used the the relation

npk−j = (q/p)−r1(j).

Lemma 3.9. We have

−T1 ≤ C3(p)p
j0(j0+1)/2qj0nj0pj0(k−j0)

r0
r1

Γ(r1 + 1)
,

where C3(p) is positive and depends on p.

Proof. We proceed similarly to the proof of Lemma 3.7. We first use the inequality
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ξℓ ≤ C/(ℓ − 1)! and estimate the m-sum from the above by the exponential function

enp
k−j−r+1qr . Hence, −T1 is upper bounded (up to a constant) by

C
∑

j>j0

pj(j+1)/2qjnj
k−j
∑

r=0

(

k − j

r

)

pj(k−j−r)qjre−np
k−j−rqr(1−p).

Again similarly to the proof of Lemma 3.7 we can estimate the r-sum by

k−j
∑

r=0

(

k − j

r

)

pj(k−j−r)qjre−np
k−j−rqr+1 ≤ C′

3(p)p
j(k−j) (k − j)r1(j)

Γ(r1(j) + 1)

(

q

p

)jr1(j)

.

Actually for r ≤ r1(j) the same argument as in Lemma 3.7 applies whereas for r > r1(j)

we get an upper bound by usual tail estimates of a binomial sum (as in Lemma 3.8).

Summing up we are then (almost) in the same situation as in Lemma 3.7. The only

difference is that j > j0 instead of j ≤ j0. Thus we can proceed as above and obtain the

proposed upper bound.

Lemma 3.10. We have

−T2 ≤ C4(p)p
j0(j0+1)/2qj0nj0pj0(k−j0)

r0
r1

Γ(r1 + 1)
,

where C4(p) is positive and depends on p.

Proof. Here we have to argue slightly differently although we start again by estimating

ξℓ by C/(ℓ− 1)!. In particular the m-sum is now estimated by

∑

m>j0

pmnm

(m− j)!
pm(k−j−r)qmr ≤

∑

m>j0

pmnm

(m− j0)!
pm(k−j−r)qmr

= pj0nj0pj0(k−j−r)qj0r
(

enp
k−j−r+1qr − 1

)

which leads to the sum

pj0nj0
∑

j≤j0
pj(j−1)/2qj

k−j
∑

r=0

(

k − j

r

)

pj0(k−j−r)qj0r
(

e−np
k−j−rqr+1 − e−np

k−j−rqr
)

.

Again we distinguish between r ≤ r1(j) and r > r1(j). In the first case we proceed as in

Lemma 3.7, whereas in the second case we have

e−np
k−j−rqr+1 − e−np

k−j−rqr ≤ npk−j−r+1qr

so that we are can proceed as in Lemma 3.8.

Finally we deal with T31 for which we will show later that it is positive and supersedes

the other terms (although it is of the same order of magnitude).

First of all we regroup the summation by setting m = j0 −M , j = j0 −M − L, and

ℓ =M −K which gives

T31 = C∗(p)p
j0(j0+1)/2qj0−1nj0pj0(k−j0)

∑

K≥0

(

q

p

)Kr1
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×
∑

L≥0,M≥K
ξL+1

(−1)M−K

(M −K)!
p((L+M)2+L−M)/2−K(L+M)q−L−M

×
∑

r≤r1(j0−M−L)

(

k − j0 +M + L

r

)(

q

p

)(j0−K)r

.

We single out the case K = 0 (and consider only the sum over K,M, r) which we write

as

D(p)C∗(p)
∑

r≤r1

(

k − j0 + L+M

r

)(

q

p

)j0r

+ S0,

where D(p) is given by (3.17) and

S0 := −C∗(p)
∑

L,M≥0

ξL+1
(−1)M

M !
p((L+M)2+L−M)/2q−L−M

×
∑

r1(j0−M−L)<r≤r1

(

k − j0 + L+M

r

)(

q

p

)j0r

.

Note that

∑

r≤r1

(

k − j0 + L+M

r

)(

q

p

)j0r

= er0Φ

(

r1 − r0√
r0

)(

1 +O

(

log logn

logn
(L+M)

))

,

where Φ denotes the distribution function of the normal distribution. Thus, we have

proved the asymptotic relation (3.16) since the following property is easy to establish:

Lemma 3.11. We have

∑

K≥0

|SK | ≤ C5(p)p
j0(j0+1)/2qj0nj0pj0(k−j0)

r0
r1

Γ(r1 + 1)
,

where SK , K > 0, is defined by

SK := C∗(p)

(

q

p

)Kr1
∑

L≥0,M≥K
ξL+1

(−1)M−K

(M −K)!
p((L+M)2+L−M)/2−K(L+M)q−L−M

×
∑

r≤r1(j0−M−L)

(

k − j0 +M + L

r

)(

q

p

)(j0−K)r

.

Proof. We just give a sketch of the proof. In all appearing r-sums the last summand

is dominating which gives rise to the factor r0
r1/Γ(r1 + 1). The remaining calculations

are then quite close to the proofs of the previous Lemmas 3.7–3.10.

