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Abstract. The discrepancy is a quantitative measure for the irregularity of dis-
tribution of sequences in the unit interval. This article is devoted to the precise
study of Lp,—discrepancies of a special class of digital (0,1)-sequences contain-
ing especially the van der Corput sequence. We show that within this special
class of digital (0,1)-sequences over Z» the van der Corput sequence is the worst
distributed sequence with respect to Lo—discrepancy. Further we prove that the
Ly—discrepancies of the van der Corput sequence satisfy a central limit theorem
and we study the discrepancy function of (0, 1)-sequences pointwise.
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1. Introduction

For a sequence zg, 21, ... of points in the 1-dimensional unit interval [0,1)
the discrepancy function Ay, N € N, is defined as

AN(Oé) = AN([O,a)) — Na

for 0 < a < 1, where An([0,)) denotes the number of indices i satisfying
0<i<N-1and 2 € [0,0). Now the Ly—discrepancy L, n, p > 1, of
the sequence is defined as the L,—norm of the discrepancy function Ay
divided by N and is a measure for the irregularity of distribution of the
first N points of the sequence in [0,1) (see for example [2] or [8]), i.e., for
1 <p < oo we set

1 1 C
Ly = Lys(anan,oo) = [ 1ant@pda)
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For p = o0 we get the usual star discrepancy

Dy = Dy(zo,21,...) i= 1 sup |An ()]
0<a<1
of the sequence.

We consider the discrepancy of a special class of sequences in [0, 1),
namely of so-called digital (0, 1)-sequences. Digital (0, 1)-sequences or more
generally digital (¢, s)—sequences were introduced by Niederreiter [10,11] and
they provide at the moment the most efficient method to generate sequences
with small discrepancy.

We consider the discrepancy of digital (0, 1)-sequences over Zs.

Definition 1. Choose a Nx N matrix C over Zs such that every left upper
m x m matrix C(m) has full rank over Z,. For n > 0 let n = ng + n12 +
ny22 + --- be the base 2 representation of n. Then multiply the vector
n = (ng,n1,...)T with the matrix C,

Cn =: (yl(n)7y2(n)a i ')T € Zgo

and set (n) (n)
— nn y2{n)
2 + 22 + '
Every sequence constructed in this way is called digital (0, 1)—sequence over
Zo.

The most famous digital (0, 1)-sequence over Zs is the well known van
der Corput sequence which is generated by the N x N identity matrix.

Niederreiter [10,11] proved that for any digital (0,1)-sequence over Zo
we have

log N
NDy < —=——+0(1
N = 2log2 +0Q)
for any N € N. This was improved in [13]: for the star discrepancy D% of
any digital (0, 1)-sequence over Z, for every N € N we have
~ log N
NDy <NDy < —=—+1
N = N = 3log2 +5
where 1~7}‘V denotes the star discrepancy of the van der Corput sequence
(for the second inequality see [1]). Hence the van der Corput sequence is
the worst distributed digital (0,1)-sequence over Z, with respect to star
discrepancy.
There is also a well known lower bound due to Schmidt [17] which tells
us that for any sequence in [0, 1) for the star discrepancy D}, we have

log N
ND* >
N = 66log4

for infinitely many values of N € N. Hence the star discrepancy of any
digital (0, 1)-sequence over Zs is of best possible order in N.
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A similar result is known for the Lo—discrepancy due to Roth [15]. There
exists a constant ¢ > 0 such that for the Lo—discrepancy of any sequence in

[0,1) we have
NLy N > cy/logN

for infinitely many values of N € N. It is not the case that digital (0,1)-
sequences give in general the best order of Lo—discrepancy.

It is the aim of this paper to study precise distribution properties of a
certain class of digital (0,1)-sequences over Zs. This class contains two of
the most important and well known sequences namely the van der Corput
sequence and the sequence generated by the matrix

111...
011...
Ci=1001...]- (1)

We will call this sequence in the following the upper-1-sequence. The im-
portance of this sequence is worked out in [9] or in [13].

The class of sequences we are studying is the class generated by left
upper triangular matrices

0 0 a (2)

with
a; =(1,0,0,...) or a;=(1,1,1,...) forieN

The reason why we study these matrices is, that they seem to represent
all distribution properties that can occur within digital (0, 1)-sequences
over Zs. These sequences are a subclass of sequences generated by NUT
matrices studied by Faure in [5]. A NUT matrix over Zs is a nonsingular
upper triangular matrix over Z, (hence the diagonal entries are all 1).

In the following section we present the main results of this paper. The
proofs of these results are then given in Sections 3-7.

2. The results

First we show that our type of sequences show a very regular behavior of
Lsy—discrepancy. We start with the van der Corput sequence. This sequence
has the highest Ly—discrepancy within all NUT sequences.

Theorem 1. Let w be a digital (0,1)-sequence over Z2 generated by a NUT
matriz and let wyqc be the van der Corput sequence. Then we have

log N

610g2) + O(log N) (3)

(N Lo (@))? < (N Lo n(weac))? < (
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and

lim sup su NLy,n(w) —
Nﬁoop wp log N - 6log2

(4)

where the sup is extended over all digital (0,1)-sequences w generated by a
NUT matriz.

In the average the Lo—discrepancy of the van der Corput sequence de-
velops at a high level but very regular. For the van der Corput sequence
this fact not only holds for the Ly—discrepancy but for all L,—discrepancies
and also for the star discrepancy Dy .

Theorem 2. Let D}, denote the star discrepancy of the first N points of
the van der Corput sequence. Then we have for every real y

1 1 1
: * < — _ =
il {N <M:NDj < ;log, N + y4\/§\/10g2 N} B(y) + o(1),

where

Yy
1 _£2

denotes the normal distribution function, that is, the star discrepancy sat-
isfies a central limit theorem.

Remark 1. Faure [5, Theorem 2] proved that the extreme discrepancy D (w)
has the same value for any digital (0, 1)-sequence w over Zs which is gener-
ated by a NUT matrix. Further it is well known (see [1, Théoréme 1]) that
for the van der Corput sequence wyqc we have Dy (wyvac) = Dy (wvac).
Hence the result from Theorem 2 remains valid if we replace the star dis-
crepancy D}, of the van the Corput sequence by the extreme discrepancy
of a digital (0,1)-sequence over Zs which is generated by a NUT matrix.
(For the definition of extreme discrepancy see for example [2,8,11].)

