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Abstract. For any given integer q ≥ 2, we consider sets N of non-negative
integers that are defined by linear relations between their q-adic digits (for
example, the set of non-negative integers such that the number of 1’s equals
twice the number of 0’s in the binary representation). The main goal is to
prove that the sequence (αn)n∈N is uniformly distributed modulo 1 for all
irrational numbers α. The proof if based on a saddle point analysis of certain
generating functions that allows us to bound the corresponding Weyl sums.

1. Introduction

Let q ≥ 2 be a given integer and let

n =

L
∑

j=0

εj(n)qj

be the q-ary digital expansion of n with digits εj(n) ∈ {0, 1, . . . , q − 1}, εL(n) 6= 0,
and L = L(n) = [logq n] denotes the length of the expansion of n. Further, for
ℓ ∈ {0, 1, . . . , q − 1} let

|n|ℓ := card{j ∈ N : 0 ≤ j ≤ L, εj(n) = ℓ}

denote the number of digits of n that equal ℓ.
For example, the q-ary sum-of-digits function is given by

sq(n) =

L
∑

j=0

εj(n) =

q−1
∑

ℓ=0

ℓ |n|ℓ.

Several works concern the study of statistical properties of sequences of integers
defined by digital properties: distribution in residue classes ([11, 14, 15, 19, 20, 21])
uniform distribution modulo 1 ([2, 5, 6, 7, 17, 12, 18]) and study of the associated
exponential sums ([3, 1, 4, 13]); see also [22] for a description of the links to spectral
analysis and properties of symbolic dynamical systems.

The purpose of this paper is to study, for any fixed irrational number α, the
ditribution modulo 1 of the sequence (nα)n∈N , where N is a set of integers defined
by linear properties of their digits.
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Definition 1. We say that the system L = (Lk)k=1,...,K of linear forms on Rq

defined for every (x0, . . . , xq−1) ∈ Rq by

Lk(x0, x1, . . . , xq−1) =

q−1
∑

ℓ=0

ak,ℓxℓ, k = 1, . . . , K

(with ak,ℓ ∈ Z for (k, ℓ) ∈ {1, . . . , K} × {0, . . . , q − 1}) is complete if

(i) the family of vectors formed by (a1,0, . . . , a1,q−1), . . . , (aK,0, . . . , aK,q−1) and
(1, . . . , 1) is linearly independent over Q.

(ii) span
Z
{Lk(n0, . . . , nq−1) : k = 1, . . . , K, (n0, . . . , nq−1) ∈ Zq} = ZK ,

(where span
Z
(A) denotes the set of all finite linear combinations of elements

of A with integer coefficients).

Let L be a complete system of linear forms over Rq and η = (η1, . . . , ηK) be a
K-tuple of non-negative real numbers.

Definition 2. We say that η is L-admissible if the system of equations

Lk(x0, x1, . . . , xq−1) = ηk, k = 1, . . . , K,

x0 + · · · + xq−1 = 1

has a positive solution x0 > 0, x1 > 0, . . . , xq−1 > 0.

Example 1. If K = 1, L = (L1) with L1(x0, . . . , xq−1) =
∑q−1

ℓ=0 ℓxℓ, then η =

( q−1
2 ) is L-admissible.

Example 2. If K ≥ 1, L = (L1, . . . , Lk) with Lk(x0, . . . , xq−1) = x0 − xk for
k = 1, . . . , K, then η = (0, . . . , 0) is L-admissible.

Example 3. If K = 1, L = (L1) with L1(x0, . . . , xq−1) = x0 − 2x1, then η =
(0, . . . , 0) is L-admissible.

For any complete system L of linear forms over Rq, for any L-admissible K-tuple
η ∈ (R+)K and for any K-tuple µ = (µ1, . . . , µK) ∈ ZK we define the set of integers

N = N (L, η, µ)

=
{

n ∈ N : Lk(|n|0, |n|1, . . . , |n|q−1) = [ηk logq n] + µk, k = 1, . . . , K
}

.(1)

In what follows we will always assume that L is complete and that η is L-admissible.
In section 3 we will give the following estimate for card{n ∈ N : n < N}:

Theorem 1. There exist positive constants C1, C2 and γ < 1 depending only on
L, η, and µ such that for any integer N ≥ 2 we have

C1
Nγ

(logq N)K/2
≤ card{n ∈ N : n < N} ≤ C2

Nγ

(logq N)K/2
.

In section 4 we prove our main result:

Theorem 2. For any irrational number α the sequence (nα)n∈N is uniformly dis-
tributed modulo 1.

Such a kind of theorem has been proved in [12] in the particular case of sequences
of integers with an average sum of digits. More precisely, for any b : N → R such

that q−1
2 ν + b(ν) ∈ N for any ν ≥ 1 and such that the sequence

(

b(ν)
ν1/4

)

ν≥1
is
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Figure 1. Infinite 3-automaton generating n ∈ N with |n|0 =
|n|1 = |n|2

bounded, then Theorem 1.2 from [12] says that for any irrational number α the
sequence (nα)n∈Eb

is uniformly distributed modulo 1, where

Eb =

{

n ∈ N : sq(n) =
q − 1

2
[logq n] + b

(

[logq n]
)

}

.

It is easy to verify that in the particular case where q = 2 or 3, L and η defined
as in Example 1 and µ = (0), our theorem is a consequence of Theorem 1.2 from
[12] but that these results are formally disjoint when q ≥ 4. Nevertheless the study
of [12] concerns the case of integers whose sum of digits is “close” to the expected
value and our work generalizes this study to the case of integers whose sum of digits
(or any other linear combination of digits) is “far” from the expected value.

In the particular case where L and η are defined as in Example 2 and for µ =
(0, . . . , 0), our theorem corresponds to Theorem 4.2 (for the set Eq−1) from [18].
The main theorem from [18] can be understood as an uniform distribution result
in the case where the set N defined by (1) is generated by a deterministic q-infinite
automaton corresponding to a random walk of zero average on a d-dimensional
lattice (see [18] for definitions of these notions).

For example when q = 3, L and η as in Example 2 and µ = (0, . . . , 0), the
set N = {n ∈ N : |n|0 = |n|1 = |n|2} is generated by the deterministic 3-infinite
automaton (that is depicted in Figure 1) with 0 as initial state and 0 as unique
final state.

The theorem we prove here is a generalization of this result to the case of any
random walk on a q-dimensional lattice (the more general case of d-dimensional
lattices, with d ≤ q, corresponds to the generalization suggested in section 5 of our
paper).

