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√
n-Trees

Cayley Trees: labeled, rooted, non-planar
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√
n-Trees

Cayley Trees:

• tn . . . number of Cayley trees of size n

• t̂(x) =
∑
n≥1

tn
xn

n!
. . . generating function



√
n-Trees

Cayley Trees:

• Recursive description: A Cayley tree can be interpreted as a root

followed by an unordered sequence of Cayley trees.

R
RRR RR R

= + + + + ...

t̂(x) = x + xt̂(x) + x
t̂(x)2

2!
+ x

t̂(x)3

3!
+ · · · = x et̂(x)

• tn = nn−1 . . . by Lagrange inversion



√
n-Trees

Polya Trees: unlabeled, rooted, non-planar

root

=

t(x) =
∑
n≥1

tn xn t(x) = x et(x)+1
2t(x2)+1

3t(x3)+···



√
n-Trees

Planted Plane Trees: unlabeled, rooted, planar

root

=

t(x) =
∑
n≥1

tn xn t(x) =
x

1− t(x)
tn =

1

n + 1

(2n

n

)



√
n-Trees

Common Properties

• recursive description

• functional equation for generating function

• height and width are of order
√

n

• stochastic approximation by Brownian excursion



√
n-Trees

Depth-first search.

Tn(b2ntc)
c2
√

n
→ e(t) . . . Brownian excursion
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Recursive Trees

Combinatorial Description:

• labeled rooted tree

• labels are strictly increasing (starting at the root)

• no left-to-right order (non-planar)



Recursive Trees

Number of Recursive Trees:

yn = number of recusive trees of size n

= (n− 1)!

The node with label j has exactly j − 1 possibilities to be inserted

=⇒yn = 1 · 2 · · · (n− 1).



Recursive Trees

Generating Functions:

y(x) =
∑
n≥1

yn
xn

n!
=

∑
n≥1

xn

n
= log

1

1− x

y′(x) = 1 + y(x) +
y(x)2

2!
+

y(x)3

3!
+ · · · = ey(x)

R
RRR RR R

= + + + + ...

A recursive tree can be interpreted as a root followed by an unordered

sequence of recursive trees. (y′(x) =
∑

n≥0
yn+1xn/n!)



Recursive Trees

Probability Model:

Process of growing trees

• The process starts with the root that is labeled with 1.

• At step j a new node (with label j) is attached to any previous

node with probability 1/(j − 1).

After n steps every tree (of size n) has equal probability 1/(n− 1)!.
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Recursive Trees

Remark

1 1

2 23 3
=



Plane Oriented Trees
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Plane Oriented Trees

Remark

1 1

2 23 3
=



Plane Oriented Trees

Number of Plane Oriented Trees:

yn = number of plane oriented trees of size n

= 1 · 3 · 5 · · · (2n− 3) = (2n− 3)!!

=
(2n− 2)!

2n−1(n− 1)!

The node with label j has exactly 2j − 3 possibilities to be inserted

=⇒yn = 1 · 3 · · · (2n− 3).



Plane Oriented Trees

Generating Functions:

y(x) =
∑
n≥1

yn
xn

n!
=

∑
n≥1

1

2n−1

(2(n− 1)

n− 1

)xn

n
= 1−

√
1− 2x

y′(x) = 1 + y(x) + y(x)2 + y(x)3 + · · · =
1

1− y(x)

R
RRR RR R

= + + + + ...

A plane oriented tree can be interpreted as a root followed by an

ordered sequence of plane oriented trees. (y′(x) =
∑

n≥0
yn+1xn/n!)



Plane Oriented Trees

Probability Model:

Process of growing trees

• The process starts with the root that is labeled with 1.

• At step j a new node (with label j) is attached to any previous

node of outdegree d with probability (d + 1)/(2j − 3).

After n steps every tree (of size n) has equal probability 1/(2n− 3)!!.



Scale Free Trees

Probability Model:

Process of growing trees

• The process starts with the root that is labeled with 1.

• At step j a new node (with label j) is attached to any previous

node of outdegree d with probability proportial to d + r (for some

r > 0).

For d = 1 we get plane oriented trees.