Theorem 3. Let L, n denote the L,—discrepancy of the first N points of
the van der Corput sequence. Then for every p > 1 and for every real y we
have

1 1 1
— N<M:NL < —logy, N ——+/logo N p =& 1
it b < 5108, N = /logy N | = 8(0) + o),

that is, the Lp—discrepancy satisfies o central limit theorem.

This regularity (for Lo—discrepancy) remains stable in a slightly weaker
form for all sequences from our class as long as the density of (1,1,1,...)
rows is not equal to 1. The average behavior of Ly—discrepancy becomes
better with growing density of (1,1,1,...) rows.

Before we state the result we introduce the following notation. For a
matrix C of the form (2), the number of (1,0,0,...) rows among the first
m rows is denoted by h(m).
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Theorem 4. Let w be a digital (0,1)-sequence over Z2 generated by a ma-
triz C of the form (2), where the number h(m) of (1,0,0,...) rows among
the first m rows satisfies h(m)//m — oo as m — oo. Then for any e > 0
we have

h(m)
8N

< Lyn(w) < (1+ s)%} =1

lim zim#{N<2m:(1—s)

m—o0

If h(m) = m + o(m), then one can be even much more precise. It turns
out that the asymptotic behaviour is almost the same as for the van der
Corput sequence.

Theorem 5. Let w be a digital (0,1)-sequence over Zs generated by a ma-
triz C of the form (2), where the number h(m) of (1,0,0,...) rows among
the first m rows satisfies h(m) = m + o(m). Then for every real y we have

vm
83

that is, the Lo—discrepancy satisfies a central limit theorem.

gt {V <27 L) < ghtm) + 527 = 0(0) + ot1),

It should be noted that there is a central limit theorem if h(m)/+/m — oo
and not only in the case h(m) = m + o(m). However, it seems to be difficult
to get the precise normalization (compare with Section 5).

If h(m)/+/m — 0 then the behaviour of L, n is completely different.

Theorem 6. Let w be a digital (0,1)-sequence over Z2 generated by a ma-
triz C of the form (2), where the number h(m) of (1,0,0,...) rows among
the first m rows satisfies h(m)/+/m — 0 as m — oo. Then there exists a
constant d > 0 such that for every real y > 1/\/4_8 we have

2%# {N<2™:NLyn(w) <yvm} =20 (2\/ f%%) —1+o0(1).

In particular for every € > 0 we have

lim 2%# [N < 2™ NIy w(w) < (0g N)i <} = 1.

m—r0o0

We would hope from the result of Theorem 6 that the Lo—discrepancy
of the upper-1-sequence is small for all N. This however is not the case.

Theorem 7. For the upper-1-sequence w we have
NLy n(w) > clog N

for infinitely many N € N, where ¢ > 0 is an absolute constant.
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At a next step we start an even more detailed investigation. We do
not study averages or extreme values of the discrepancy function, but we
consider it pointwise.

From [16] or [18] it is known that for the van der Corput sequence the
discrepancy function

ANC() = An([0,@)) — Na

is bounded in N if and only if « has a finite base 2 representation (x).
Here the “if-part” is almost trivial, whereas the “only if-part” needs some
investigation. In the following we will give a very strict quantitative version
of this fact.

For a € [0,1) with base 2 representation a = a;/2 + az/2? + --- and
m € N define

fa(m) :=#{j <m : a; # aj1}

and
1 m—1
galm) = 5 3 [12%all,
u=0
where || - || is the distance to the nearest integer function. Then we have

Theorem 8. Let AYC(a) be the discrepancy function of the first N points
of the van der Corput sequence. Let o € [0,1) with an infinite base 2 repre-
sentation. Then for € > 0 we have

: 1 m vdC
Tr}gnoo 2—m# {N<2™:(1-¢€)ga(m) < AW (a) < (1 +€)ga(m)} = 1.
The functions f, and g, are intimately connected (see Lemma 5) so that
from this theorem we obtain the following corollary.

Corollary 1 Let A€ (a) be the discrepancy function of the first N points
of the van der Corput sequence. Let o € [0,1) with an infinite base 2 repre-
sentation. Then for e > 0 we have

. 1 vdC
Tr}ngoo 2—m# {N<2™:(1-¢)fa(m) < AF(@)} = 1.
Note that Corollary 1 is a strong quantitative version of (x).

The quantity f, plays also an important role for the discrepancy of
arbitrary digital (0,1)-sequences over Zs. This is shown in the following
intermediate result.

Theorem 9. Let An(a) be the discrepancy function of the first N points
of a digital (0,1)—sequence over Zy. For a € [0,1) and N € N we have

|ANn(@)| < fa([logy, N|) + 4.

Remark 2. From Corollary 1 and Theorem 9 we obtain a result from Faure
[4, Corollaire 2].
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Following the proofs of (x) in [16] or [18] it is an easy example to extend
this proof to the case of a certain type of digital (0, 1)-sequences over Zs.

Definition 2. A digital (0,1)-sequence over Z, will be called “of finite row
type” if every row of the generating matrix contains only finitely many ones.

We then have

Theorem 10. For the discrepancy function A% (a) of a finite row type
(0,1)-sequence over Z» we have: A (a) is bounded in N if and only if
a has a finite base 2 representation.

This result follows for example by an obvious adaption of the proof of the
Theorem in [7].

The problem seems to become more involved for general digital (0,1)-
sequences over Zs. For example the upper-1-sequence is not of finite row
type. We will investigate the boundedness of the discrepancy function A}, (a)
of this sequence and give a corresponding quantitative result, thereby sug-
gesting that the result of Theorem 10 should hold also for general digital
(0,1)-sequences over Zs.

Theorem 11. The discrepancy function A} (8) of the upper-1-sequence is
bounded if and only if B has a finite base 2 representation. If the base 2
representation of B is infinite, then for every m there exists an N < 2™

such that .
ANB) > g/ Falm) — 1

The following sections are devoted to the proofs of the results.

3. The Ls—discrepancy of digital sequences

This section is devoted to give some general results concerning the Lo—
discrepancy and to give the proof of Theorem 1. First we recall the following
general result.

Lemma 1 (Formula of Koksma). For any sequence w = (zn)n>o0 in [0,1)
we have

(NLzn(w))? = (Z (% —:cn)> - #(NFN(LU))Z,

n=0
where
1 oo 1 N-1 2 /2
— 2TIMTy
m=1 n=0

is the diaphony of the sequence.
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Proof. The formula follows by considering the Fourier coefficients of the
discrepancy function and an application of Parsevals identity. See [8].0
In the next lemma we give the order of diaphony of a NUT sequence.