Indeed for L and η as in Example 3 and µ = (0), the set N = {n ∈ N : |n|0 =
2|n|1} is generated by the deterministic q-infinite automaton that is depicted in
Figure 2 with 0 as initial state and 0 is unique final state. It is also linked to
the random walk on the lattice Z with probability transition (1

3 , 2
3 ). It follows in

particular from our main theorem that for any irrational number α the sequence
(nα)|n|0=2|n|1 is uniformly distributed modulo 1 (such a kind of result was out of
reach from the methods developped in [12] and [18]).
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Figure 2. Infinite q-automaton generating n ∈ N with |n|0 = 2|n|1

It follows from Weyl’s criterion that in order to prove Theorem 2, it is enough
to show that for every irrational number α we have

∑

n∈N ,n≤N

e(αn) = o(card{n ∈ N : n ≤ N})

as N → ∞, where we denote e(x) = e2πix (for general references to the theory
of uniformly distributed sequences we refer to [16] and [10]). For this purpose we
use a specific saddle point method applied to properly chosen generating functions.
In Section 2 we set up the generating functions related to our problem. Then
in Section 3 we collect some technical properties that are necessary to apply a
saddle point analysis which leads to a proof of Theorem 1. A variation of this
method leads then in Section 4 to a proof of Theorem 2. Finally we comment
on some generalizations of Theorem 2 concerning missing digits (Section 5.1) and
non-integer coefficients (Section 5.2).

2. Generating Functions

We first present explicit formulas for

SN(x0, x1, . . . , xq−1, y) =
∑

0<n<N

x
|n|0
0 x

|n|1
1 · · ·x

|n|q−1

q−1 yn

Lemma 1. Define Tν,N (x0, x1, . . . , xq−1, y) for N ≤ qν recursively by

Tν,qν (x0, x1, . . . , xq−1, y) =
∏

r<ν

(

x0 + x1y
qr

+ · · · + xq−1y
(q−1)qr

)

,

Tν,ℓqj (x0, x1, . . . , xq−1, y) =xν−j−1
0

(

x0 + x1y
qj

+ · · · + xℓ−1y
(ℓ−1)qj

)

× Tj,qj (x0, x1, . . . , xq−1, y)

for 1 ≤ ℓ < q and j < ν, and by

Tν,ℓqj+N ′(x0, x1, . . . , xq−1, y) =Tν,ℓqj (x0, x1, . . . , xq−1, y)

+xν−j−1
0 xℓy

ℓqj

Tj,N ′(x0, x1, . . . , xq−1, y)

for 1 ≤ ℓ < q and N ′ < qj.
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Then we have

Sqν (x0, x1, . . . , xq−1, y) =
∑

j<ν

(

x1y
qj

+ · · · + xq−1y
(q−1)qj

)

· Tj,qj (x0, x1, . . . , xq−1, y),

Sℓqν (x0, x1, . . . , xq−1, y) =Sqν (x0, x1, . . . , xq−1, y)

+
(

x1y
qν

+ · · · + xℓ−1y
(ℓ−1)qν)

· Tν,qν (x0, x1, . . . , xq−1, y)

for 2 ≤ ℓ < q, and

Sℓqν+N ′(x0, x1, . . . , xq−1, y) =Sℓqν (x0, x1, . . . , xq−1, y)

+xℓy
ℓqj

Tν,N ′(x0, x1, . . . , xq−1, y)

for N ′ < qν .

Proof. First we give an alternate definition for Tν,N(x0, x1, . . . , xq−1, y). Suppose
that we consider all number n < qν in the form n = ε0(n) + ε1(n)q + · · · +
εν−1(n)qν−1. Similarly to the above we set

|n|ν,ℓ := card{j ∈ N : 0 ≤ j < ν, εj(n) = ℓ}.

Of course, if n < qν and ℓ 6= 0 then |n|ν,ℓ = |n|ℓ. However, for ℓ = 0 we usually
have |n|ν,0 6= |n|0 since |n|ν,0 takes all zero digits up to q− 1 into account. Now set
(for N ≤ qν)

Tν,N (x0, x1, . . . , xq−1, y) =
∑

n<N

x
|n|ν,0

0 x
|n|ν,1

1 · · ·x
|n|ν,q−1

q−1 yn.

With help of this definition the proof of Lemma 1 is immediate. �

Corollary 1. Suppose that x0, x1, . . . , xq−1 are complex numbers that are suffi-
ciently close to the positive real axis and x0 + · · · + xq−1 6= 1. Then we have

∑

0<n<N

x
|n|0
0 x

|n|1
1 · · ·x

|n|q−1

q−1 = G(x0, . . . , xq−1, logq N) · (x0 + · · · + xq−1)
logq N

−
x1 + · · · + xq−1

x0 + x1 + · · · + xq−1 − 1
,

where G(x0, x1, . . . , xq−1, t) is a function that is analytic in x0, x1, . . . , xq−1 and
continuous and periodic in t (with period 1).

Furthermore, if I is any closed interval of positive real numbers with min I > 1/q,
then, for every ε > 0 such that there is at least one j with | arg(xj)| ≥ ε, there exists
δ > 0 and C > 0 such that

(2)

∣

∣

∣

∣

∣

∑

0<n<N

x
|n|0
0 x

|n|1
1 · · ·x

|n|q−1

q−1

∣

∣

∣

∣

∣

≤ C · (|x0| + |x1| + · · · + |xq−1|)
(1−η) logq N

uniformly for all xj with |xj | ∈ I.

Proof. We first provide a corresponding representation for Tν,N ′ . Suppose that the
q-adic expansion of N ′ is given by

N ′ = ℓ1q
k1 + ℓ2q

k2 + · · · + ℓLqkL
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with digits 0 < ℓj < q and exponents k1 > k2 > · · · > kL ≥ 0, then it directly
follows that

Tk1+1,N ′(x0, x2, . . . , xq−1, 1) = (x0 + · · · + xℓ1−1)X
k1

+ xk1−k2−1
0 xℓ1(x0 + · · · + xℓ2−1)X

k2

+ xk1−k3−2
0 xℓ1xℓ2(x0 + · · · + xℓ3−1)X

k3

+ · · ·

+ xk1−kL−L+1
0 xℓ1 · · ·xℓL−1

(x0 + · · · + xℓL)XkL ,

where X abbreviates X = x0 + x1 + · · · + xq−1. Further we have

Sqν (x0, x2, . . . , xq−1, 1) = (X − x0)
Xν − 1

X − 1

and (for ℓ ≥ 2)

Sℓqν (x0, x2, . . . , xq−1, 1) = (X − x0)
Xν − 1

X − 1
+ (x1 + · · · + xℓ−1)X

ν

= (X − x0)
Xν − 1

X − 1
− x0X

ν + (x0 + · · · + xℓ−1)X
ν .