As mentioned above we have to handle in particular the caseD(p) = 0, too. This means

that we to be need more precise Lemmas 3.7–3.11. In principle we just have to make the

calculations more accurate and more importantly we have to observe finally that all

second order terms sum up to a positive contribution (3.18). It is not immediately clear
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that we end up with a positive contribution since T30, T1, and T2 are certainly negative.

In order to simplify (and shorten) the presentation we just present here a special case.

The general case is just notationally much more involved but runs along the same lines.

We suppose that r1 is an integer. Furthermore let us assume that log(1/p)/ log(p/q) is

also an integer with implies that rj(j) is an integer, too, for all j. In this case we have

∑

r≤r1(j0−M−L)

(

k − j0 +M + L

r

)(

q

p

)(j0−K)r

∼ r0
r1

r1!

(

r1
r0

)(L+M)
log(1/p)
log(p/q)

(

q
p

)−Kr1(j0−L−M)

1− r1
r0

(

q
p

)K
.

Note that r0 ≤ r1 <
p
q r0. So everything is well defined. Furthermore we have

(

q

p

)(r1−rj(j0−L−M))K

= p(L+M)K .

Thus, by summing up SK , K ≥ 1, we get

∑

K≥1

SK ∼ r0
r1

r1!
C∗(p)

∑

L≥0,M≥1

ξL+1p
((L+M)2+L−M)/2q−L−M

(

r1
r0

)(L+M)
log(1/p)
log(p/q)

×
M
∑

K=1

(−1)M−K

(M −K)!

1

1− r1
r0

(

q
p

)K
.

The alternating sum
M
∑

K=1

(−1)M−K

(M −K)!

1

1− r1
r0

(

q
p

)K

is certainly negative for M = 2. But for M → ∞ it converges to e−1. Thus we (finally)

obtain a positive contribution.

Similarly we can handle the other terms. For example, for the negative term T30 we

can replace the constant C1(p) by

C∗(p)
∑

J≥0

pJ(J+1)/2q−J
∑

R≥0

(

q

p

)JR

e−(
q
p )

−R
R
∑

L=0

ξL+1p
L

(

q

p

)−LR
.

If we compute all these terms we finally end up with a representation of the form (3.18)

with a positive constant C(p). The following table gives a sample evaluation of these

constants (for the case r0 = r1).

p 0.5001 0.6 0.7 0.8 0.9 0.95

C(p)/C∗(p) 3633.132 1.283 16.055 1561.066 1.020× 1012 2.667× 1039

These sample computations indicate that the second order term provides a positive

contribution as proposed. For a complete analysis we have to go through Lemmas 3.7–
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3.11 in much more detail (we have to take care of several rounding effects if r1 and r1(j)

are not integers) and then make extensive numerical computations. Since we can bound

derivatives with respect to p it is sufficient to check positivity on a proper finite grid plus

an asymptotic analysis for p→ 1. So this finally proves the lower bound (3.18).

3.2. Proof of Theorem 2.2

The analysis of Fn runs along the same lines as for Hn. As already mentioned we will

give only a roadmap of the proof since it actually much easier than that of Hn.

3.2.1. Lower bound on Fn The lower bound on Fn can be proven in two different

ways. We can either use the inverse Mellin transform integral for G̃k(n)

k = kL = log1/q logn− (1 + ǫ) log1/q log logn

evaluated at ρ = logp/q logn. This leads to Pr[Fn < k] ≤ µn,k → 0.

Alternatively we can use the correspondence between the Rényi process and the random

PATRICIA trie construction, along with the relationship between PATRICIA tries and

standard tries. Because of the path compression step in the construction of a PATRICIA

trie from a trie, the fillup level for a PATRICIA trie is always greater than or equal to

the fillup level for the associated trie. Furthermore, it is known (see [16]) that the fillup

level in random tries for p > 1/2 is, with high probability,

log1/q n− log1/q log logn+ o(log log logn).

Thus, with high probability, this is also a lower bound for the Fn that we study.

3.2.2. Upper bound on Fn The upper bound proof for Fn follows along similar lines

to the lower bound for Hn (though there are fewer complications). We set

k = kU = log1/q n− (1− ǫ) log1/q log logn,

and our goal is to show that Var[Bn,k] = o(E[Bn,k]
2). First we get an upper bound

for Var[Bn,k] in the same way as in the case of Hn (via inverse Mellin transform and

Depoissonization) of the form

Var[Bn,k] = O
(

q−ǫ logp/q log n·log 1/q log logn(1+o(1))
)

.

In order to obtain a corresponding lower bound for µn,k = E[Bn,k] we use again the

explicit representation

G̃k(n) =

k
∑

j=0

∑

m≥j
κm,j(µm,j − µm,j−1), (3.19)

where

κm,j =
T (−m)nm

m!

∞
∑

ℓ=0

(−n)ℓ
ℓ!

T (−m− ℓ)k−j

=
T (−m)

m!

k−j
∑

r=0

(

k − j

r

)

(nprqk−j−r)m exp(−nprqk−j−r). (3.20)
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We note that, because ρ > 0, there are no contributions from poles, so that the ℓ-sum

begins with 0, in contrast to (3.13) which leads to the simplified form (3.20).