Lemma 2. For the diaphony of a digital (0,1)—sequence w over Zo gener-
ated by a NUT matriz we have

NFn(w) = O(y/log N).
Proof. From [5, Theorem 4] it follows that for the diaphony Fy of a digital

(0,1)-sequence over Z generated by a NUT matrix we have

oo 2

(NEn()? =7y

=1

N
2

(We remark that Faure proved this result in a much more general setting.)
Choose m € N such that 2™ ! < N < 2™. Then we have

sy ==y |2 e > (XY

27
j=1 j=m+1
m—1 2
. N 2
S7T2 2J2—m + % —O(m),
Jj=0

by [9, Theorem 2]. Since 2™~! < N < 2™, the result follows.O

Recall that Walsh-functions in base 2 can be defined as follows: for a
non-negative integer k with base 2 representation k = k,,2™ +---+k12+ ko
and a real 2 with (canonical) base 2 representation x = % + 33 + --- the
k-th Walsh function in base 2 is defined as

Walk (.’E) = (_1)$1k0+w2k1+-"+$m+1km .

Now we consider Zf;ol(l /2 — z,,). From the Walsh series expansion of
the function z — 1/2 — z we obtain

N-1 1 oo 1 N-1
(10 5 e S
n=0 r=0 n=0

If (xn)n>0 is a digital sequence in base 2, then for any m € N we have

om_1 .

Zwal (.CL')— 0 ifr<m,

— ST 9m if ¢ > .

Now choose m such that 2™ < N < 2™+!, Then we obtain
N-1

N-1 1 1 oo 1
> (5 N m") =3+ grm 2 walr(aa).
n=0 r=0

n=2m
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If r > m + 1, we have wals- () = 1 such that

oo

1 N -2™m
Z 7'+2 Z Wa]QT m" - 2m

r=m+1 n=2m

and therefore we obtain

N-1 m

Y (3-o) -5+ 15 4 g X e

n=0 n=2m

Note that walsr(z,) = (=1)®»("*1) where z,(r) denotes the r-th digit in
the binary digit expansion of z,.

Assume now that the digital sequence (z,),>0 is generated by a NUT
matrix C = (c¢;,5)i j=1,2,...- Especially we have ¢;; = --- = ¢;;-1 = 0 and
¢i;; = 1 for all 4 > 1. Hence the r-th coordinate of z,, is given by

(1) = CraMo P Cron1 B Cr3na @ ...,

where n = ng + n12 + 1222 + - - -. Now we have

(a) if r =m:

N-1 N-1

1 1 . 1 N

W Z WaIQm (.'L'n) = W Z (_1) mALmAl — Z (1 - 2_m> .
n=2m n=2m
(b) if r < m:

N-1 N—-1

Z Walgr (-Z'n) — Z (_l)cr+1,r+1n1‘+"'+Cr+1,mnm—1+c7‘+1,m+1.

n=2m n=2m

Define now U := N —2™ = Ny + N12 + -+ + N,,,_12™~ 1. Then we obtain

n=0
1 m—1 1 N-1
- _1\C¢r+1,m+1 _1\Cr+1,r+1Nr+ - Crt1, mNm—1
9 + 27‘+2( 1) Z (=1)
r=0 n=2m
1 m—1 1 U-1
=3+ X g Y (),
r=0 n=0

Now we need the following lemma.

Lemma 3. Let the non-negative integer U have binary expansion U = Uy +
Uy 2+---+Uy, 12™ L. For any non-negative integern < U—1 letn = no+
N1 24+ nm,_1 2™ be the binary representation of n. For0 <p<m-—1
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let U(p) == Uy +---+ Up2P. Let by, b1,...,bm—1 be arbitrary elements of
Zo, not all zero. Then

Q

-1
(_1)b0"0+'“+bm—1ﬂm—1
0

3

(DUt tinUns (0 o (~1)Ve (U w) - 2°),

where w s minimal such that b, = 1.

Proof. The result easily follows from splitting up the sum.

U-1

_1\bono+++bm—1nm—1
> (1)

n=0

2T (U1t 4Upm—12m ¥ 7%)—1

(_1)nw (_1)bw+1nw+1+---+bm—1nm—1
n=0
U(w)—1

+ Z (_1)7Lw(_1)bw+1Uw+1+"'+bm—1Um—1
n=0
U(w)—1
:O+(_l)bw+1Uw+1+"'+bm—1Um—1 Z (_l)ﬂw

n=0

— (_1)bw+1U'u)+1+"'+bm—lUm—1 x U(UJ) if U(U)) < 21117
2wl — U(w) if U(w) > 2%.
The result follows.O

Since ¢y41,r+1 = 1 with Lemma 3 we obtain

N—

> (i)

m—

[u

=

R I e L N C)
=0

x(2" + (-1)N(N(r) — 27),
where 2™ < N < 2™+l Note that

r _1\N- _or
2 DN =) | = g

and hence we have the following result.
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Proposition 1. For any digital (0,1)-sequence (Zn)n>0 over Zs which is
generated by a NUT matriz C = (¢;;)i,j=1,2,... we have

2Gn)

n=0

1 m—1
-~ (1 2—7‘—1N —1)er+tm+1(_q crp1,r42Npp1++Crp1,m Nm—1
5 ( + Tgo I I(=1) (-1) ;

where 2™ < N < 2m+1,

From Proposition 1 we obtain

Corollary 2 Let (z,)n>0 be a digital (0,1)-sequence over Zo which is gen-
erated by a NUT matriz and let (yn)n>0 be the van der Corput sequence.
Then for any N € N we have

£ ()

n=0

N-1 o

< - — .

<Y (5-w)
n=0

Now we can give the proof of Theorem 1.

Proof of Theorem 1. Inequality (3) follows from Lemma 1, Lemma 2, Corol-
lary 2, [9, Theorem 2] and the fact that the diaphony has the same value
for any digital (0,1)-sequence over Z, generated by a NUT matrix (this
follows from Faure’s formula [5, Theorem 4]). Equality (4) follows from (3)
together with [13, Corollary 1].0

4. The van der Corput sequence

From [3,13] we know that for the discrepancy function of the van der Corput
sequence wyqc we have

AN©(a) 20
for any o € [0,1]. Further in [14] Proinov and Atanassov showed that
Ly n(wvac) = D} (wyac). Now we get

2 ! 2 1 /1
Diy(ovac) = 2Lnn(onac) = 37 [ A5%(@)da = 5 3 (5 —:cn) .
n=0

Therefore together with Proposition 1 we obtain the following formula
for the star discrepancy of the van der Corput sequence; see also [1].

