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vn-Trees

Cayley Trees: |labeled, rooted, non-planar
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Cayley Trees: |labeled, rooted, non-planar
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vn-Trees

Cayley Trees:

e i, ... NnumMmber of Cayley trees of size n

n
o i(z) = Z tn% ... generating function
n>1 .



vn-Trees

Cayley Trees:

e Recursive description: A Cayley tree can be interpreted as a root
followed by an unordered sequence of Cayley trees.
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vn-Trees

Polya Trees: unlabeled, rooted, non-planar

root
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vn-Trees

Planted Plane Trees: unlabeled, rooted, planar

root
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vn-Trees

Common Properties
e recursive description
e functional equation for generating function
e height and width are of order /n

e Stochastic approximation by Brownian excursion



Jvn-Trees

Depth-first search.

Th([2nt))
cov/n

»e(t) ... Brownian excursion
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Recursive Trees
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Recursive Trees

Combinatorial Description:

e |labeled rooted tree

e labels are strictly increasing (starting at the root)

e no left-to-right order (non-planar)



Recursive Trees

Number of Recursive Trees:

number of recusive trees of size n
(n—1)!

Yn

The node with label 57 has exactly 7 — 1 possibilities to be inserted
—yp=1-2---(n—1).



Recursive Trees

Generating Functions:

" " 1
y(iﬁ)—nglyna—ngl;—mg —
2 3
V@) =1+y@) + L L = @

R:O+9+R+}K + .-

R R R RRR

A recursive tree can be interpreted as a root followed by an unordered

sequence of recursive trees. (y'(z) = X y,412"/n!)
n>0



Recursive Trees

Probability Model:

Process of growing trees

e [ he process starts with the root that is labeled with 1.

e At step j a new node (with label j) is attached to any previous
node with probability 1/(j5 — 1).

After n steps every tree (of size n) has equal probability 1/(n — 1)!.



Recursive Trees
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Recursive Trees
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Recursive Trees
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Plane Oriented Trees
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Plane Oriented Trees
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Plane Oriented Trees

Number of Plane Oriented Trees:

yn = number of plane oriented trees of size n
= 1-3:5.---(2n—-3) = (2n — 3)!!
_ (2n-2)!
 2n—1(p —1)!

The node with label 5 has exactly 27 — 3 possibilities to be inserted
—yp,=1-3---(2n — 3).



Plane Oriented Trees

Generating Functions:

=Yt =Y o (T = v
S|

n>1 n—1

Y (z) =1+ y(x) + y(a:)Q + y(gj)3 4+ ... =

1 —y(x)

R:O+9+R+A + .

R R R RRR

A plane oriented tree can be interpreted as a root followed by an

ordered sequence of plane oriented trees. (¢/'(z) = X y,4+12"/n!)
n>0



Plane Oriented Trees

Probability Model:

Process of growing trees

e [ he process starts with the root that is labeled with 1.

e At step j a new node (with label j) is attached to any previous
node of outdegree d with probability (d+ 1)/(2j — 3).

After n steps every tree (of size n) has equal probability 1/(2n — 3)!I.



Scale Free Trees

Probability Model:

Process of growing trees

e [ he process starts with the root that is labeled with 1.

e At step j a new node (with label j) is attached to any previous

node of outdegree d with probability proportial to
r > 0).

For d = 1 we get plane oriented trees.

d-+ r

(for some



Scale Free Trees

Generating Functions

yn ... weighted sum of plane oriented trees (according to probability
distribution)

n
y(z) = ) ynx— ... generating function

|
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Scale Free Trees

Degree distribution

Set
Ay = nILmOOP (a random node in a tree of size n has out-degree d)
— i expected number of nodes with out-degree d
o n|—>moo n
Then

_(r+DrFrRr+1)r(r+4d)

o F(rr(2r+d+2)

We have a scalefree distribution

N (r4+1)r(2r4+1) g2
(r) '
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Extremal Parameters

We focus on the following two extremal tree parameters:

e Dy, = maximum degree in a tree of size n

e H, = height of a tree of size n

Further interesting (extremal) parameters: diameter, width, ...



Concentration Properties

X5, ... non-negative, integer valued random variable with |E X;, — oo

Type 1: No Concentration:

Xn
E X,

— Y ... not concentrated at 1

Typically: EX2 ~ ¢ (E Xy)? for some ¢ > 1.




Concentration Properties

Type 2: Weak Concentration:

Xn
E X,

»d1 ... concentrated at 1

Typically: EX2 ~ (E X,)?.
(This condition implies weak concentration via Chebyshev's inequality.)

E.g. Central Limit Theorem
Xn—E X,
v/ Var X,

. N(0,1).




Concentration Properties

Type 3: Strong Concentration:

Xn—EX, ... bounded moments

Typically: travelling wave F(x)
P{Xn <k} = F(k—m(n)) + o(1)
(m(n) is close to the median of X,)




Concentration Properties

Type 4: Very Strong Concentration:

Concentration on two (or finitely many values):

P{X, =m(n) or Xp,=m(n)+1} =1+ o(1).

with m(n) — oo.