Consequently, if N is given by

N = ℓ0q
k0 + ℓ1q

k1 + · · · + ℓLqkL

then we have

SN (x0, x2, . . . , xq−1, 1) = (X − x0)
Xk0 − 1

X − 1
− x0X

k0

+ (x0 + · · · + xℓ0−1)X
k0

+ xk0−k1−1
0 xℓ0(x0 + · · · + xℓ1−1)X

k1

+ xk0−k2−2
0 xℓ0xℓ1(x0 + · · · + xℓ2−1)X

k2(3)

+ · · ·

+ xk0−kL−L
0 xℓ0 · · ·xℓL−1

(x0 + · · · + xℓL)XkL .

For 0 ≤ t < 1 let the q-adic expansion of qt be given by

qt = ℓ0 +
∑

j≥1

ℓjq
−kj

with digits 0 < ℓj < q and exponents 0 < k1 < k2 < · · · and set

G(x0, x2, . . . , xq−1, t) = X−t
(X(1 − x0)

X − 1
+ (x0 + · · · + xℓ0−1)

+
xℓ0

x0
(x0 + · · · + xℓ1−1)

(

X

x0

)−k1

+
xℓ0

x0

xℓ1

x0
(x0 + · · · + xℓ2−1)

(

X

x0

)−k2

+ · · ·
)

.

It is an easy exercise to show that G is continuous in t and can be periodically
extended to a (continuous) function with period 1 provided x0, . . . , xq−1 are suffi-
ciently close to the positive real line. If fact G is Hölder continuous with a positive



WEYL SUMS OVER INTEGERS WITH LINEAR DIGIT RESTRICTIONS 7

exponent depending on x0, . . . , xq−1 (compare with [9]). Furthermore by definition
it follows that

SN (x0, . . . , xq−1, 1) = G(x0, . . . , xq−1, logq N) · X logq N −
X − x0

X − 1
.

Finally, if we assume that |xj | ∈ I and | arg(xj)| ≥ ε for some j and for some
closed interval I of positive real numbers then the representation (3) implies (2)
almost immediately. Note that min I > 1/q implies that |x0|+ · · ·+ |xq−1| > 1. �

Corollary 2. Set

PN (z1, . . . , zK , y) =
∑

n<N

K
∏

k=1

z
Lk(|n|0,...,|n|q−1)
k yn.

Then we have

PN (z1, . . . , zK , y) = SN

(

K
∏

k=1

z
ak,0

k , . . . ,

K
∏

k=1

z
ak,K

k , y

)

.

Consequently, there exists a function H(z1, . . . , zk, t) that is analytic in z1, . . . , zk

(if they are sufficiently close to the positive real axis) and continuous and periodic
in t (with period 1) such that

PN (z1, . . . , zK , 1) = H(z1, . . . , zk, logq N) · F (z1, . . . , zk)logq N(4)

−
F (z1, . . . , zk) −

∏K
k=1 z

ak,0

k

F (z1, . . . , zk) − 1
,

where we assume that

F (z1, . . . , zk) =

q−1
∑

ℓ=0

K
∏

k=1

z
ak,ℓ

k 6= 1.

Furthermore, if J is any closed interval of positive real numbers with the property
that F (|z1|, . . . , |zK |) > 1 for all zk with |zk| ∈ J (1 ≤ k ≤ K). Then, for every
ε > 0 such that there is at least one k with | arg(zk)| ≥ ε, there exists δ > 0 and
C > 0 such that

(5) |PN (z1, . . . , zK , 1)| ≤ C · F (|z1|, . . . , |zk|)
(1−η) logq N

uniformly for all zk with |zk| ∈ J .

Proof. We just have to note that if we set xℓ =
∏K

k=1 z
ak,ℓ

k then we obtain

q−1
∏

ℓ=0

x
|n|ℓ
ℓ =

K
∏

k=1

z
Pq−1

ℓ=0
ak,ℓ|n|ℓ

k

and can apply Corollary 1. In particular note that Definition 1.(ii) implies that (2)
translates to (5). �

In what follows we will make the assumption that

(6) ak,0 = 0 (1 ≤ k ≤ K).
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This implies that x0 in SN (x0, . . . , xq−1) is substituted by
∏K

k=1 z
ak,0

k = 1. Hence,
F (z1, . . . , zK) is of the form

F (z1, . . . , zK) = 1 +

q−1
∑

ℓ=1

K
∏

k=1

z
ak,ℓ

k .

In particular, we always have

F (z1, . . . , zK) > 1

for all positive real numbers z1, . . . , zK .
The assumption (6) is no real restriction. If we start with the general linear

forms

Lk(x0, x1, . . . , xq−1) =

q−1
∑

ℓ=0

akℓxℓ,

then the slightly modified linear forms

Lk(x0, x1, . . . , xq−1) =

q−1
∑

ℓ=0

(ak,ℓ − ak,0)xℓ =

q−1
∑

ℓ=1

(ak,ℓ − ak,0)xℓ

have the property that the corresponding coefficients ak,ℓ = ak,ℓ − ak,0 satisfy
ak,0 = 0 and the condition (1) translates to

Lk(|n|0, |n|1, . . . , |n|q−1) = Lk(|n|0, |n|1, . . . , |n|q−1) − ak,0[logq n]

= [ηk logq n] + µk − ak,0[logq n](7)

= [(ηk − ak,0) logq n] + µk + O(1),

where the O(1)-term depends on n and k. This means that if we replace the linear
forms Lk by Lk then (1) is replaces by (7) that is almost of the same form. In fact,
the following calculations could be worked out, too, by using (7) instead of (1).
However, in this case it would be necessary to keep track of k and n which would
make notations even more involved. Therefore we have decided to work with (1)
and, of course, with (6).

3. Estimate of card{n ∈ N : n < N}: Saddle Point Approximations

Our first goal is to give a precise estimate for the number

card{n ∈ N : n < N},

that is, to prove Theorem 1. For this purpose, for every integral multi-index m =
(m1, . . . , mK) we consider the sets

Vm(N) = {n < N : Lk(|n|0, . . . , |n|q−1) = mk, 1 ≤ k ≤ K}

and their cardinalities cardVm(N). With help of the generating function P (z1, . . . , zK , 1)
we can obtain these numbers by the use of K-fold Cauchy integration:

cardVm(N) = card{n < N : Lk(|n|0, . . . , |n|q−1) = mk, 1 ≤ k ≤ K}

=
1

(2πi)K

∫

γ1

· · ·

∫

γK

P (z1, . . . , zK , 1)
dz1

zm1+1
1

· · ·
dzK

zmK+1
K

.(8)

Since P (z1, . . . , zK , 1) can be well approximated by a power F (z1, . . . , zK)logq N it
is natural to do this with help of a multivariate saddle point method.

We start with a preliminary lemma.
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Lemma 2. Suppose that the system of equations

q−1
∑

ℓ=0

akℓxℓ = ηk (1 ≤ k ≤ K),(9)

q−1
∑

ℓ=0

xℓ = 1(10)

has a positive solution x0 > 0, x1 > 0, . . . , xq−1 > 0. Then there uniquely exist
z1 > 0, . . . , zK > 0 with

(11)

q−1
∑

ℓ=0

akℓ

K
∏

r=1

zarℓ
r = ηk

q−1
∑

ℓ=0

K
∏

r=1

zarℓ
r (1 ≤ k ≤ K).