Proposition 2. For the star discrepancy D}, of the first N points of the
van der Corput sequence wyqc we have

m o0
NDj(wac) =1+ 3 [[27"N|| = 3|27 N[,

r=1 r=1

where 2m < N < 2m+1,
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Now we give the proof of Theorem 2.

Proof of Theorem 2. We will not prove the limit relation of Theorem 2 but

1 1 1
— N < M:ND3 < -log, M ——/loga M } =& 1).
Jo# { I <M N < iow, My o8, 1T} = 80 + D). (0

It is easy to see that both limit relations are equivalent. This follows directly
by restricting on N with M/(logM) < N < M. Of course, N with N <
M/(log M) do not matter in the limit. For the remaining ones we have
|log M —log N| < loglog M and this difference does not matter in the
limit, either.

The idea of the proof of (6) is to use Proposition 2 and approximate
D3 as sum of weakly dependent random variables, in particular they are
stronly mixing with a(k) = O(27F).

First, let us consider the (easier) case when M = 2™, that is, the digits
N; of the binary expansions N = Ny + 2Ny + --- + 2™~ N,,,_; can be
considered as independent random variables that are uniformly distributed
on {0,1} (by assuming that all numbers N < 2™ have equal probability

2-™). Then
N -“T—l -“r—2 NO
m={§}= Tttt o

is very close to a random variable that is uniformly distributed on [0,1).
In fact, we can add missing digits N_1, N_o, ... that are independent and
uniformly distributed on {0,1} and get

X N_;
1 —J
m_w+§&wf
j=1

Then U] is exactly uniformly distributed on [0, 1) and |U, — U}| < 27".
Furthermore, U, and U,y get more and more independent as k gets

large. More precisely, U, — 27 *U, and U, are independent. This means,

that a slight modification of order 2~* makes U, and U, independent.
Note that

m
NDy = > _|IU]|+0(1)
r=1
for all N < 2™. Thus, ND3% can be represented (up to a small error term)
by a sum of weakly dependent random variables.

We further note that the above smoothing by introducing missing dig-
its can be also obtained by considering the following slight variation of the
above probability model. Let N be a random variable that is uniformly dis-
tributed on [0,2™) then U, = {N/2"} is uniformly distributed on [0, 1) and
the common distribution of (Ur)lgrgm is the same as that of (U])i<r<m.
Furthermore, if we set w = N /2™ and v, = m—r+1 then w is uniformly
distributed on [0,1) and

Ve = {w27}.
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Since |V — Upy—rq1| < 277+ we also have

NDy = [lw27|| + O(1).

r=1

Now, by using well know limit theorems for lacunary sequence (compare
with [6] and [12], alternatively we can use [19]) it follows that

m
Sm =Y w2
r=1

satisfies a central limit theorem. Since E S, = m/4 and Var S,, = m/48

we thus have
Sm=m/4 0,1

v/m/48
and also, all moments converge. Since ND% = Sp, + O(1) we get the same
limit relation for ND% if N is uniformly distributed on {0,1,...,2™ — 1}.
This proves the theorem for M = 2™.
The general case, where M is not a power of 2 can be reconstructed
from the case of M = 2™ by considering moments. For example, if M =
2M1 4 2M2 4 ... 4 2™s (with my > mae > -+ > mg > 0) then

Y NDy= > Dx+ > (N+2™)Dijom
N<M N<2™m1 N<2™m2
et Z (N +27 4 - 4277 ) DN oma o pame
N<2ms

By using the representation ND% = Y77 [[N27"|| it directly follows that
(N +2™ 4 4 2™)DN omy .. yomi = NDy + O(j).

Hence we can approximate ) x5, N Dy by sums of the form }  _om NDjy.
After some algebra this shows that all centralized moments of ND3, with
N < M converge to the moments of the Gaussian distribution. This com-
pletes the proof of the general case. O

The central limit theorem for all L,—discrepancies of the van der Corput
sequence (Theorem 3) is a consequence from Theorem 2.

Proof of Theorem 3. As in the proof of Theorem 2 we just work out the case
M = 2™. Further, it is sufficient to consider integral p since the mapping
p+ Ly n is monotone.

For integral p set

4= > 11

T1,...,7p=114=1

N
2ri

2_k(7'11---77‘17)’
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where k(r1,...,7p) denotes the number of different r;’s. Then
(P
dp < (NLp,N)p < Z (k‘)dk
k=0
(see [13]) and consequently
p
LIV
p_ | = - p—1
(NLpaN) - (2 1;1 or ) + O(m )'
Thus, as long as we can assure that
m
> o || > m (7)
r=1
then it follows that
1 & ||V |
NLyn =3 ; o || T 0() = 5NDy +0(1).

Consequently, Theorem 3 follows from Theorem 2 provided (7) holds.
Of course, (7) is not satisfied for all N < 2™. However, by Chebyshev’s
inequality we have for all n > 0

m—1

>

=0

1 m

m
Z’l] <L —.

Hence, if we use n = m/8 it follows that (7) holds with at most O(2™/m)
exceptions. But these exceptions do not count in the limit. This completes
the proof of Theorem 3. O

2]

5. Sequences generated by special matrices

As announced in the introduction of this paper here we consider digital
(0,1)-sequences over Z, with generator matrices C' of the form given in
(2). If a; = (1,0,0,...), then we say “row i is of type zero” and if a; =
(1,1,1,...), then we say “row i is of type one”. For m € N we denote by
h(m) the number of zero type rows among the first m rows of the matrix
C. (Hence h(m) < m for any m € N.)

We start with a lemma that will be useful in the sequel.

Lemma 4. Let (zp)n>0 be a digital (0,1)-sequence over Zs generated by a
matriz C of the form (2). Then there exist two positive constants dy,ds such
that

a1 N1 2 gm
m 2 m
di12™m < Z (Z (5 — mn>) — 2—6h(m) < dy2™m.

N=2m n=0
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Proof. With Proposition 1 we
m+1_ _ 2
(X (-
2 n
N=2m n=0

=T+ > 5

m—

Z;

2r+1
N=2m
gm+1 71 m—1
DD ==
N=2m rs 0

X

2s+1

get

N

Cr+1,m+1 (_1)Cr+1,r+2Nr+1+"'+C7~+1,mNm—l

(_l)cr+1,m+1 (_1)Cr+1,r+2Nr+1+'"+C1‘+1,mNm—1

% (_l)cs+1,m+1 (_l)Cs+1,s+2Ns+1+“'+Cs+1,mNm—1 .

