
THE HEIGHT OF INCREASING TREES

MICHAEL DRMOTA

Abstract. Increasing trees have been introduced by Bergeron, Flajolet and
Salvy [1]. This kind of notion covers several well knows classes of random trees

like binary search trees, recursive trees, and plane oriented (or heap ordered)

trees.
We consider the height of increasing trees and prove for several classes of

trees (including the above mentioned ones) that the height satisfies EHn ∼
γ log n (for some constant γ > 0) and VarHn = O(1) as n→∞. The methods

uses are based on generating functions.

1. Introduction

Increasing trees have been introduced by Bergeron, Flajolet and Salvy [1]. They
constitute classes of weighted planar or non-planar recursive trees.

A recursive tree is a (planar or non-planar) rooted tree (witn n nodes) where
the nodes are labeled with 1, 2, . . . , n such that all successors of each node have a
larger label. In particular, the root has label 1, and every path from the root to a
leaf has strictly increasing labels. It is also possible to consider a recursive tree as
the result of an evolution process. The process starts with the root (that gets label
1). Next, another node is attachted to the root (that gets label 2) and in every step
a new node is attachted to an already existing node (and gets the next label). The
labels are the history of the tree evolution.

Now we consider the class J of all planar (resp. non-planar) recursive trees and
associate a weight to these trees in the following way. Let ψj , j ≥ 0, be a given
sequence of non-negative numbers with ψ0 > 0. Then the weight ω(t) of a recursive
tree t is defined by

ω(t) =
∏
j≥0

ψ
Dj(t)
j ,

where Dj(t) denotes the number of nodes in t with j successors. Let Jn denote the
set of recursive trees of size n then we set

yn =
∑
t∈Jn

ω(t)

and

y(z) =
∑
n≥0

yn
zn

n!
.

By definition it is clear that the generating function y(z) satisfies the differential
equation

y′(z) = Ψ(y(z)), y(0) = 0,
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where
Ψ(w) =

∑
j≥0

ψjw
j

if we consider planar recursive trees and

Ψ(w) =
∑
j≥0

ψj
wj

j!

if we consider non-planar recursive trees. Note that the set of non-planar trees can
be obtained from planar trees by considering the natural equivalence relation. Thus,
we will mainly focus on the planar version.

Before we state some known results on increasing trees we want to recall the
most prominent examples of increasing trees.

Example . Binary increasing trees are defined by Ψ(w) = (1 + w)2. We have
yn = n! and y(z) = 1/(1−z). The probabilty model that is induced by this (planar)
binary increasing trees (see below) is exactly the standard permutation model of
binary search trees.

Example . Recursive trees (that is, every non-planar recursive tree gets label 1)
are given by Ψ(w) = ew. Here yn = (n− 1)! and y(z) = log(1/(1− z)).

Example . Plane oriented (recursive) trees (or heap ordered trees) are given by
Ψ(w) = 1/(1− w). This means that every planar recursive trees gets label 1. Here
yn = (2n− 3)!! = 1 · 3 · 5 · · · (2n− 3) and y(z) = 1−

√
1− 2z.

The papers of Bergeron, Flajolet and Salvy [1] and Smythe and Mahmoud [15]
give a good survey on known results on theses kinds of trees, in particular on
recursive and plane oriented trees.

The reason for introducing weights is that they induce a natural probability
model on Jn. The probability of a tree t ∈ Jn is given by Pn(t) = ω(t)/yn. Every
parameter on increasing trees is then a random variable and it is a natural problem
to study the asymptotic distribution of these random variables. (In this paper we
will focus on the height Hn of increasing trees of size n.) Bergeron, Flajolet and
Salvy [1] have already studied several parameters, for example the depth. More
precisely, let Ωn denote the typical depth of a node in Jn, that is, the depth of
a random node (where every node in equally likely) in a random tree in Jn. The
probability distrbution of Ωn is given by

P (Ωn = k) =
ELn,k
n

,

where Ln,k denotes the number of nodes at level k. (The sequence (Ln,k)k≥0 is also
called profile of trees in Jn and desribes more of less the shape of a random incresing
tree.) In [1] it is shown that Ωn satisfies a central limit theorem of the form

Ωn − C log n√
C log n

→ N(0, 1),

where C = d
d−1 if Ψ(w) is a polynomial of degree d, C = 1 for recursive trees, and

C = 1
2 for plane oriented trees.