Proof. Let Z denote the set of solution (x0, . . . , xq−1) of (9) and (10) with positive
coordinates. By assumption Z is not empty, in particular, it either consists of
exactly one point (if q = K +1) or it is the intersection of a (q−K−1)-dimensional
hyperplane with the half spaces xj > 0, and, thus, can be considered as an open
set in a (q − K − 1)-dimensional space. Next consider the function

f(x0, . . . , xq−1) = −

q−1
∑

ℓ=0

xj log xj , (x0, . . . , xq−1) ∈ Z.

Observe that f is a strictly concave positive function with unbounded derivative
if one of the xj goes to 0. Hence f attains its (only) maximum at some point
(x◦

0, . . . , x
◦
q−1) ∈ Z.

Alternatively, this maximum can be calculated with help of Lagrange multipliers.
Set

f̃(x0, . . . , xq−1, λ0, . . . , λK) = −

q−1
∑

ℓ=0

xj log xj + λ0

(

q−1
∑

ℓ=0

xℓ − 1

)

+

K
∑

k=1

λk

(

q−1
∑

ℓ=0

ak,ℓxℓ − ηk

)

.

Then by Lagrange’s theorem there exists λ◦
0, . . . , λ

◦
K such that (x◦

0, . . . , x
◦
q−1) sat-

isfies the system of equations

∂f̃

∂xj
= − logx◦

j + 1 + λ◦
0 +

K
∑

k=1

λ◦
kak,j = 0 (0 ≤ j < q).

Hence, if we set zk = eλ◦
k , we have

x◦
j = e1+λ◦

0

K
∏

k=1

z
ak,j

j ,

and since (9) and (10) imply that

q−1
∑

ℓ=0

akℓx
◦
ℓ = ηk

q−1
∑

ℓ=0

x◦
ℓ ,

it directly follows that (11) is satisfied for zk = eλ◦
k . This is also the unique solution

since every solution of (9) can be reinterpreted as a maximum of f on Z. �
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In what follows, we will denote by Ω the (open) set of (η1, . . . , ηK) for which (9)
has a unique solution zk(η1, . . . , ηK) (1 ≤ k ≤ K) in the above sense. In fact, this
is also a multivariate saddle point as the proof of the following theorem shows.

Recall that we always assume that ak,0 = 0, which implies that F (z1, . . . , zK) > 1
for all positive real numbers z1, . . . , zK .

Theorem 3. Suppose that E is a compact subset of Ω. Then uniformly for all
integer vectors m = (m0, . . . , mq−1) ∈ Zq with

(

m0

logq N
, . . . ,

mq−1

logq N

)

∈ E

and as N → ∞ we have

cardVm(N) =
H(z̃1, . . . , z̃K , logq N)

(2π logq N)K/2∆̃1/2
F (z̃1, . . . , z̃K)

logq N
z̃−m1

1 · · · z̃−mK

K(12)

×

(

1 + O

(

1

log N

))

where

z̃k = zk

(

m0

logq N
, . . . ,

mq−1

logq N

)

(1 ≤ k ≤ K)

and

∆̃ = det

(

∂2 log F (z̃1e
t1 , . . . , z̃KetK )

∂ti∂tj

∣

∣

∣

∣

t1=0,...,tK=0

)

1≤i,j≤K

.

Proof. Our starting point is the representation (8), where we will use the circles of
integration

γk = {zk : |zk| = z̃k} (1 ≤ k ≤ K).

Due to the upper bound (5) we thus get an upper bound for those parts of the
integral where | arg(zk)| ≥ ε (for some k) of the form

C · F (z̃1, . . . , z̃K)(1−η) logq N .

Hence, these parts of the integral can be neglected.
For the remaining parts we use standard saddle point approximation on powers

of functions (see [8]). Note that (z̃1, . . . , z̃K) is the saddle point of the function

(z1, . . . , zK) 7→ F (z1, . . . , zK)logq Nz−m1

1 · · · z−mK

K

= exp

(

logq N log (F (z1, . . . , zK)) −
K
∑

k=1

mk log zk

)

.

Hence, we directly obtain (12). �

Remark 1. Theorem 3 has a slight extension. We also have

cardVm(N) =
H(z̃1, . . . , z̃K , logq N)

(2π logq N)K/2∆̃1/2
F (z̃1, . . . , z̃K)

logq N
z̃−m1

1 · · · z̃−mK

K(13)

×

(

1 + O

(

1

log N

))

where

z̃k = zk (η1, . . . , ηK) (1 ≤ k ≤ K)
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and mk − ηk logq N = O(1). This means that we can vary mk a little bit without
changing the saddle points z̃k, that only depends on η1, . . . , ηK . This property will
be frequently used in the sequel.

Remark 2. If we do not use the saddle point (z̃1, . . . , z̃K) but any point (ζ1, . . . , ζK)
of positive real numbers we get an upper bound of the form

cardVm(N) ≤
H(ζ1, . . . , ζK , logq N)

(2π logq N)K/2∆1/2
F (ζ1, . . . , ζK)

logq N
ζ−m1

1 · · · ζ−mK

K(14)

×

(

1 + O

(

1

log N

))

,

with

∆ = det

(

∂2 log F (ζ1e
t1 , . . . , ζKetK )

∂ti∂tj

∣

∣

∣

∣

t1=0,...,tK=0

)

1≤i,j≤K

.

This follows from the fact that the absolute value of F (ζ1e
it1 , . . . , ζKeitK ) can be

estimated by
(15)

∣

∣F (ζ1e
it1 , . . . , ζKeitK )

∣

∣ ≤ F (ζ1, . . . , ζK) exp



−
1

2

K
∑

i,j=1

∆ijtjtj + O

(

K
∑

i=1

|ti|
3

)



 ,

where

∆ij =
∂2 log F (ζ1e

t1 , . . . , ζKetK )

∂ti∂tj

∣

∣

∣

∣

t1=0,...,tK=0

.

Of course, the constant implied by the term O(1/ log N) depends (continuously) on
ζ1, . . . , ζK .

The case η1 = · · · = ηK = 0 is now easy to deal with. The corresponding
asympototic formula for the numbers card{n ∈ N : n < N} is an immediate
corollary of the above remark.