First we consider

omFl_1 _ m—
3= 1 C'r-+1 m+1( 1)C'r‘+1,7‘+2N'r'+1+"'+Cr+1,mNm—1
° 7'+1
= 2 Z_ 2
m—1 1
= 1 (_1)Cr+1,m+1 E N
2 2r+1
r=0 No,...;Npm—1=0
x(_1)cr+1,7‘+2N7‘+1+"'+cr+1,mNm—l
—1 1
1 e N
=5 X X |z
r=0 —
row r+1 is of type zero NO’“.’Nm_l_O
m—1 1
_1 N (_I)N'r‘+1+"'+Nm—1.
2 2 2 271
r=0 _
row 741 is of type one Noye s Nm—1=0
Since )
N — 2m72
Z or+1 ||
Noye.;Ny—1=0
and
! N if r <m—2
E (_I)N'r‘+1+"'+Nm—1 — 0 ) nrr=m-=s,
2r+l 22 ifr=m-—1,
No,...;Nem—1=0
we obtain

51 = 2™73(h(m)

- ym);

where y,, = 1 if row m is of type 1 and y,, = 0 otherwise. Hence

T(EG-) -

4 23

(h(m)

_yM)+_

m—1

3 5(,s), (8)

r,s=0

1
4
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where
X(r,s)
amtl_g
— Z Nl Nl (_1)CT+1,m+1(_1)C'r+1,'r'+2Nr+1+"'+cr+1,mNm—l
27‘—}- 23+
N=2m

X (_1)6s+1,m+1 (_l)cs+1,s+2Ns+1+-'-+Cs+1,mNm—1 .

Assume first that » = s. Then we have

NN |12 ! N, N, No || 2m
2rr)= Y pr (M > o T Tt o o
N=2m No,...,N,.=0
1 2

2m N,_4 Ny

= o1 Z (( 92 +"'+2r+1
Nosoos Np_1=0
1 Ny No \?
+ 5_ 5 _...__2T+1
m 2" 1 N 2 1 N 2 om

= + - = (22T+1 + ]‘)

or+1 or+1 2 or+1 3.92r+3

N=0
Assume now that r < s. Then we have
Z(,,., 5) — (_l)cr+1,m+1+cs+1,m+l
1
x Z 2£1 X 2‘2’7_1 (_1)cr+1,7‘+2NT+1+"'+C7‘+1,5+1NS
Ng,...,Ny=0
1
X Z (_1)N5+1(Cr+1,s+2+cs+1,s+2)+"'+Nm—1(Cr+l,m+cs+1,m)‘

Nst1,ee05Nm—1=0

If s < m —1 then we have

2Tn
Z(r,s) = (—1)crttm+1tcotimt STt

1
N
x>
yery No=0

25+1
Ny

N

(_1)Cr+1,r+2Nr+1+"'+CT+1,S+1Ns
or+1 ’
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if ¢y41,j @ cs41,5 = 0 for all s +2 < 5 < m. But in this case we also have
Cr41,m+1 D Cs4+1,m+1 = 0 and hence we have

1
2m N N
E(T’,S)Z 2s5+1 Z or+1 ) 25+1 (_1)CT+1’T+2NT+1+ Fertt e e
Noyoo'yNo=0
1
2m N
T 9541 Z 9r+1
Noyeo'yNo=0
: N
X Z (_1)Cr+1,7‘+2N7‘+1+"'+c1'+1,s+1Ns‘
2.s+1
Npg1yerNa=0

Otherwise, i.e., if ¢;41,; ® ¢s41,; = 1 for all s +2 < j < m, we have
X(r,s) =0.
Let ¢pq1,; ® €s41,; = 0 for all s +2 < 5 < m. We consider two cases:

1. If row r + 1 is of type one, then we have

1

>

Nrit,...,Na=0
1

- ¥

Nryi,...,Ns=0

N

(_1)C'r'+1,7‘+2Nr+1+"'+cr+1,s+1Ns
23+1

N

T [

We compute the last sum:

1
Nry1,...,Ns=0
1
stl NO 1
= Z (_1)N'r'+1+-..+Ns—1 (_ 44 = 5
Nrg1,...,Ns—1=0 2 2 2
1

oy e (S )

2 2s
N,,,+1,...,NS_1:0

N

9s+1 (—1)Nraat e

1
— _l Z (_1)Nr+1+"'+Ns—2‘
2

N,,,+1,...,NS_2:O

Therefore
1
N (_1)N7‘+1+"'+N5
2s+1
Nyg1,...,Ns=0
0 ifr <s-—23,
= —% ifr=s5-—2,

No _ 1 e, _
Sttt —g5 ifr=s-1,
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and hence
0 ifr<s-23,
X(r,s) =< —2m75 ifr =s5-2,
0 ifr=s5-—1.

2. If row r + 1 is of type zero, then we have

1

N N
_ om—1—
X(r,s)y=2m""7° Z ot | ||ger || -
Noyeo'y Na=0
We compute the last sum:
. N N
Z gr+1 || " || 2s+1
Noyoo'yNa=0
< N, No N, N,
_NZIV . 7_+_..._|_2TT . 7_’...._1_23T
0yeeesdVs=!
1
N, Np
= > o Tt o
NoyeoyNae1=0
Ns_1 No 1 Ny No
X ( 92 +'”+23+1 +§_ 22 " s+l
1
1 N, Ny _1—
= — Z — 4+ 28 r
r+1
2 Noyeoy Np=0 2 2

1
— 9s—2—r Z 1 — 9s—3—r9r _ 953
No,...;Ne_1=0 2

Therefore we have X(r,s) = 2m 4.
Assume now that s = m — 1. Then we have

Z'(r,m _ 1) — (_l)cr+1,m+1+cm,m+1

1
N
x>
yerrsNm —1=

2r+1
No

) H N (_1)07‘+1,7‘+2Nr+1+'"+C7‘+1,mNm—l‘
2m
0

If row r + 1 is of type zero, then we have

X(r,m—1)
1

N, No Nyt No

:(_1)0,+1 Z 7+...+W H 5 +...+2_m
NoyeorNim—1=0
1
1 N, No _

= S(=emmet Y7 o || = (D)emm2m L,

Noyor;Nm—2=0
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If row r+1 is of type one, then we obtain after some elementary calculations
that

0 if r <m —4,
Y(r,m—=1) =< (=1)emm+12m=5 if p =m — 3,
0 ifr=m—2.

