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Abstract. We study the discrepancyDN of sequences (zn)n≥1 = ((xn, yn))n≥1 ∈ [ 0, 1)
s+1

where (xn)n≥0 is the s-dimensional Halton sequence and (yn)n≥1 is the one-dimensional

Kronecker-sequence ({nα})n≥1. We show that for α algebraic we have NDN = O (Nε)
for all ε > 0. On the other hand, we show that for α with bounded continued fraction we

have NDN = O
(
N

1
2 (logN)s

)
which is (almost) optimal since there exist α with bounded

continued fraction coefficients such that NDN = Ω
(
N

1
2

)
.

1. Introduction and statement of results

Let (zn)n≥0 be a sequence in the d-dimensional unit-cube [0, 1)d, then the discrepancy of
the first N points of the sequence is defined by

DN = sup
B⊆[ 0,1 )d

∣∣∣∣AN (B)

N
− λ (B)

∣∣∣∣ ,
where

AN(B) := # {n : 0 ≤ n < N, zn ∈ B} ,
λ is the d-dimensional volume and the supremum is taken over all axis-parallel subintervals
B ⊆ [0, 1)d.
The sequence (zn)n≥0 is called uniformly distributed if limN→∞DN = 0.

It is the most well-known conjecture in the theory of irregularities of distribution, that for
every sequence (zn)n≥0 in [0, 1)d we have

DN ≥ cd ·
(logN)d

N
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for a constant cd > 0 and for infinitely many N . Hence sequences whose discrepancy

satisfies DN = O
(

(logN)d

N

)
are called low-discrepancy sequences. Note that recent investi-

gations of Bilyk, Lacey et al., see for example [1] or [2] have led some people to conjecture

that (logN)
d+1
2

N
instead of (logN)d

N
is the best possible order for the discrepancy of sequences

in [0, 1)d.

Well-known examples of low-discrepancy sequences are the s-dimensional Halton-sequence
(xn)n≥1 ∈ [0, 1)s, or the one-dimensional Kronecker sequence (yn)n≥1 = ({nα})n≥1 ∈ [0, 1)
where α is a given irrational number with bounded continued fraction coefficients.
That is, the s-dimensional Halton-sequence satisfies

NDN = O ((logN)s)

and the Kronecker sequence with suitable α (namely if α has bounded continued fraction
expansion) satisfies

NDN = O (logN) .

If α is an algebraic number then with the help of the Thue-Siegel-Roth Theorem it can be
shown that in this case for the discrepancy of the one-dimensional Kronecker-sequence we
have NDN = O (N ε) for all ε > 0.

For the sake of completeness we remind the definition of the Halton sequence xn:
We choose a basis b1, b2, . . . , bs of pairwise relatively prime integers larger than 1. To

construct the i-th coordinate x
(i)
n ∈ [0, 1) of the n-th sequence point xn =

(
x
(i)
n , . . . , x

(s)
n

)
∈

[0, 1)s we represent n = n
(i)
0 + n

(i)
1 bi + n

(i)
2 b

(2)
i + n

(i)
3 b

3
i + . . . . in base bi and set

x(i)n :=
n
(i)
0

bi
+
n
(i)
1

b2i
+
n
(i)
2

b3i
+ . . . .

In the following we will be interested in the discrepancy of the combination

zn = (xn, yn)n≥1 ∈ [0, 1)s+1 =: [0, 1)d

in the d := s+1− dimension unit-cube. For this sequence (we will call it s+1−dimensional
Halton-Kronecker sequence) it was shown (see [9] or [8]) that this sequence is uniformly
distributed for all α irrational.
In [7] (see also [5] for an earlier slightly weaker result) it was shown that for almost all
choices of α the Halton-Kronecker sequence is almost a low-discrepancy sequence, i.e., for
almost all α we have

NDN = O
(
(logN)s+1+ε) = O

(
(logN)d+ε

)
for all ε > 0.
However until now no concrete explicite choice for α, such that this discrepancy bound is
valid could be given. When searching for concrete explicit examples of α providing a small
discrepancy for the Halton-Kronecker sequence, then two possible ideas are near at hand:
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• maybe algebraic α generate a small discrepancy of order NDN = O (N ε) as in the
pure Kronecker case
• maybe α with bounded continued fraction coefficients generate a low-discrepancy

Halton-Kronecker sequence, i.e., NDN = O
(
(logN)s+1) as in the pure Kronecker

case.

We will show in the following that the first assertion is true (see Theorem 1) and that the
second assertion in general is not true (see Theorem 2).
So, our results are:

Theorem 1. Let α be irrational and algebraic then for the discrepancy DN of the (s+ 1)-
dimensional Halton-Kronecker sequence (zn)n≥1 = ((xn, yn))n≥1 we have

NDN = O (N ε)

for all ε > 0.