Since the distribution of Ωn is closely related to the expected profile ELn,k this
central limit theorem gives an overall picture of the shape of increasing trees. They
are so-called log n-trees, that is, the average depth of nodes in trees of size n is of
order log n.

The purpose of this paper is to make the statement of log n-tree more accurate in
the sense that we will consider the distribution of the height Hn and show that Hn is
also of order log n. We will also observe a phenomenon that occurs quite frequently
for log n-trees, namely that the distribution of the height is highly concentrated, in
particular the variance VarHn is bounded as n→∞.
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There are not many results on the height of increasing trees that are available
in the literature. Of course, the height binary search trees has been well studied,
see [4, 5, 6, 8, 9, 14]. Further, Pittel [13] has already considered recursive trees
(Ψ(w) = ew) and scale-free trees (Ψ(w) = (1− w)−r) and has proved that

Hn

log n
→ c in probability

for proper height constants c > 0. These two kind of trees will be discussed in
detail in Theorems 3 and 4. Finally, Broutin et al. [2] proved a similar relation
for increasing trees that are defined by polynomials Ψ(w). Interestingly the height
constant c depends only on the degree d of Ψ(w). In Theorems 1 and 2 we will
also consider these kinds of trees, however, we will only get precise results for d-ary
increasing trees defined by Ψ(w) = (1 + w)d.

2. Results

Let y(z) =
∑
n≥0 ynz

n/n! the generating function of a class of increasing trees
and let Hn denote the (random) height of increasing trees of size n. Then we intro-
duce the generating functions

yk(z) =
∑
n≥0

ynP{Hn ≤ k}z
n

n!
.

By recalling the recursive description of increasing trees it easily follows that y0(z) =
0 and

y′k+1(z) = Ψ(yk(z))
with yk+1(0) = 0.

Theorem 1. Suppose that Ψ(w) is an aperiodic polynomial, that is, Ψ(w) cannot
be written in the form Ψ(w) = Φ(wr) for some r > 1 and some polynomial Φ(w),
and let ρ denote the radius of convergence of y(z).

Then we have, as n→∞,

EHn = O(log n).

Furthermore, if P{Hn+1 ≤ k} ≤ P{Hn ≤ k} for all n and k and if there exists
δ > 0 such that yk+1(ρ) ≥ (1 + δ)yk(ρ) (for all k ≥ 0) then we have, as n→∞,

VarHn = O(1)

and exponential tail estimates of the form

P{|Hn −EHn| ≥ η} � e−cη

for some c > 0.

Remark . Unfortunately we cannot show the conditions P{Hn+1 ≤ k} ≤ P{Hn ≤
k} and yk+1(ρ) ≥ (1+δ)yk(ρ) in general. We conjecture that both conditions are sat-
isfied if the sequence ψj is log-concave, that is, ψj−1ψj+1 ≤ ψ2

j . Concerning the sec-
ond condition we mention that it is quite easy to show (see Lemma 7) that yk(ρ) �
(1+δ)k for some δ > 0. Thus, it is very likely that it is actually satisfied for all poly-
nomial increasing trees. Furthermore, if we also know that yk+1(ρ)/yk+1(ρ) → α > 1
as k →∞ then it also follows that EHn ∼ (1/ logα) log n.

For special polynomials we can be more precise. The following theorem covers
the case of so-called d-ary increasing trees.

Theorem 2. Suppose that Ψ(w) = ψ0

(
1+ψ1/(dψ0)w

)d with positive real numbers
ψ0, ψ1 and an integer d ≥ 2.

Then, as n→∞, we have

EHn = cd log n+O
(√

log n (log log n)
)
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where cd is the largest positive real solution of the equation

cd log
de

cd(d− 1)
=

1
d− 1

. (1)

Furthermore we have (uniformly for all k ≥ 0 as n→∞)

P{Hn ≤ k} = F
(
(d− 1)n/yk(ρ)d−1

)
+ o(1), (2)

where ρ = d/((d− 1)ψ1) and F (y) satisfies the integral equation

y
1
d−1F (ye−1/cd) =

Γ
(

d
d−1

)
Γ
(

1
d−1

)d ∫
y1+···+yd=y,yj≥0

d∏
j=1

(
F (yj)y

1
d−1−1

j

)
dy (3)

Moreover, as n→∞,
VarHn = O(1)

and there are exponential tail estimates of the form

P{|Hn −EHn| ≥ η} � e−cη

with some c > 0.