Altogether for r < s we have

(2m—4 ifCry1,j®Csp1,;, =0 Vji>s+2, s<m—1,
and row 7 + 1 is of type zero,
—2m=5 iferq1,j®cest1,; =0 Vj>2s5+2, s<m—1,

and row r + 1 is of type one,

andr =s—2,
(=1)emm+12m—4 §f g = — 1,

and row 7 + 1 is of type zero,
(=1)emm+12m=5 if s =m—1,r=m—3

and row 7 + 1 is of type one,
0 otherwise.

X(r,s) = <

\

Therefore we obtain

m—1 m—1 m—1
S S =2 Zrs)+ Y )
r,8=0 r,s=0 r=0
r<s
m—1 9m m—2 9m
=2 > T D DR
r,s=0 r=0
r<s cpt1,jBem ;=0 Vi>2
Cr41,j@eeyq,j=0 Vi>s+2 row r+1 is of type 0
row 7+1 is of type 0
m—1 9m m—2 9m
— N —1)ém.m+1__
2 > D DR
s=2 =0
cs—1,j®es41,;=0 Vj>2 row 7+1 is of type 0

row s—1 is of type 1
m m—1 om

2
F2(=1) o g + > W(Q%H +1),
r=0

where g, = 1 if row m — 2 is of type one and ¢,;, = 0 otherwise. From this
we obtain

i X(r,s) = 22—: Z 14+ 0(2™m)

r,5=0 7,5=0

r<s
row »+1 is of type 0
row s+1 is of type 0

2m
Inserting this in Eq. (8) we get

om+l_ 1 /N-1 2 m
Z (Z (% - xn>) = 22—6h(m)2 +0(2™m)

N=2m n=0
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and we have proved the right inequality. On the other hand we obtain

m

mi S(r,s) > 22—4h(m)2 — 9m=3}(m, — 1) — 274 (m — 2 — (h(m) — 1))

3 4 m 2m—1 1
m— m—
—2" P h(m = 1) = 2" Tom et e = oy
om 1 3 om 1
> 2 h(m)? + 2™m— — 2Ph(m) e + e —
2 Srh(m)”+2"m g (mTs+ 18 ~gamm
Inserting this in Eq. (8) we get
gm+l_g <N1 (1 )2
> (X (5-)
N=2m n=0 2
gm  gm gm
> 42 pim) - =
7 T hm -
1 /2m 1 3 om 1
2 (S h(m)? + 2™m— — 2"h(m)— + e —
*1 (24 (m)” +2"m7g (m)7 + 18 9-2m+1)
2m 9 m
> 2 Z
> o5 m)” + 755m,

and we are done. O

Remark 3. Note that Lemma 4 also implies that there are two positive con-
stants d, d}, with

N-1 g 2 gm
di2™m < Z <Z (5 —mn>> - 2—6h(m)2 < dy2™m.

N<2™ \n=0

We just have to sum up and to note that 0 < h(m + 1) — h(m) < 1.

By Proposition 1 we have
N-1 1 1 m—1
—— —r—1
n=0 r=0

where s, = 1 if row r + 1 is of type zero and s, = (—1)+Vr+1t+Nm if
row 7 + 1 is of type one. This means that we are in a situation that is quite
similar to that of the proof of Theorem 2. We have

N-1 1 m
2 T;) (5 - xn> = ; Sm—r|lw27|| + O(1).

The only but important difference is the appearance of the signs s,. If row
r + 1 is of type zero the sign s, is deterministically equal to 1. On the
other hand if row r + 1 is of type one then s, is a random sign that obtains
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+1 with equal probability ;. Furthermore, s, is independent of |27~ 'N]||.
Finally, as in the proof of Theorem 2 it follows that s.||27""'N|| con-
stitute weakly dependent random variables. More precisely, s,||27 " 'N||
and s,,||27" "% 'N|| can be made independent by making a slight mod-
ification of s,||2 " * 1 N|| of order 2-*. This implies that the sequence
$#||27""IN||, r < m, is strongly mixing with a(k) = O(27F). Set

m—1

Ti= Y s [27"7'N||
r=0

Then we have ET,,, = 1h(m)+0O(1)! and by Lemma 4 it follows that there
are two positive constants dy, d» with dym < Var T,,, < dym. Hence, by [19]
the sum T, satisfies a central limit theorem.

The exact behaviour of Var T;,, depends on the local structure of h(m)
and it seems that there is no reasonable expression for Var T, in particular
if h(m) and m are of the same order of magnitude (compare with the proof
of Lemma, 4). Only if h(m) = o(m) and if h(m) = m + o(m) we get proper
asymptotic expansions without any further work.

If h(m) = m + o(m) then we can neglect (more or less) the rows of type
one and we get Var T;,, = m/48 + o(m) similarly to the case of the van der
Corput sequence.

If h(m) = o(m) then almost all signs are present. For a moment, let
us assume that all rows are of type one, that is h(m) = 0. By definition
it follows that the joint distributions (s.||27 " 1N||, sp4x]|27" ¥~ N]||) are
(asymptotically) the same for all . Hence we obtain that the covariance
Cov(s,||27" " N||, sr41]|27""*~1N||) just depends (asymptotically) on the
difference k and consequently VarT,, = dm + O(1) for some constant d.
Since d > dp it follows that d > 0. From that we also get that Var T, =
dm + o(m) if h(m) = o(m).

The proof of Theorem / is now a direct consequence of Chebyshev’ inequality
combined with Lemma 1 and Lemma 2. We have

1
SN <27 ¢ [T — h(m) /4] > 7} < n—":f

Setting 7 = eh(m), using the assumption that m/h(m)? — oo, and observ-
ing (from Lemma 2) that NFy = O(y/m) the result follows. O

Proof of Theorem 5. By Lemma, 1 we have

1l —F

Since h(m) ~ m the result follows from the general central limit theo-
rem of T,,. Note that we also have a central limit theorem for NL, n if

! By definition E(s.[27""!N|) = 0 if row r + 1 is of type one and
E(s,[27"7'N|)) = 2 + 0(27") if row 7 + 1 is of type zero.
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h(m)/+/m — oo, however, we do not know the exact behaviour of the vari-
ance (just lower and upper bounds of order m) so that we cannot formulate
an explicit limit theorem. O

Proof of Theorem 6. Again by Lemma 1 we have NL, v < yy/m if and only
if

NH

1 — .
+7 Z “IN|? < yPm.
7=0

By Chebyshev’s inequality it follows that for all but O(2™m~'/3) numbers
N < 2™ we have

NG

m—1
> 27N = 2+ 0m*).
= 48

This means that this sum behaves almost deterministically. The random
part is almost concentrated in T),. We get (for most N)

(Tl < 252 — 26 Vi (14 0(1).
Finally (since h(m)/+/m — 0) we have
QLm#{N < T| < 2Vdm} = B(z) + B(—2) + o(1) = 28(2) — 1 + o(L).