Corollary 3. Suppose that η1 = · · · = ηK = 0 and let µ1, . . . , µK be given (fixed)
integers. Then (0, . . . , 0) ∈ Ω and we have

card{n ∈ N : n < N} = card{n < N : Lk(|n|0, . . . , |n|q−1) = µk, 1 ≤ k ≤ K}

=
H(z̃1, . . . , z̃K , logq N)

(2π logq N)K/2∆1/2
F (z̃1, . . . , z̃K)

logq N
z̃−µ1

1 · · · z̃−µk

K

(

1 + O

(

1

log N

))

,

where z̃k = zk(0, . . . , 0) > 0 satisfy

q−1
∑

ℓ=0

akℓ

K
∏

r=1

z̃arℓ
r = 0, (1 ≤ k ≤ K).

The next step is a little bit more involved. Suppose that there exist k with
ηk > 0 and consider the set

S =
⋃

k : ηk 6=0

{

q(m−µk)/ηk : m ∈ Z, (m − µk)/ηk > 0
}

that is the union of geometric sequences.
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Let s0 < s1 < · · · be a an ordered version of the elements of S = {s0, s1, . . .}.
Observe that if n > 0 is an integer with sj ≤ n < sj+1 then for all k with ηk > 0
there exists mj,k ∈ Z with

q
mj,k−µk

ηk ≤ n < q
mj,k+1−µk

ηk .

For those k with ηk = 0 we set mj,k = µk. If fact, this means that for all k ∈
{1, 2, . . . , K} and n ∈ {sj, sj + 1, . . . , sj+1 − 1} we have

[ηk logq n] + µk = mj,k.

Let mj = (mj,1, . . . , mj,K) denote the multiindex that collects these mj,k. More
precisely this shows that

card{n ∈ N : sj ≤ n < sj+1} = cardVmj (sj+1) − cardVmj (sj).

Thus, we have proved the following lemma.

Lemma 3. Assume that there exists k with ηk > 0 and suppose that N is a positive
integer with N = [sJ ] for some sJ ∈ S. Then we have

card{n ∈ N : n < N} =
∑

j<J

(

cardVmj (sj+1) − cardVmj (sj)
)

.

Proof of Theorem 1. Lemma 3 can be used to determine the asymptotic order
of magnitude of the numbers card{n ∈ N : n < N}. We will actually prove that
there are two positive constants C1, C2 with

C1

(logq N)K/2

(

F (z̃1, . . . , z̃K)

z̃η1

1 · · · z̃ηK

K

)logq N

≤ card{n ∈ N : n < N}

≤
C2

(logq N)K/2

(

F (z̃1, . . . , z̃K)

z̃η1

1 · · · z̃ηK

K

)logq N

,

where

z̃k = zk (η1, . . . , ηK) (1 ≤ k ≤ K).

Thus, γ from Theorem 1 is explicitly given by

γ = logq

(

F (z̃1, . . . , z̃K)

z̃η1

1 · · · z̃ηK

K

)

.

Proof. If η1 = . . . = ηK = 0 then this estimate follows from Corollary 3.
If there is k with ηk > 0 then by Lemma 3 and (13) we get the upper bound:

card{n ∈ N : n < N} ≤
∑

j:sj−1<N

card
(

Vmj (sj+1)
)

≤
∑

k:ηk>0

∑

m≤ηk logq N+µk

card
(

V([(m−µk)ηℓ/ηk]+µℓ)1≤ℓ≤K
(q(m−µk)/ηk)

)

≪
∑

k:ηk>0

∑

m≤ηk logq N+µk

1

mK/2

(

F (z̃1, . . . , z̃K)

z̃η1

1 · · · z̃ηK

K

)(m−µk)/ηk

≪
1

(logq N)K/2

(

F (z̃1, . . . , z̃K)

z̃η1

1 · · · z̃ηK

K

)logq N

.
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On the other hand we have

card{n ∈ N : n < N} ≥ card
(

Vmj (sj+1)
)

− card
(

Vmj (sj)
)

+ card
(

Vmj+1
(sj+2)

)

− card
(

Vmj+1
(sj+1)

)

for every j with sj+2 < N . Let k0 be chosen such that ηk0
is largest. By ob-

vious reasoning there exists a constant C such that sj = q(m−µk0
)/ηk0 , sj+1 =

q(m+1−µk0
)/ηk0 , and sj ≥ N/C. Further we have mj,k = [(m − µk0

)ηk/ηk0
] + µk.

Hence we can use the saddle point z̃k = zk(η1, . . . , ηK) (1 ≤ k ≤ K) and obtain by
(13):

card
(

Vmj (sj+1)
)

− card
(

Vmj (sj)
)

=
H(z̃1, . . . , z̃K , logq sj+1)

(2π logq sj+1)K/2∆̃1/2

F (z̃1, . . . , z̃K)
logq sj+1

z̃m1

1 · · · z̃mK

K

(

1 + O

(

1

log N

))

−
H(z̃1, . . . , z̃K , logq sj)

(2π logq sj)K/2∆̃1/2

F (z̃1, . . . , z̃K)
logq sj

z̃m1

1 · · · z̃mK

K

(

1 + O

(

1

log N

))

≫
1

(logq N)K/2

(

F (z̃1, . . . , z̃K)

z̃η1

1 · · · z̃ηK

K

)logq N

×
(

H(z̃1, . . . , z̃K , logq sj+1)F (z̃1, . . . , z̃K)
logq sj+1−logq sj

− H(z̃1, . . . , z̃K , logq sj) + O
( 1

log N

))

.

Similarly we get

card
(

Vmj+1
(sj+2)

)

− card
(

Vmj+1
(sj+1)

)

≫
1

(logq N)K/2

(

F (z̃1, . . . , z̃K)

z̃η1

1 · · · z̃ηK

K

)logq N

×
(

H(z̃1, . . . , z̃K , logq sj+2)F (z̃1, . . . , z̃K)
logq sj+2−logq sj+1

− H(z̃1, . . . , z̃K , logq sj+1) + O
( 1

log N

))

.

Since card
(

Vmj (sj+1)
)

− card
(

Vmj (sj)
)

≥ 0 and card
(

Vmj−1
(sj+2)

)

−

card
(

Vmj+1
(sj+1)

)

≥ 0, it follows that

H(z̃1, . . . , z̃K , logq sj+2)F (z̃1, . . . , z̃K)
logq sj+2−logq sj+1 − H(z̃1, . . . , z̃K , logq sj)

≥ −
C′

log N

for some constant C′ > 0. Hence we get

card{n ∈ N : n < N} ≫
1

(logq N)K/2

(

F (z̃1, . . . , z̃K)

z̃η1

1 · · · z̃ηK

K

)logq N

×

(

(

F (z̃1, . . . , z̃K)
1/ηk0 − 1

)

+ O

(

1

log N

))

≫
1

(logq N)K/2

(

F (z̃1, . . . , z̃K)

z̃η1

1 · · · z̃ηK

K

)logq N

.