Scale Free Trees

Generating Functions

yn . . . weighted sum of plane oriented trees (according to probability

distribution)

y(x) =
∑
n≥1

yn
xn

n!
. . . generating function

y′(x) =
1

(1− y(x))r

=⇒ y(x) = 1− (1− (r + 1)x)
1

r+1



Scale Free Trees

Degree distribution

Set

λd = lim
n→∞P (a random node in a tree of size n has out-degree d)

= lim
n→∞

expected number of nodes with out-degree d

n

Then

λd =
(r + 1)Γ(2r + 1)Γ(r + d)

Γ(r)Γ(2r + d + 2)

We have a scalefree distribution

λd ∼
(r + 1)Γ(2r + 1)

Γ(r)
· d−2−r.



Extremal Parameters

We focus on the following two extremal tree parameters:

• Dn = maximum degree in a tree of size n

• Hn = height of a tree of size n

Further interesting (extremal) parameters: diameter, width, ...



Concentration Properties

Xn . . . non-negative, integer valued random variable with EXn →∞

Type 1: No Concentration:

Xn

EXn
→ Y . . . not concentrated at 1

Typically: EX2
n ∼ c · (EXn)2 for some c > 1.



Concentration Properties

Type 2: Weak Concentration:

Xn

EXn
→ δ1 . . . concentrated at 1

Typically: EX2
n ∼ (EXn)2.

(This condition implies weak concentration via Chebyshev’s inequality.)

E.g. Central Limit Theorem

Xn − EXn√
VarXn

→ N(0,1).



Concentration Properties

Type 3: Strong Concentration:

Xn − EXn . . . bounded moments

Typically: travelling wave F (x)

P{Xn ≤ k} = F (k −m(n)) + o(1)

(m(n) is close to the median of Xn)



Concentration Properties

Type 4: Very Strong Concentration:

Concentration on two (or finitely many values):

P{Xn = m(n) or Xn = m(n) + 1} = 1 + o(1).

with m(n) →∞.



Results

Cayley trees
1 2

3

4

5

6

root

• [Meir & Moon, Carr & Goh & Schmutz]

P{Dn = m(n) or Xn = m(n) + 1} = 1 + o(1).

for some m(n) with m(n) ∼
logn

log logn
.

• [Flajolet & Odlyzko]

Hn√
n
→ Y

with Y = c2 · max
0≤t≤1

e(t).



Results

Polya trees

root

=

• [Goh & Schmutz]

P{Dn ≤ k} = exp
(
−c0ηk−µn

)
+ o(1)

with c0 = 3.262 . . ., η = 0.3383 . . ., and µn = 0.9227 . . . · logn.

• [D. & Gittenberger]

Hn√
n
→ Y

with Y = c2 · max
0≤t≤1

e(t).



Results

Planted plane trees

root

=

•

P{Dn ≤ k} = exp
(
−2−(k−log2 n+1)

)
+ o(1)

• [De Bruijn & Knuth & Rice]

Hn√
n
→ Y

with Y = c2 · max
0≤t≤1

e(t).



Results

Travelling wave for maximum degree: F (x) = exp(−e−x)

(Extreme Value Distribution)



Results

Non-concentration of height

Hn = max
j≥0

Tn(j),
Tn(bc1ntc)

c2
√

n
→ e(t)

=⇒ Hn√
n
→ c2 · max

0≤t≤1
e(t)

=⇒ no concentration



Results

Recursive trees

• [Goh & Schmutz]

P{Dn ≤ k} = exp
(
−2−(k−log2 n+1)

)
+ o(1)

• [D.]

P{Hn ≤ k} = F (ck − e logn) + o(1),

where ck = k + O(log k), F (x) = Ψ(e−x), and Ψ(y) satisfies the

integral equation

Ψ(y/e1/e) =
1

y

∫ y

0
Ψ(z/e1/e)Ψ(y − z) dz.



Results

Scale free trees (with parameter r > 0)

• [Mori]

Dn

n
1

1+r

→ µ (a.s.)

and

Dn − µn
1

1+r√
µn

1
1+r

→ N(0,1)

for some random variable µ (related to degree distribtion).



Results

Scale free trees (with parameter r > 0)

• [D.]

Suppose that r = A
B > 0 is rational. Then

P{Hn ≤ k} = F (ck − dr logn) + o(1),

where ck = k+O(log k) and Set dr = 1/((r + 1)s) with r s es+1 = 1.

Further, F (x) = Ψ(e−x), where Ψ(y) is calculated by the following

procedure.