This proves the result. O

6. The upper-1-sequence

In this section we give the proof of Theorem 7.

Proposition 3. Let (z,)n>0 be the upper-1-sequence. Then for any N € N

— 2mt2 g
of the form N =2™ + =—

(i)

n=0

with m = 2 (mod 4) we have

lAN| 41 13

20 75 150-2m|°

This result together with Lemma 1 proves Theorem 7.

Proof of Proposition 3. After some straightforward calculations from formula
(5) we obtain

No+--A+ N m—1
_ 1+ (—1) 40+ + 1 B (_1)N0+...+Nm_1 Z ]2\1(_:'2) (_1)N0+...+NT_1

r=0
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Let now N =2™ + 2"”;2_1, m = 2 (mod 4). With k := (m — 2)/4 we have

N:20+21+24+25+"'+24k+24k+1+2m.

Hence No + - -+ Njp—1 =0 (mod 2) such that

Now for 0 <r <m — 1 we have:

1. If r = 4k, then Ng + - -+ + Ngg—1 = 0 (mod 2) and

N( Z 241 + Z 24z+1 24k 6 %

=0

2. fr=4k+1, then Ny +---+ Ny =1 (mod 2) and

16 1
24z 241,+1 24k Z.

Z + Z 3

3. If r =4k +2, then Ng + -+ + Nyp41 =0 (mod 2) and

16 1
N(r)=2%— — —.
4. If r =4k + 3, then Ng + - -+ + Nyp42 =0 (mod 2) and

»16

1
N(r)=2* S —
(r) =5

Now the result follows by splitting up the sum in (9).0

7. Intervals with unbounded remainder
We start this section with the proof of the subsequent lemma which shows
that the functions g,(m) and f,(m) defined in Section 2 are of the same

order of magnitude.

Lemma 5. For any a € [0,1) we have

(Ualm) + Z 12| < fa(m) +
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Proof. Let @ = a1/2+a2/2%2+---. Let 1 <I; < Iy < ... <l <m such that

0 =...=0 041 = .=y F Qyt1 = o nnnn. F 41 = ... = Q.

Of course it is k = fq(m). Further define ly := 0 and 41 := m. Then we
have

k liy1—1

ZIIT‘aII—Z > lI2¥ell. (10)

=0 u=l;

To estimate the innermost sum in the above equation we have to consider
two cases. For short we write p =1; and ¢ = [;;; (note that ¢ > 1).

1. Ifapy1 = ... =aq = 0 and ag41 = 1, then
u ap+1 Gq , dg+1
ZHQ o = tot ot ot
Opt2 | Qg Gq+1
+ Bt ot
a; a
+ oty

since ¢ > 1. In the same way we obtain

1
anmn +---+§§1_
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2. Ifap41 = ... =ag =1 and ag41 = 0, then

g—1
ull =1 (Sl . % g1 )
UZ:;HQ ol =1 ( 5 Tt g T o T

(%2 ., G | Qg1 )
+1 (2 R

since ¢ > 1. In the same way we obtain
q—1
“ 1 1 1
ZHQ all < 2_q+2q——1+”-+§ <L
=P

Inserting these estimates in (10) we obtain

m—1 k

1_k+1
Z 12“all > ZZ 2 I
u=0 =0

and

m—1 k
St <> 1<k+1.
u=0 i=0

This is the desired result.O
Now we can give the proof of Theorem 8.

Proof of Theorem 8. Define

Ga(m) = £ 3 [l2a(m),
u=0

where a(m) denotes the smallest m-bit number larger or equal to a. If a is
greater than 1 — 27™, then a(m) := 1.
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From [13] we know that for N < 2™ we have
AN (a) = 835 (a(m), N/2™) + N(a(m) - a),

where 641, denotes the discrepancy function of the 2-dimensional Hammers-
ley point set in base 2 with 2™ points. From the definition of the Hammersley
point set it follows that 64, (o, 8) = 64, (B, ) for all 0 < @, 8 < 1. Hence
we have

AYC(a) = 6, (N/2™, a(m)) + N(a(m) — a). (11)

From the proof of [13, Lemma 4] we find that

2m—1
Qim Y & (N/2™, a(m)) [2%a(m)|| and (12)
N=0

1
2
2% Z_ S3m (N/2™, a(m))? = (% Z_ ||2”a(m)||>
N=0

u=0

1
+7 2 I2am)|”. (13)
u=0
Now we consider
;2 2
£ im L S @0V alm) - Galm)
N=1

With Eq. (12) and (13) we obtain

1 m—1
— 2
z= Z [2¢a(m)|.

Now we have

—1

3

|

2P = 5z 3 (3R (/2™ a(m)) ~ Ga(m))”

Y

(€Ga(m))* # {N < 2™ : |655. (N/2™, a(m)) = Ga(m)| > €Fa(m)}

3| =g~ 1

(€Ga(m))” (2™ — # {N < 2™ : |65 (N/2™, a(m)) = Ga(m)| < €Ga(m)}) .
From this we obtain
2%# [N <2m . |62, (N/2™, (1)) — G ()| < £Ga(m)}

—1 j1ou
T 2uo 12" a(m)|?

>1- =
£2G4(m)?
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Of course it is ||z||? < ||z|| and hence we have

Lym Ut 1
0 E=T T S hamy

From Lemma 5 we obtain

Gal0) > S (fa(y () +1) > gfalm)

since fo(m) and fu(m)(m) differ at most by 1. If o has an infinite base 2
representation, then we have f,(m) — 0o as m — oo and therefore we
obtain

lim —#{N < 2™ |63 (N/2™, a(m)) — Ga(m)| < €Ga(m)} = 1.

m—»00
With Eq. (11) we obtain

i AN <271 AKC(@) = N(a(m) = a) = Ga(m)| < <Ga(m)}

m— o0 2m

=1

For N < 2™ we always have 0 < N(a(m) — a) < 1. Since « has an infinite
base 2 representation we have already seen that lim,,_, o go(m) = co. Hence
for € > 0 we have

lim —#{N <2™: —ego(m) < N(a(m) —a) < ega(m)} =1

m—>oo

and therefore

lim —# {N <2™:(1-¢€)galm) < AWC(a) < (1 +€)Falm)} = 1.
m—)oo

Since a and a(m) differ at most by 1/2™ we find that go(m) and go(m)
differ at most by 1 and hence the result follows.O
Proof of Corollary 1. The result follows from Theorem 8 together with
Lemma 5.0
Proof of Theorem 9. Let xg, 1, ... be the digital (0,1)-sequence in over Zo
and let 2™ 1 < N < 2™. As in the proof of [13, Lemma 2] we find that

An(a) = 6m (N/2™, a(m)) + N(a(m) - a), (14)
where a(m) is as in the proof of Theorem 8. Further dom denotes the dis-

crepancy function of the digital net (k/2™, z), 0 < k < 2™ — 1. From [9,
Theorem 1] we know that

Jam (N /2™, a(m Z [[2“a(m)|lea,
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where €, € {—1,0,1} depending on u, N, a(m). Inserting in Eq. (14) and
applying the triangle inequality we obtain

|An(a)| < ZH?“ m)|| + 1 < fagmy(m) +2.