This completes the proof of the Theorem 1. �
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4. Uniform Distribution Modulo 1 of the Sequence (αn)n∈N

As we remark at the end of section 1 proving Theorem 2 is equivalent to prove
that for any irrational α we have

W =
∑

n∈N ,n<N

e(αn) = o (card{n ∈ N : n < N}) .

For this purpose we introduce the function

U(x0, . . . , xq−1; t0, . . . , tq−1) = x0e(t0) + · · · + xq−1e(tq−1).

We will also use the short hand notation U(x, t).

Lemma 4. Suppose that x0, . . . , xq−1 are positive real numbers Then there exists
a constant c > 0 that depends continuously on x = (x0, . . . , xq−1) such that for all
real vectors t = (t0, . . . , tq−1) and t0 = (t0,0, . . . , t0,q−1)

|U(x, t)U(x, t + t0)| ≤ U(x,0)2 exp



−c
∑

0≤i<j<q

‖t0,i − t0,j‖
2



 ,

where ‖x‖ = mink∈Z |x − k| denotes the distance to the nearest integer.

Proof. We first consider |U(x, t)|2. By using the inequality | sin(πt)| ≥ 2
π‖t‖ we

obtain

|U(x, t)|2 = U(x, t)U(x,−t)

=

q−1
∑

j=0

x2
j + 2

∑

0≤i<j<q

xixj cos(2π(ti − tj))

= U(x,0)2 − 4
∑

0≤i<j<q

xixj sin(π(ti − tj))
2

≤ U(x,0)2 −
16

π2

∑

0≤i<j<q

xixj‖ti − tj‖
2

≤ U(x,0)2 exp



−c1

∑

0≤i<j<q

‖ti − tj‖
2



 ,

where

c1 =
16

π2

min
0≤i<j<q

xixj

U(x,0)2

is a positive constant depending continuously on x. Since ‖t‖2 + ‖t + t′‖2 ≥ 1
2‖t

′‖2

for any real numbers t and t′ it immediately follows that

|U(x, t)U(x, t + t0)|

≤ U(x,0)2 exp



−
c1

2

∑

0≤i<j<q

(

‖ti − tj‖
2 + ‖ti − tj + t0,i − t0,j‖

2
)





≤ U(x,0)2 exp



−
c1

4

∑

0≤i<j<q

‖t0,i − t0,j‖
2



 .

This proves the lemma for c = c1/4. �
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Next we set

U(z1, . . . , zK ; s1, . . . , sK ; s) :=

U

(

K
∏

k=0

z
ak,0

k , . . . ,

K
∏

k=0

z
ak,q−1

k ;

K
∑

k=0

ak,0sk,

K
∑

k=0

ak,1sk + s, . . . ,

K
∑

k=0

ak,q−1sk + (q − 1)s

)

,

that is, we substitute xℓ =
∏K

k=0 z
ak,ℓ

k and tℓ =
∑K

k=0 ak,ℓsk + ℓs (1 ≤ ℓ ≤ K).
Note that

(16) U(z1, . . . , zK ; s1, . . . , sK ; 0) = F (z1e(s1), . . . , zke(sK)).

Furthermore, we have the following upper bound.

Lemma 5. Suppose that x0, . . . , xq−1 are positive real numbers and t0, . . . , tq−1 and
α are real numbers. Then there exists a constant C3 > 0 (that depends continuously
on x0, . . . , xq−1) with

|SN (x0e
it1 , . . . , xq−1e

itq−1 , eiα)|

≤ C3

∑

ℓ≤logq N

∣

∣

∣

∣

∣

∣

∏

j<ℓ

U(x0, . . . , xq−1; t0, t1 + αqj , . . . , tq−1 + (q − 1)αqj)

∣

∣

∣

∣

∣

∣

.

Consequently, we have for positive real numbers z1, . . . , zK and real numbers s1, . . . , sK

and α

|PN (z1e
is1 , . . . , zKeisK , eiα)|

≤ C3

∑

ℓ≤logq N

∣

∣

∣

∣

∣

∣

∏

j<ℓ

U(z1, . . . , zK ; s1, . . . , sK ; αqj)

∣

∣

∣

∣

∣

∣

.

Proof. The estimate for SN follows immediately from the representations given in
Lemma 1. The upper bound for PN is just a rewritten version of the upper bound
for SN . �

This estimate shows that if we are interested in upper bounds for

Wm(N) =
∑

n∈Vm(N)

e(αn)

=

1
∫

0

· · ·

1
∫

0

PN (z1e
is1 , . . . , zKeisK , eiα) (z1e

is1)−m1 · · · (zKeisK )−mK ds1 · · ·dsK ,

then it is sufficient to get proper upper bounds for integrals of the form

(17)

∫ 1

0

· · ·

∫ 1

0

∏

j<ν

∣

∣U(z1, . . . , zK ; s1, . . . , sK ; αqj)
∣

∣ ds1 · · · dsK .

Following this idea we prove upper bounds for (17) in Lemma 6 and 7 which will
lead to upper bounds for Wm(N) in Lemma 8.

We have the following estimates.
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Lemma 6. Suppose that z1, . . . , zK are positive real numbers. Then there exists a
constant C4 > 0 (that depends continuously on z1, . . . , zK) such that for all integers
ν ≥ 1 and all real numbers α

∫ 1

0

· · ·

∫ 1

0

∣

∣U(z1, . . . , zK ; s1, . . . , sK ; α)
∣

∣

ν
ds1 · · · dsK ≤

C4

νK/2
F (z1, . . . , zK)ν .

Proof. Observe that Lemma 4 also implies that

|U(x, t)| ≤ U(x,0) exp



−c
∑

0≤i<j<q

‖ti − tj‖
2



 .

Hence, we also get

|U(z1, . . . , zK ; s1, . . . , sK ; α)|

≤ U(z1, . . . , zK ; 0, . . . , 0; 0) exp



−c
∑

0≤i<j<q

∥

∥

∥

∥

∥

K
∑

k=1

(ak,i − ak,j)sk + (i − j)α

∥

∥

∥

∥

∥

2


 .

By the linear independence assumption on the forms Lk and by Definition 1.(ii)
there exist j0 < j1 < · · · < jK such the matrix C = (ak,jℓ

− ak,j0)1≤k,ℓ≤K is regular
and, thus, has determinant detC = d 6= 0. Further, there exist δk with

K
∑

k=1

(ak,jℓ
− ak,j0 )δk = (jℓ − j0)α (1 ≤ ℓ ≤ K).

Hence, there exist integers djℓ with

d(sj + δj) =

K
∑

ℓ=1

djℓ

(

K
∑

k=1

(ak,jℓ
− ak,j0)(sk + δk)

)

.

Hence, for all j we have

‖d(sj + δj)‖
2 ≪

K
∑

ℓ=1

∥

∥

∥

∥

∥

K
∑

k=1

(ak,jℓ
− ak,j0)(sk + δk)

∥

∥

∥

∥

∥

2

≤
∑

0≤i<j<q

∥

∥

∥

∥

∥

K
∑

k=1

(ak,i − ak,j)sk + (i − j)α

∥

∥

∥

∥

∥

2

.