Results

@
Cayley trees d 5

e [Meir & Moon, Carr & Goh & Schmutz]

P{Dp, =m(n) or Xp,=m(n) +1} =1+ o(1).

fe)
for some m(n) with m(n) ~ I .
log logn
e [Flajolet & Odlyzko]
Hn 5
Vvn

with Y = - max e(t).
co ogtgle()



Results

Polya trees g5 fi fQ

e [Goh & Schmutz]

P{D, <k} = exp (—conk_””) + o(1)

with cg = 3.262..., n =0.3383..., and un = 0.9227 ... -logn.

e [D. & Gittenberger]

with Y = - max e(t).
co ogtgle()



Results

Planted plane trees e d@é g@g

P{Dy < k} = exp (-2~ (F1092n+1)) 4 o(1)

e [De Bruijn & Knuth & Rice]

oy

NG

with Y = - max e(t).
co ogtgle()



Results

Travelling wave for maximum degree: F(x) = exp(—e™%)
(Extreme Value Distribution)

0,81

0,64




Results

Non-concentration of height

: Tn(LclntJ)
H; = max1T; , e(t
n >0 n(]) 62\/5 ()
Hp
— — - max e(t
Vn e ogtgle( )

= NO concentration




Results

Recursive trees

e [Goh & Schmutz]

P{Dy < k} = exp (-2~ (F1092n+1)) 4 o(1)

e [D.]

P{H, <k} = F(c —elogn) + o(1),

where ¢, = k+ O(logk), F(x) = W(e %), and W(y) satisfies the
integral equation

W (y/el/e) = 5 [ Wit owy - 2 de



Results

Scale free trees (with parameter r > 0)

e [Mori]
D
= —u (as)
nl+r
and
_1
Dn — Mnl-'-?“

for some random variable u (related to degree distribtion).



Results

Scale free trees (with parameter r > 0)

o [D.]
Suppose that r = % > 0 is rational. Then

P{H, <k} = F(c, —drlogn) + o(1),

where ¢, = k+0O(logk) and Set d = 1/((r 4+ 1)s) with rsesT1 =1,

Further, F(x) = V(e %), where W(y) is calculated by the following
procedure.



Results

Let ®(y) be the solution of

"(1+ aip)
A+B+1
(ake)

1
yFED(ye i) = X

B+1
X / H <(D(y] _1/d7“) A+B 1)

y1+--+ya+B+1=9,9;=0 J=1

A+B+1 1
< 1 (¢(ye)yA+B ) dy
{=B+2
Then
(.2 A 1 4
+B
WV(y) = < > / H <¢(yzj)zf+3 > dz
I_( ) 214 tza=1,2>0 I=1



Proof Methods

Maximum degree in planted plane trees:

bk - number of planted plane trees of size n with degrees < k

tp(x) = > t,a™ ... generating function
n>1

1 — tg(z)F Tl
1 —tg(x)

tp(x) = x + xtp(x) + aztk(wQ) + .-+ :Iztk(:c)k =z




Proof Methods

T heorem

y(x) = Z ynx' ' Satisfies functional equation of the form
n>1

y(z) =z - p(y(x))

(+ some technical conditions)

(1) p " _
— = L2 (1o ),

where 7 > 0 is given by 7¢/(7) = ¢(7) and p = 1/o'(7).



Proof Methods

Maximum degree in planted plane trees:

1 — kTl 1
1k L 1
— Tk:§_2k+l+0(2 ), 7':5
1 1 5 1 1
= =4 (1o 002D, o=
1
— 32 (14 0(k27F) + o)),

tn,k:\ﬁpk n
L 5 32 1
— 14+ 0O
Y (14+0(m™h)
t n

n

tn Py

ty =

N e—n/Qk—I-l — exp (_2—(k—|092 n—l—l)) .



Proof Methods

Height of recursive trees:

yn = (n—1)!, y(x) = Zyn — Z

n>1 n>1
y'(z) = V)

Ynk --- Number of recursive trees of size n with degrees < k

y(z) = > ynk—_ > P{Hn<k}—

n>1 | n>0

(2) = ()

/
Ye+1




Proof Methods

Alternate recurrence:

Yie(@) = yp(@) = Y P{H;41 < k}a"

(Y;41(0) =1)

n>0

Vi11(2) = Vip1(2)Yi(2)




Proof Methods

Integral equation:

yWy/et) = [Cwia/e YWy - 2) ds

L(u) = /OOO W(y)e Y% dy

Y. (x) ek/e. L, (ek/e(l — :L‘))

©.@)
= /O W (ve F/€)e Ve du




Proof Methods

Auxiliary functions:

Y (z) =ekle. L (ek/e(l — :c))

e 1-Y,(0) ~Ck (g)k YL(1) = eF/e.

Vig1(@) = YViq1(2)Yi(2)

e For all integers £ > 0 and for all reals k£ > 0 the difference

Yi(x) — Yi(x)

has exaclty one zero (“Intersection Property”)



Proof Methods

Auxiliary functions:

e Vi(z) =) Y nz™ is an entire function with coefficients
n>0

Ykn = /OOO v (’Ue_k/e) v"e” Y dv

that are asymptotically given by

Yin =W (ne ¥/¢) = F(k — elogn) + o(1)

(W(z) = F(e™™))



Proof Methods

Comparsion between Y.(z) and Y (x):

e Y. (z) is approximated by Y (z) by choosing ¢, in a way that

Yk(l) = ?ek(l) < c = e- 109 ?k(l) ~ k.

e Vi(z) = Ye, (x) in a neighbourhood of z =1

P{Hp <k} R Tn,, = W(n/Yi(1))~+o(1)

— F(c, —elogn) 4+ o(1)

(W(z) = F(e™™))



T hank You!