Since fo(m) and fq(m)(m) differ at most by 1 we obtain
|An (@) < fa(m) +3
Since m — 1 < log, N < m and since fo(m) < fo(m — 1) + 1 we obtain
|An(@)| < fa(llogy, N|) + 4.
This is the desired result.O
Finally we give the proof of Theorem 11.

Proof of Theorem 11. We again start with (for N < 2™)
AKX (B) = 63 (N/2™, B(m)) + N (B(m) — B).

Here 61.. (z,y) denotes the discrepancy function of the two-dimensional digi-
tal net (k/2™,yx),0 < k < 2™—1 (yo, y1, - - - denotes the upper-1-sequence).
Then we use the formula for 3. (z,y) given in [9, page 406] (61 is denoted
by A there):

63 (0, B(m 2 1248 (m)llo(u

a:a1/2+---+am/2m, ( ):b1/2++bm/2 ai =a1®D...Damy1—i,
p(u) = (_1) e (au+1 @ au+2 @ ar(u) & ar(u)+1)
and
0 ifu=0,
r(u) :=< 0 itb; =a;forj=1,...,u,
max{j <wu:b; #a;} otherwise,

and where we have to set @, (y) @ dp(y)41 := 0 if r(u) = 0.
We consider in the following

2m_1
Sm(B(m)) = " (33 (N/2", B(m)))’
N=0
= i i 12“B(m)]| - [|2°B(m)| i p(u)p(v),
u=0 v=0 N—o

i.e., we have to consider

We distinguish two cases:
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1. If u = v, then we have

2m_1 2m_1
2 ~ ~ ~ ~
D7 pW)? =Y Gugr @ Gusa ® Gp(u) D Gr(u1-
N=0 N=0
Now the summation over N = 0,...,2™ — 1 means summation over
all a1,...,an, € {0,1} and this means summation over all ay,...,a, €

{0,1}. Hence (we use shorthand a; for a; and note that replacing in the
definition of 7(u) the maximum by the minimum does not change the
result but simplifies the notation) we have

1
Y = Z Ayt1 D Qyt2 D Cp(y) D Ap(y)+1

ai,...,am=0

u—1
E E Ayt+1 D Oyy2 D aj; O ajqr

j=1 ap=by VI<k<i—1
aj#bj

J
ajp1so am€{0,1}
+ E Qy @ ay42 + E Oy+t1 D Ayy2
ap=bp, Vi<k<u—1 ap=by, V1<k<u

Ay lsos am €{0,1}

u—1
— Z 4- 2m7j73 + 2m7u71 +2. 2m7u72 — 2m71‘

j=1
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2. If u < v. Here we have to consider two sub-cases, namely 4 < v — 1 and
u =v — 1. Then

u—1
Zuw = > (—1)@HF 0 (a1 @ aurr @ (a7 © ajir)) X
j=1 ap=bj Vi<k<j-1
aj#b;
Gy, am €{0,1}
X(@y41 @ ayya @ (a; ® ajy1))
+ Z (_l)au+1+a‘u+1 (au ® au+2)
ap=bj Vi<k<u-—1

au

X (Gy+1 B Ayt2 D (ay B ayt1))

22 Dt g G au)

j=u+1l ap=by VI<k<j-1
a;#bj

X(a’v+1 5% Ay4-2 D (G/j D G/j+1))

+ > (1)@t ¥t (a1 © auga)(ay © Gyiz)
ap=bp Vi<k<v—1
ay #by
Ayp1seees am €{0,1}
n Z (_l)au+1+av+1 ((lu+1 ® au+2)(av+1 (&) av+2)

ap=bj, V1<k<wv
Ayl am €{0,1}

=X+ Yo+ X+ X+ Xy

The innermost “senseless” brackets around a; @ ajy1 serve to remind
that this term is zero if r(u) = 0.
For all these sums it is easily shown that they equal zero. As demon-
stration we show this for the “most complicated” case, namely for X.
To that end we have to consider

S () (g, @ e)(an © )
Qui1,av4+1,e,fE€{0,1}

— Z (_l)au+l+a‘u+1 =0

Qu+1,84+1€{0,1}

(here e (resp. f) plays the role of ayi2 ® (a; ® ajy1) (resp. avi2 ® (a; ®
a;+1)) which move independently between 0 and 1). Hence X; = 0, and
analogously %, , = 0 for |[u —v| > 1.

If v = u + 1 then in the above setting Yy and X5 have to be rewritten:

u—1
M=) > (=) H 1 (ay & ayr1 @ (a5 @ aj41)) X
j=1 ap=bp VIi<k<j—1
aj#b;

X(Ayt1 @ Gyg2 @ (Clj ©® aj+1)).
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Now

YooY (m)™ et (ay © aur @ (a5 @ aj41))

@j;2541 Qv;Qv41

X Y (avs1 @ aura ® (a; ® ajq1))

Ay 42

=2 Z (_1)a1,+a1,+1 [(av @ av+1) + (av ® ayt1 @ 1)]

Ay, Qv 41

=2 Y (-pmten =,

Qv,sQu41
hence again ¥y = 0. Similarly X5 and therefore again X, , = 0.

We conclude

1

e Sm(Bm)) = 3 2B
u=0

So for every m there exists an N < 2™ such that

1 m 1 = u 2
Oy (N/27, B(m)) 2 4| 5 1;) [[24B(m)|

and therefore for every m there exists an N < 2™ such that
1= 1
ANB) 2 4| 5 > ll2Epm)|)2 -1 > gV fs(m) —1.
u=0

It should be possible by investigating the Walsh series for A(a, 8) given
in [9, Theorem 1] in a similar way to handle also the general case. However
this is a quite technical task and is referred to later work.
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