Consequently, there exists a constant c′ > 0 with

|U(z1, . . . , zK ; s1, . . . , sK ; α)|

≤ U(z1, . . . , zK ; 0, . . . , 0; 0) exp

(

−c′
K
∑

k=1

‖d(sk + δk)‖2

)

F (z1, . . . , zk) exp

(

−c′
K
∑

k=1

‖d(sk + δk)‖2

)

,
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so that

∫ 1

0

· · ·

∫ 1

0

∣

∣U(z1, . . . , zK ; s1, . . . , sK ; α)
∣

∣

ν
ds1 · · · dsK

≤ F (z1, . . . , zk)ν

∫ 1

0

· · ·

∫ 1

0

exp

(

−c′ν

K
∑

k=1

‖d(sk + δk)‖2

)

ds1 · · · dsK

≤ F (z1, . . . , zk)ν

(∫ 1

0

e−c′ν‖ds‖2

ds

)K

≤
C4

νK/2
F (z1, . . . , zk)ν .

This completes the proof of the lemma. �

Remark 3. Alternatively we can prove Lemma 6 by using property (16) and pre-
vious estimates for F . Namely, by using (15) for |sj | ≤ ε (where ε > 0 is chosen
sufficiently small) and the property that

|F (z1e(s1), . . . , zke(sK))| ≤ F (z1, . . . , zK)1−η

for some η > 0 if there is some j with |sj | ≥ ε (compare with (5)) the upper bound
follows.

The next lemma is crucial for proving upper bound on Weyl sums.

Lemma 7. Suppose that z1, . . . , zK are positive real numbers. Then there exists a
constant C5 > 0 (that depends continuously on z1, . . . , zK) such that for all integers
ν ≥ 1 and all real number α

∫ 1

0

· · ·

∫ 1

0

∏

j<ν

∣

∣U(z1, . . . , zK ; s1, . . . , sK ; αqj)
∣

∣ ds1 · · · dsK

≤
C5

νK/2
F (z1, . . . , zK)ν exp



−
c

4

∑

j<ν

‖α(q − 1)qj‖2



 .

Proof. For simplicity we assume that ν is a multiple of 4. The other cases can be
handled in the same way.

We split the product of the integrand into two parts:

∏

j<ν,j≡0 mod 4

∣

∣U(z1, . . . , zK ; s1, . . . , sK ; αqj)U(z1, . . . , zK ; s1, . . . , sK ; αqj+1)
∣

∣

×
∏

j<ν,j≡2,3 mod 4

∣

∣U(z1, . . . , zK ; s1, . . . , sK ; αqj)
∣

∣ .
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By applying Lemma 4 with t0,ℓ = ℓ(q − 1)qjα we get
∏

j<ν,j≡0 mod 4

∣

∣U(z1, . . . , zK ; s1, . . . , sK ; αqj)U(z1, . . . , zK ; s1, . . . , sK ; αqj+1)
∣

∣

≤ F (z1, . . . , zK)ν/2 exp



−c
∑

j<ν,j≡0 mod 4

∑

0<i<j≤q

‖(i − j)(q − 1)qjα‖2





≤ F (z1, . . . , zK)ν/2 exp



−c
∑

j<ν,j≡0 mod 4

‖(q − 1)qjα‖2



 .

Furthermore, by applying the inequality

|v1 · · · vm| ≤
|v1|m + · · · + |v1|m

m
,

we obtain (by applying Lemma 6):

∫ 1

0

· · ·

∫ 1

0

∏

j<ν,j≡2,3 mod 4

∣

∣U(z1, . . . , zK ; s1, . . . , sK ; αqj)
∣

∣ ds1 · · · dsK

≤
1

ν/2

∑

j<ν,j≡2,3 mod 4

∫ 1

0

· · ·

∫ 1

0

∣

∣U(z1, . . . , zK ; s1, . . . , sK ; αqj)
∣

∣

ν/2
ds1 · · ·dsK

≪
1

νK/2
F (z1, . . . , zK)ν/2.

Hence,
∫ 1

0

· · ·

∫ 1

0

∏

j<ν

∣

∣U(z1, . . . , zK ; s1, . . . , sK ; αqj)
∣

∣ ds1 · · ·dsK

≤
C5

νK/2
F (z1, . . . , zK)ν exp



−c
∑

j<ν,j≡0 mod 4

‖α(q − 1)qj‖2



 .

Similarly we can deal with the other residue classes modulo 4. Combining these 4
estimates finally proves the lemma. �

We set

E(α, ν) =
1

4

∑

j<ν

‖α(q − 1)qj‖2.

For irrational α it is clear that E(α, ν) → ∞ as ν → ∞ (compare with [12]).
Next we prove an upper bound for

Wm(N) =
∑

n∈Vm(N)

e(αn).

Lemma 8. Suppose that mk = [ηk logq N ]+µk. Then, there exist constants C6 > 0
and C7 > 0 (that depend on η1, . . . , ηK and on µ1, . . . , µK) such that as N → ∞

|Wm(N)| ≤ C6 · card
(

Vm(N)
)

·
(

e−c E(α,[logq N ]/2) + e−C7 logq N
)

.
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Proof. We first fix positive numbers z1, . . . , zK . Recall that F (z1, . . . , zK) > 1.
Hence, by Lemma 5 and Lemma 7 we have

|Wm(N)| =

∣

∣

∣

∣

∣

∣

∑

n∈Vm(N)

e(αn)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1
∫

0

· · ·

1
∫

0

PN (z1e
is1 , . . . , zKeisK , eiα) (z1e

is1)−m1 · · · (zKeisK )−mK ds1 · · · dsK

∣

∣

∣

∣

∣

∣

≤

1
∫

0

· · ·

1
∫

0

|PN (z1e
is1 , . . . , zKeisK , eiα)| z−m1

1 · · · z−mK

K ds1 · · ·dsK

≪
∑

ℓ≤logq N

1
∫

0

· · ·

1
∫

0

∏

j<ℓ

∣

∣U(z1, . . . , zK ; s1, . . . , sK ; αqj)
∣

∣ ds1 · · · dsK

≪
∑

ℓ≤logq N

1

ℓK/2
F (z1, . . . , zK)ℓz−m1

1 · · · z−mK

K exp (−cE((q − 1)α, ℓ))

≪
1

(log N)K/2
F (z1, . . . , zK)logq Nz−m1

1 · · · z−mK

K

· exp
(

−cE((q − 1)α, [logq N ]/2)
)

+
1

(log N)K/2
F (z1, . . . , zK)

1
2

logq Nz−m1

1 · · · z−mK

K

≪
1

(log N)K/2
F (z1, . . . , zK)logq Nz−m1

1 · · · z−mK

K

·
(

e−c E(α,[logq N ]/2) + e−C7 logq N
)

,

where C7 > 0 depends on z1, . . . , zK . Now, if we choose zk = z̃k = zk(η1, . . . , ηK)
we, thus, obtain the proposed estimate. �

Proof of Theorem 2. We are now ready to prove the final step of Theorem 2,
i.e., that for all irrational numbers α we have, as N → ∞,

∑

n∈N ,n≤N

e(αn) = o
(

card{n ∈ N : n ≤ N}
)

.