For the proof of this result we will essentially use Ridout’s p-adic version of the Thue-Siegel-
Roth-Theorem. Maybe it is possible to prove an analog to Theorem 1 for t-dimensional
vectors α, i.e., for an s + t-dimensional Halton-Kronecker sequence, probably based on
multidimensional variants of Ridout’s Theorem, as were given for example by Schlickewei
in [10]. However at the moment we still are not able to give such a proof and leave this as
an open problem.
Concerning α with bounded continued fraction coefficients we show:

Theorem 2. Let α be irrational with bounded continued fraction coeffcients. Then the dis-
crepancy DN of the (s+ 1)-dimensional Halton-Kronecker sequence (zn)n≥1 = ((xn, yn))n≥1
satisfies

NDN = O
(
N

1
2 (logN)s

)
.

On the other hand there exists an irrational number α with bounded continued fraction
coefficients such that

NDN = Ω
(
N

1
2

)
.

We want to mention that the logarithmic factor (logN)s is certainly not optimal. For

example, with slightly more care we can prove NDN = O
(

(N logN)
1
2

)
in the case s = 1.

We leave the determination of the precise threshold as on open problem.

2. Proofs of the results

Proof of Theorem 1. We have (zn) = (xn, yn)n≥1 where (xn)n≥1 is the s-dimensional Halton
sequence in bases b1, . . . , bs and yn is the one-dimensional Kronecker-sequence ({nα})n≥1.
Let I = [0, β ) × [0, γ ) ⊆ [0, 1)d, with d = s + 1, β = (β1, . . . , βs) and γ ∈ [0, 1). We will

choose in the following certain disjoint subsets Iint and Ibor of [0, 1)d such that Iint ⊆ I ⊆
Iint ∪ Ibor. Then with

AN (I) := # {n : 0 ≤ n < N, zn ∈ I} ,
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we obviously have

(1) |AN(I)−Nλ(I)| ≤ |AN (Iint)−Nλ (Iint)|+ AN (Ibor) +Nλ (Ibor) .

We choose Iint as follows:
Let

βi =
β
(i)
1

b1i
+
β
(i)
2

b2i
+ . . .

with β
(i)
j ∈ {0, 1, . . . , bi − 1}. Then let

I (j1, . . . , js, k1, . . . , ks, γ) :=
s∏
i=1

[
ji−1∑
l=1

β
(i)
l

bli
+
ki

bjii
,

ji−1∑
l=1

β
(i)
l

bli
+
ki + 1

bjii

)
× [0, γ )

for positive integers j1, . . . , js and ki ∈ {0, 1, . . . , bi − 1} for i = 1, . . . , s. By the construc-
tion of the Halton sequence there is a unique

r = r (j1, . . . , js, k1, . . . , ks) ∈
{

0, 1, . . . , bj11 b
j2
2 . . . b

js
s − 1

}
such that zn ∈ I (j1, . . . , js, k1, . . . , ks, γ) if and only if

(2) n ≡ r mod
(
bj11 b

j2
2 . . . b

js
s

)
and yn ∈ [0, γ ) .

For x ∈ R let [x] denote the largest integer less or equal x. Then let Li :=
[
logbi N

]
+ 1

and define Iint as union of disjoint intervals by

Iint :=

L1⋃
j1=1

. . .
Ls⋃
js=1

β
(1)
j1⋃

k1=0

. . .

β
(s)
js⋃

ks=0

I (j1, . . . , js, k1, . . . , ks, γ) .

Further let

Ibor :=
s⋃
i=1

(
i−1∏
j=1

[0, 1)×

[
Li∑
l=1

β
(i)
l

bli
,

Li∑
l=1

β
(i)
l

bli
+

1

bLi
i

)
×

s∏
j=i+1

[0, 1)

)
× [0, γ ) .

Then indeed we have

Iint ⊆ I ⊆ Iint ∪ Ibor
and by (1) and (2) (where we use the notation j := (j1, . . . , js), k := (k1, . . . , ks) , θ (j,k) :=
r (j,k) · α, b(j) := bj11 b

j2
2 . . . b

js
s , N (j) := bN/b (j)c)

|AN(I)−Nλ(I)| ≤
∑
j,k

#

{
m

∣∣∣∣0 ≤ n = r (j,k) +mb(j) < N and {nα} ∈ [0, γ )

}
−N 1

b(j)
λ ([0, γ ))

∣∣∣∣
+

s∑
i=1

([
N

1

bLi
i

]
+ 1

)
+N

s∑
i=1

1

bLi
i

≤∣∣∣∣∣∑
j

∑
k

# {0 ≤ m < N(j) | {mb(j)α} ∈ [θ (j,k) , γ + θ (j,k))} −N (j)λ ([θ (j,k) , γ + θ (j,k)))

∣∣∣∣∣
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+
∑
j

∑
k

1 +
s∑
i=1

3 ≤ c (α, s, b1, . . . , bs) ·

(∑
j

N (j)DN(j) (b (j)α) + (logN)s
)
.

and the sums are always interpreted as

∑
j

:=

L1∑
j1=0

. . .