Results

Let Φ(y) be the solution of

y
1

A+BΦ(ye−1/dr) =
Γ
(
1 + 1

A+B

)
Γ
(

1
A+B

)A+B+1
×

×
∫

y1+···+yA+B+1=y,yj≥0

B+1∏
j=1

(
Φ(yje

−1/dr)y
1

A+B−1

j

)

×
A+B+1∏
`=B+2

(
Φ(y`)y

1
A+B−1

`

)
dy

Then

Ψ(y) =
Γ
(

A
A+B

)
Γ
(

1
A+B

)A
∫

z1+···+zA=1,zj≥0

A∏
j=1

(
Φ(yzj)z

1
A+B−1

j

)
dz



Proof Methods

Maximum degree in planted plane trees:

tn,k . . . number of planted plane trees of size n with degrees ≤ k

tk(x) =
∑
n≥1

tn,kxn . . . generating function

tk(x) = x + xtk(x) + xtk(x
2) + · · ·+ xtk(x)

k = x
1− tk(x)

k+1

1− tk(x)



Proof Methods

Theorem

y(x) =
∑
n≥1

ynxn satisfies functional equation of the form

y(x) = x · ϕ(y(x))

(+ some technical conditions)

=⇒ yn =

√
ϕ(τ)

2πϕ′′(τ)

ρ−n

n3/2

(
1 + O(n−1)

)
,

where τ > 0 is given by τϕ′(τ) = ϕ(τ) and ρ = 1/ϕ′(τ).



Proof Methods

Maximum degree in planted plane trees:

ϕk(u) =
1− uk+1

1− u
, ϕ(u) =

1

1− u

=⇒ τk =
1

2
−

k

2k+1
+ O(2−k), τ =

1

2

=⇒ ρk =
1

4

(
1 +

1

2k+1
+ O(k24−k)

)
, ρ =

1

4

=⇒ tn,k =
1
√

π
ρ−n
k n−3/2

(
1 + O(k2−k) + O(n−1)

)
,

tn =
1
√

π
ρ−nn−3/2

(
1 + O(n−1)

)
=⇒ P{Dn ≤ k} =

tn,k

tn
∼

ρn

ρn
k

∼ e−n/2k+1
= exp

(
−2−(k−log2 n+1)

)
.



Proof Methods

Height of recursive trees:

yn = (n− 1)!, y(x) =
∑
n≥1

yn
xn

n!
=

∑
n≥1

xn

n
= log

1

1− x
.

y′(x) = ey(x)

yn,k . . . number of recursive trees of size n with degrees ≤ k

= P{Hn ≤ k} · (n− 1)!

yk(x) =
∑
n≥1

yn,k
xn

n!
=

∑
n≥0

P{Hn ≤ k}
xn

n

y′k+1(z) = eyk(z)



Proof Methods

Alternate recurrence:

Yk(x) = y′k(x) =
∑
n≥0

P{Hn+1 ≤ k}xn

Y ′
k+1(z) = Yk+1(z)Yk(z)

(Yk+1(0) = 1)



Proof Methods

Integral equation:

y Ψ(y/e1/e) =
∫ y

0
Ψ(z/e1/e)Ψ(y − z) dz

L(u) =
∫ ∞
0

Ψ(y)e−yu dy

Y k(x) = ek/e · L
(
ek/e(1− x)

)
=

∫ ∞
0

Ψ(ve−k/e)e−vexv dv



Proof Methods

Auxiliary functions:

Y k(x) = ek/e · L
(
ek/e(1− x)

)

• 1− Y k(0) ∼ Ck
(
2
e

)k
, Y k(1) = ek/e.

•

Y
′
k+1(x) = Y k+1(x)Y k(x)

• For all integers ` ≥ 0 and for all reals k > 0 the difference

Y`(x)− Y k(x)

has exaclty one zero (“Intersection Property”)



Proof Methods

Auxiliary functions:

• Y k(x) =
∑
n≥0

Y k,nxn is an entire function with coefficients

yk,n =
∫ ∞
0

Ψ
(
ve−k/e

)
vne−v dv

that are asymptotically given by

Y k,n = Ψ
(
ne−k/e

)
= F (k − e logn) + o(1)

(Ψ(x) = F (e−x))



Proof Methods

Comparsion between Yk(x) and Y k(x):

• Yk(x) is approximated by Y ck(x) by choosing ck in a way that

Yk(1) = Y ek(1) ⇐⇒ ck = e · log Ỹk(1) ∼ k.

• Yk(x) ≈ Y ek(x) in a neighbourhood of x = 1

=⇒ P{Hn ≤ k} ≈ yn,ck
= Ψ

(
n/Yk(1)

)
+ o(1)

= F (ck − e logn) + o(1)

(Ψ(x) = F (e−x))



Thank You!