Proof. First assume that η1 = · · · = ηK = 0. Here we have with m = (µ1, . . . , µK)

W =
∑

n∈N ,n<N

e(αn) = Wm(N)

and we can directly apply Lemma 8.
Now suppose that there exists k with ηk > 0. With the same reasoning as in

Lemma 3 we have (if N = [sJ ] for some sJ ∈ S)

W =
∑

n∈N ,n<N

e(αn)

=
∑

j∈J

(

Wmj (sj+1) − Wmj (sj)
)
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and consequently

|W | ≤
∑

j<J

(

|Wmj (sj+1)| + |Wmj (sj)|
)

.

Now, with help of Lemma 8 we get the upper bound

∑

j<J

∣

∣Wmj (sj+1)
∣

∣ ≤
∑

k:ηk>0

∑

m≤ηk logq N+µk

∣

∣

∣W([(m−µk)ηℓ/ηk]+µℓ)1≤ℓ≤K
(q(m−µk)/ηk)

∣

∣

∣

≪
∑

k:ηk>0

∑

m≤ηk logq N+µk

1

mK/2

(

F (z̃1, . . . , z̃K)

z̃η1

1 · · · z̃ηK

K

)(m−µk)/ηk

×
(

e−cE(α,(m−µk)/(2ηk)) + e−C7m/ηk

)

= o

(

1

(logq N)K/2

(

F (z̃1, . . . , z̃K)

z̃η1

1 · · · z̃ηK

K

)logq N
)

= o (card{n ∈ N : n ≤ N}) .

Similarly we can estimate the second sum
∑

j<J Wmj (sj). This proves the lemma

if N = [sJ ] for some sJ ∈ S. If N is not of that form we just have to add

WmJ (N) − WmJ (sJ )

which can be handled with help of Lemma 8. �

5. Generalizations

5.1. Missing digits. A first generalization of Theorem 2 is to assume that some
digits D ⊆ {0, 1 . . . , q − 1} do not appear, that is, we additionally assume that

(18) |n|ℓ = 0 for ℓ ∈ D

(compare also with [18]). Formally this condition could be included into (1) with-
out any change of notation. However, then there is no positive solution of the
corresponding system of equations Lk(x0, . . . , xq−1) = ηk (1 ≤ k ≤ K) since (18)
forces xℓ = 0 for all ℓ ∈ D. Nevertheless, we can work with in the missing-digit-case
almost in the same way as above.

First, it is clear that the generating function

SD
N ((xj)j 6∈D, y) =

∑

n<N

∏

j 6∈D

x
|n|j
j yn

is just obtained by using SN (x1, . . . , xN , y) and setting xℓ = 0 for ℓ ∈ D. In par-
ticular, we directly use Lemma 1 and, hence, all subsequent considerations directly
transfer.

After all we get precisely the same as Theorem 2. The only difference is that we
have to consider linear forms in the remaining variables xj , j 6∈ D. More precisely
we have to assume that the system LD = (LD

k )k=1,...,K

LD
k =

∑

ℓ 6∈D

ak,ℓxℓ



WEYL SUMS OVER INTEGERS WITH LINEAR DIGIT RESTRICTIONS 21

is complete (compare with Definition 1) and that the system
∑

ℓ 6∈D

ak,ℓxℓ = ηk k = 1, . . . , K

∑

ℓ 6∈D

xℓ = 1

has a positive solution. Then the sequence (αn)n∈N is uniformly distributed modulo
1, where N is the set of positive integers with |n|j = 0 for j ∈ D and

∑

ℓ 6∈D

ak,ℓ|n|ℓ = [ηk logq n] + µk, k = 1, . . . , K.

5.2. Non-integer coefficients. The restriction that the coefficients ak,ℓ of the
linear forms Lk are integers was natural in the context of Theorem 2. Nevertheless
we can also consider general linear forms

Lk(x0, . . . , xq−1) =

q−1
∑

ℓ=0

ak,ℓxℓ (1 ≤ k ≤ K)

and fix intervals I1 = [a1, b1], . . . , IK = [aK , bK ] contained in the positive real line.
A corresponding set N can be then defined by the set of non-negative integers n
with

Lk(|n|0, . . . , |n|q−1) − ηk logq n ∈ Ik (1 ≤ k ≤ K),

where η1, . . . , ηK are given real numbers.
Instead of Cauchy’s formula we can then use the inverse Laplace transform. For

example, if we set (similarly to the above)

Vm(N) = {n < N : Lk(|n|0, . . . , |n|q−1) − mk ∈ Ik},

where m = (m1, . . . , mK) is any vector of real numbers, then we have for all real
numbers s0,1, . . . , s0,K

∑

n∈Vm(N)

yn =
1

(2πi)K
lim

T1→∞

∫ s0,1−iT1

s0,1−iT1

· · · lim
TK→∞

∫ s0,K−iTK

s0,K−iTK

× PN (es1 , . . . , esK , y)e−m1s1−···−mKsK

K
∏

k=1

e−aksk − e−bksk

sk
ds1 · · · dsK .

In particular, we can use s0,k = log z̃k, where z̃k = zk(m1/ logq N, . . . , mK/ logq N)
are the saddle points from above. Then these integrals can be asymptotically
evaluated by a usual saddle point approximation, in particular if y = 1 and also if
y = e(α).

Of course, there are some technical difficulties that might occur. First note that
the above integrals are not absolutely convergent. This is due to the factor 1/sk of
the Laplace transform

∫ bk

ak

e−skx dx =
e−aksk − e−bksk

sk
.

As usual, this can be handled by smoothing the characteristic functions of the
itervals Ik = [ak, bk].
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Second, if there are rational relations between the coefficients of the linear forms
Lk then we have to deal with infinitely many saddle points on the lines ℜ(sk) = s0,k.
For example, if the coefficients ak,ℓ and mk are integers then

PN (es1+2r1πi, . . . , esK+2rKπi, y)e−m1(s1+2r1πi)−···−mK(sK+2rKπi)

= PN (es1 , . . . , esK , y)e−m1s1−···−mKsK

for all integers r1, . . . , rK . However, it is possible to deal with all these kinds of
problems. We again observe that the sequence (αn)n∈N is uniformly distributed
modulo 1.
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