Remark . The limit relation (2) can be interpreted in the following way. Let hn be
defined by hn = max{k : yk(ρ)d−1 ≤ n} and set W (x) = F (e−x). Then

P{Hn ≤ hn + r} = W

(
log

yhn(ρ)d−1

(d− 1)n
+

r

cd

)
+ o(1).

Here we have also used the relation yk+1(ρ)/yk(ρ) ∼ e1/(cd(d−1)) (see Lemma 9) and
continuity of F . Thus, the probability distribution of Hn around hn is almost the
same for all n. There is only a fluctuating shift that has its origin in the discretization
level of the problem, both, n and k are discrete. (Note that e−1/cd ≤ yhn(ρ)d−1/n ≤
e1/cd .)

The function W (x) can be seen as a travelling wave (compare also with [3]).

Remark . We want to note that for the binary case Ψ(w) = (1 + w)2 (that is
equivalent to binary search trees) various results of that kind (and even much more
precise ones) are well known, see [4, 9, 14]. For example, in the binary case one has

EHn = c2 log n− 3c2
2(c2 − 1)

log log n+O(1).

Of course, we expect similar relations for all polynomial classes of increasing trees.

The next two theorems cover recursive trees and scale-free trees.

Theorem 3. Suppose that Ψ(w) = ψ0e
ψ1
ψ0
w with ψ0 > 0, ψ1 > 0. Then

EHn = e log n+O
(√

log n (log log n)
)
.

Furthermore we have (uniformly for all k ≥ 0 as n→∞)

P{Hn ≤ k} = F (n/y′k(ρ)) + o(1),

where ρ = 1/ψ1 and F (y) satisfies the integral equation

y F (y/e1/e) =
∫ y

0

F (z/e1/e)F (y − z) dz. (4)

Moreover, as n→∞,
VarHn = O(1)

and there are exponential tail estimates of the form

P{|Hn −EHn| ≥ η} � e−cη

with some c > 0.
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Theorem 4. Suppose that Ψ(w) = ψ0

(
1− ψ1

rφ0
w
)−r

for some rational number

r = A
B > 0 (with positive coprime integers A,B). Set c′r = r/((r + 1)γ), where γ is

the real solution of γe1+γ/r = 1 Then

EHn ∼ c′r log n.

Furthermore we have (uniformly for all k ≥ 0 as n→∞)

P{Hn ≤ k} = G
(
(r + 1)n/(y′k(ρ))

1+ 1
r

)
+ o(1), (5)

where ρ = r/((r + 1)ψ1). G(y) is given by

G(y) =
Γ
(

A
A+B

)
Γ
(

1
A+B

)A ∫
z1+···+zA=1,zj≥0

A∏
j=1

(
F (yzj)z

1
A+B−1

j

)
dz

and F (y) satisfies the integral equation

y
1

A+B F (ye−1/c′r ) =
Γ
(
1 + 1

A+B

)
Γ
(

1
A+B

)A+B+1

∫
y1+···+yA+B+1=y,yj≥0

B+1∏
j=1

(
F (yje−1/c′r )y

1
A+B−1

j

)

×
A+B+1∏
`=B+2

(
F (y`)y

1
A+B−1

`

)
dy.

Moreover, as n→∞,
VarHn = O(1)

and there are exponential tail estimates of the form

P{|Hn −EHn| ≥ η} � e−cη

with some c > 0.

Remark . There is no doubt that Theorem 4 has an analogue for irrational r > 0.
However, the methods of this paper are not strong enough to prove a relation of
the form (5) for irrational r. Nevertheless, exponential bounds can be shown for all
cases, compare with [10].

The paper is organized as follows. In Section 3 we present an alternate description
of the underlying probabilistic model that is based on an evolution model and works
for d-ary increasing trees, for recursive trees and scale-free trees. In Sections 4–7 we
prove Theorems 1–4 separately.

3. The Probabilistic Model

As mentioned above, (non-planar) recursive trees can be described by a tree
evolution process. We start with one node (with label 1) and at each step we attach
randomly a new node to one of the preceding ones. It is clear that every recursive
tree of size n is generated with equal probability 1/(n−1)!. In other words, this tree
evolution process induces uniform distribution on recursive trees of size n. Similarly
this works for binary increasing trees and also for plane oriented trees.