Ls∑
js=0

,
∑
k

:=

β
(1)
j1
−1∑

k1=1

. . .

β
(s)
js
−1∑

ks=1

.

Hence, to prove our Theorem 1 it suffices to show that

(3)
∑
j

N (j)DN(j) (b(j)α) = O (N ε) .

To provide this estimate we use the well-known Koksma-Erdös-Turan inequality (see [6] or
[4]) together with Ridout’s p-adic version of the Thue-Siegel-Roth-Theorem. The discrep-
ancy DM of a point set x0, . . . , xM−1 in [0, 1) can be estimated with the Koksma-Erdös-
Turan inequality by

DM ≤ c1 ·

(
1

H
+

H∑
h=1

1

h

∣∣∣∣∣ 1

M

M−1∑
n=0

e2πihxn

∣∣∣∣∣
)
,

for arbitrary H ≥ 1.
If xn = {nα}, then ∣∣∣∣∣

M−1∑
n=0

e2πihxn

∣∣∣∣∣ ≤ c2 ·
1

‖hα‖
.

Here, and in the following c1, c2, . . . are absolute constants, and ‖x‖ denotes the distance
of x to the nearest integer. Hence we have (choosing H = N(j))

(4) N (j)DN(j) (b(j)α) ≤ c3 ·
N(j)∑
h=1

1

h
· 1

‖hb(j)α‖
,

and it suffices to show that

(5)
∑
j

N(j)∑
h=1

1

h
· 1

‖hb(j)α‖
= O (N ε) .

Now we use a result which was shown in [3] with the help of Ridout’s theorem:
suppose that φ is algebraic and that q1, q2, . . . , qs ≥ 2 are pairwise coprime integers. Then
for every ε > 0 there exists a constant C = C (φ, ε, q1, . . . , qs) such that for all integers
j1, . . . , js ≥ 0 and H ≥ 1

H∑
h=1

1

h

1∥∥qj11 . . . qjss hφ∥∥ ≤ c ·
(
qj11 . . . q

js
s H

)ε
.
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Using this result we obtain∑
j

N(j)∑
h=1

1

h
· 1

‖hb(j)α‖
≤ C ·N ε ·

L1∑
j1=1

. . .

Ls∑
js=1

qεj11 . . . qεjss ≤ C ·N (s+1)ε,

and the result follows. �

Proof of Theorem 2. In order to prove the upper bound we proceed similarly to the proof
of Theorem 1. However, instead of (4) we use the trivial estimate

N (j)DN(j) (b(j)α) ≤
√
N

if N (j) ≤
√
N and

N (j)DN(j) (b(j)α) ≤ c1
N (j)

H(j)
+ c1c3

H(j)∑
h=1

1

h
· 1

‖hb(j)α‖
,

if N (j) >
√
N , where we set H(j) = bN(j)/

√
N)c.

If α has bounded continued fraction coefficients then we have ‖αh‖ ≥ C/h for all positive

integers. Hence it follows (in the case N (j) >
√
N) that

H(j)∑
h=1

1

h
· 1

‖hb(j)α‖
≤ H (j) b(j) ≤

√
N

and consequently

N (j)DN(j) (b(j)α) ≤ c4
√
N.

Thus we certainly have∑
j

N (j)DN(j) (b(j)α) = O
(√

N (logN)s
)

which proves the upper bound.
In order to otbtain the lower bound we use the real number α =

∑∞
m=1

1
b2

m
1

, where we

first suppose that b1 = max{b1, . . . , bs} ≥ 3. By [11] it is known that α has bounded

continued fraction coefficients. Let k ≥ 1 be fixed and N = b2
k+1−1

1 . We consider the

interval B :=
[

0, 1

b2
k

1

)
× [0, 1)s−1 ×

[
0, 1

2

)
. By definition it is clear that x

(1)
n ∈ [0, b−2

k

1 ) if

and only if n = `b2
k

1 for some ` ≤ bN/b2k1 c = b2
k−1

1 . However, for all these n we have

nα− bnαc = `
∑
m>k

b2
k−2m

1 ≤ b2
k−1

1

b−2
k

1

1− b−2−k

1

≤ 1

2

provided that k is sufficiently large. Hence, for this interval B we have

AN(B)−N · λ(B) ≥ b2
k−1

1 − b2k+1−1
1 b−2

k

1

1

2
=

√
N

2
√
b1
.

This proves the result in the case b1 ≥ 3.
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If b1 = 2 then we can proceed in precisely the same way by using α =
∑∞

m=1
1

42m
. �
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