The heuristic derivation suggests that the main contribution to (3.19) comes from the

terms j = O(1) and m = ρ · p/q + O(1). In this range, the difference µm,j − µm,j−1 is

estimable by the following lemma from [15] (see part (i) of Theorem 2.2) of that paper).

Lemma 3.12 (Precise asymptotics for µm,j when j = O(1) and m → ∞). For

p > q, m→ ∞, and j = O(1), we have

µm,j ∼ mqj(1− qj)m−1.

Note, in particular, that µm,j − µm,j−1 is strictly positive in this range. Applying this

lemma, some algebra is required to show that the contribution of the (m, j)th term, with

m = ρ · p/q + O(1) and j = O(1), is

q−ǫ logp/q logn·log1/q log logn(1+o(1)). (3.21)

To complete the necessary lower bound on the entire sum (3.19), we consider also the

following sums:

j′
∑

j=0

m′

∑

m=j

κm,j(µm,j − µm,j−1) and
∑

j>j′

∑

m≥j
κm,j(µm,j − µm,j−1), (3.22)

where j′ and m′ are sufficiently large fixed positive numbers. We note that the terms

that are not covered by any of these sums may be disregarded, since by Lemma 3.12 they

are non-negative.

It may be shown that both sums are smaller than the dominant term (3.21) by a factor

of e−Θ(ρ), both by upper bounding terms in absolute value and using the trivial bound

|µm,j − µm,j−1| ≤ 2m.

We thus arrive at

µn,k ≥ q−ǫ logp/q logn·log1/q log logn(1+o(1)). (3.23)

Since this tends to ∞ with n, combining this with the upper bound for the variance

yields the desired upper bound on Pr[Fn > k], which establishes the upper bound on Fn.

4. Depoissonization

4.1. Analytic Depoissonization

The Poisson transform G̃(z) of a sequence gn is defined by G̃(z) =
∑

n≥0 gn
zn

n! e
−z. If

the sequence gn is smoothly enough then we usually have gn ∼ G̃(n) (as n → ∞) which

we call Depoissonization. In [9] a theory for Analytic Depoissonization is developed. For

example, the basic theorem (Theorem 1) says that if

|G̃(z)| ≤ B|z|β (4.1)

for |z| > R and | arg(z)| ≤ θ (for some B > 0, R > 0, and 0 < θ < π/2) and

|G̃(z)ez| ≤ Aeα|z| (4.2)
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for |z| > R and θ < | arg(z)| ≤ π (for some A > 0 and α < 1) then

gn = G̃(n) +O(nβ−1). (4.3)

Actually this expansion can be more precise by taking into account derivatives of G̃(z).

For example, we have

gn = G̃(n)− n

2
G̃′′(n) +O(nβ−2). (4.4)

In [14, Lemmas 1 and 18] it is show that G̃k(z) =
∑

n≥0 µn,k
zn

n! e
−z satisfies (4.1) with

β = 1+ ǫ for any ǫ > 0 and (4.2) for some α < 1 uniformly for all k ≥ 0. Thus, it follows

uniformly for all k ≥ 0

µn,k = G̃k(n)−
n

2
G̃′′
k(n) +O(nǫ−1). (4.5)

The estimate (4.3) is not sufficient for our purposes (it only works if µn,k grows µn,k at

least polynomially as in the central range). For the boundary region, where k ∼ log1/p n

or k ∼ log1/q n we have to use (4.5) which means that we have to deal with derivatives

of G̃k(z), too.

4.2. Poisson Variance

Next we discuss how the variance of a random variable can be handled with the help

of the Poisson transform. First we assume that G̃(z) is the Poisson transform of the

expected values µn = E[Xn] or a sequence of random variables. Furthermore we set

Ṽ (z) =
∑

n≥0

E[X2
n]
zn

n!
e−z − G̃(z)2

which we denote the Poisson variance. This is not the Poisson transform of the variance.

However, since we usually have E[X2
n] ∼ V (n) +G(n)2 and E[Xn] ∼ G(n) it is expected

that Var[Xn] ∼ V (n). Actually this can be made precise with the help of (4.4). Suppose

that G̃(z) and Ṽ (z) satisfy the property (4.1) and that G̃(z) and Ṽ (z) + G̃(z)2 the

property (4.2). Then it follows that

E[Xn] = G̃(n)− n

2
G̃′′(n) +O(nβ−2)

and

E[X2
n] = Ṽ (n) + G̃(n)2 − n

2
Ṽ ′′(n)− n(G̃′(n))2 − nG̃(n)G̃′′(n) +O(nβ−2)

from which it follows that

Var[Xn] = Ṽ (n)− n
2 Ṽ

′′(n)− n(G̃′(n))2 + 1
4n

2(G̃′′(n))2

+O(n2β−4) +O(nβ−2G̃(n)) +O(nβG̃′′(n)) (4.6)

In particular in our case we know that the Poisson transform G̃k(z) (of the sequence

µn,k = E[Bn,k]) and the corresponding Poisson variance Ṽk(z) satisfy the assumptions

for β = 1 + ǫ (for every fixed ǫ > 0), see [14]. Thus we also obtain (4.6) in the present

context.
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