In a recent paper Panholzer and Prodinger [12] proved that there are exactly
three families where the sequence Pn of probability measures on Jn is induced by a
(natural) tree evolution process (described below) if and only if Ψ(t) has one of the
three forms:

• Ψ(w) = ψ0 (1 + (ψ1/(dψ0))w)d for some d ∈ {2, 3, . . . } and ψ0 > 0, ψ1 > 0.

• Ψ(w) = ψ0e
ψ1
ψ0
w with ψ0 > 0, ψ1 > 0.

• Ψ(w) = ψ0

(
1− ψ1

rφ0
w

)−r
for some r > 0 and ψ0 > 0, ψ1 > 0.
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The corresponding tree evolution process runs as follows1 The starting point is
(again) one node (the root) with label 1. Now assume that a tree t is size n is
present. We attach to every node v of t a local weight ρ(v) = (k + 1)ψk+1ψ0/ψk
when v has k successors and set ρ(t) =

∑
v∈t ρ(v). Observe that in a planar tree

there are k+1 differnt ways to attack a new (labeled) node to an (already existing)
node with k successors. Now choose a node v in t according to the probability
distrbution ρ(v)/ρ(t) and and then independently and uniform one of the k + 1
possibilities to attach a new node there (when v has k successors). This construction
ensures that in these three particular cases a tree t of size n that occurs with
probability proportional to ω(t) generates a tree t′ of size n + 1 with probability
that is proportional to ω(t)ψk+1ψ0/ψk which equals ω(t′). Thus, this procedure
induces the same probability distribution on Jn as the above mentionen one where
a tree t ∈ Jn has probablility ω(t)/yn.

Note that if we are only interesed in the distributions Pn then we can work
(without loss of generality) with some special values for ψ0 and ψ1. It is sufficient
to consider the generating functions

• Ψ(w) = (1 + w)d for some d ∈ {2, 3, . . . } (d-ary increasing trees).
• Ψ(w) = ew (recursive trees).
• Ψ(w) = (1− w)−r for some r > 0 (generalized plane oriented trees).

In the third class, the probabilty of choosing a node with out-degree j is proportional
to j + r.

This tree evolution model can be used in several ways. For example one can
ask whether there are properties that hold almost surely. On the other hand several
relations are automatically true. For example in the framework of the tree evolution
we definitely have Hn+1 ≥ Hn and consequently

P{Hn+1 ≤ k} ≤ P{Hn ≤ k}. (6)

When one only considers the probability distributions on Jn resp. on Jn+1 this
relation is far from beeing obvious and, in fact, is not true in all cases. However,
we conjecture that it is true if the sequence ψj is log-concave. This conjecture is
supported by the oberervation that (6) can be directly checked for small n and k
under the log-concavity assumption.

4. Polynomial Increasing Trees

In this section we will prove Theorem 1. First we recall a property for the singular
behaviour of y(z), see [1].

Lemma 1. Suppose that Ψ(w) is an aperiodic polynomial of degree d with leading
coefficient ψd. Then

ρ =
∫ ∞

0

dy

Ψ(y)
is the only dominant singularity of y(z).

Furthermore, there exists an analytic function H(w) =
∑
m≥0 hmw

m with h0 = 1
such that

y(z) =
1

η
(
1− z

ρ

)1/(d−1)
H

(
η

(
1− z

ρ

)1/(d−1)
)

locally around z = ρ, where η = ((d− 1)ρψd)
1/(d−1). Consequently,

yn ∼ n!
ρ−n

η

n
2−d
d−1

Γ
(

1
d−1

) .
1For the sake of brevity we only discuss the planar version.
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For example, if Ψ(w) = (1 + w)d then ρ = 1/(d− 1),

y(z) = (1− (d− 1)z)
1
d−1 − 1

and

yn = n!(−(d− 1))n
(
− 1
d−1

n

)
∼ n!(d− 1)n

n
2−d
d−1

Γ
(

1
d−1

) .
For the next lemma we use the notation A(z) ≤c B(z) which means that all

coefficients of the power series A(z) are smaller or equal than the corresponding
coefficients of B(z). Of course, A(z) ≤c B(z) implies A(z) ≤ B(z) for all z ≥ 0.

Lemma 2. Set δk(z) = y(z)− yk(z). Then there exists a constant C > 0 such that

δk(z) ≤c C
∑
`≥k

1
`!

(log Ψ(y(z)))` .

Proof. We proceed by induction. Note that y(z) ≤c Cy′(z) (for some constant
C > 0) and thus

δ0(z) = y(z) ≤c Cy′(z) = CΨ(y(z)) = C
∑
`≥0

1
`!

(log Ψ(y(z))` .

Next observe that ∑
`≥k+1

1
`!

(log Ψ(y(z)))`
′ =

∑
`≥k+1

1
(`− 1)!

(log Ψ(y(z)))`−1 Ψ′(y(z))
φ(y(z))

y′(z)

=
∑
`≥k

1
`!

(log Ψ(y(z)))` Ψ′(y(z)).

Consequently,

δ′k+1(z) = Ψ(y(z))−Ψ(yk(z))

= Ψ′(ξ(z)) δk(z)
≤c Ψ′(y(z)) δk(z)

= Ψ′(y(z))
∑
`≥k

1
`!

(log Ψ(y(z)))`

=

 ∑
`≥k+1

1
`!

(log Ψ(y(z)))`
′ .

Finally, by integration both sides from 0 to z we have completed the inductive
proof. �

Lemma 3. Suppose that Ψ(w) is a polynomial of degree d and that k ≥ (1 +
ε)d−1

d log n for some ε > 0. Then

[zn] δk(z) �
ρ−n

nk!

(
d

d− 1
log n

)k
(7)

Proof. Lemma 1 implies that log Ψ(y(z)) ∼ d
d−1 log(1/(1− z/ρ)). Hence

[zn] log Ψ(y(z))` � ρ−n

n

(
d

d− 1
log n

)`
. (8)

follows from the methods used for the proof of [8, Lemma 4.2].
Now, (7) is an easy consequence of Lemma 2 and (8). �
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Lemma 4. Suppose that Ψ(w) is a polynomial of degree d. Then for all γ ≥ (1 +
ε)d−1

d we have
P{Hn > γ log n} � nγ−

1
d−1+γ log d

d+1−γ log γ

and consequently
EHn ≤ γ̃ log n+O(1),

where γ̃ > 0 is the largest solution of

γ̃ − 1
d− 1

+ γ̃ log
d

d+ 1
− γ̃ log γ̃ = 0.

Proof. Let k = γ log n ≥ (1 + ε)d−1
d log n. Then

P{Hn > k} =
n!
yn

[zn] δk(z)

� n!
yn

ρ−n

nk!

(
d

d− 1
log n

)k
� n−

1
d−1+γ−γ log γ+γ log d

d−1 .

Consequently

EHn =
∑
k≥0

P{Hn > k}

≤ γ̃ log n+
∑

k≥γ̃ logn

P{Hn > k}

= γ̃ log n+O(1).

�

Remark . If Ψ(w) is a polynomial of degree d then the out-degrees of the correspond-
ing increasing trees (with positive weight) are bounded by d. Hence we definitely
have Hn � log n (and consequently EHn � log n) which shows that the order of
the upper bound for EHn is best possible.

Lemma 5. Suppose that y1(z), y2(z), y1(z), y2(z) are non-negative continuous func-
tions that are defined for z ≥ 0 such that y1(z) < y1(z) and y2(z) < y2(z) (at least)
for a small interval 0 < z < ζ (for some ζ > 0). Further assume y′2(z) = Ψ(y1(z)),
y′2(z) = Ψ(y1(z)) and that the difference y1(z)−y1(z) has exactly one positive zero.
Then the difference y2(z)− y2(z) has at most one positive zero.

Proof. Suppose that y1(z) ≥ y1(z) for 0 ≤ z ≤ z0 and y1(z) ≤ y1(z) for z ≥ z0,
that is, z0 is the only (positive) zero of the difference y1(z)− y1(z). Since

(y2(z)− y2(z))
′ = = Ψ(y1(z))−Ψ(y1(z))

= Ψ′(ξ(z))(y1(z)− y1(z))

the same is true for the difference y′2(z)− y′2(z). Hence, the difference y2(z)− y2(z)
is increasing for 0 ≤ z ≤ z0 and decreasing for z ≥ z0. Since y2(0) > y2(0) it directly
follows that the difference y2(z)− y2(z) has at most one zero. �

Remark . The assumption that y1(z), y2(z), y1(z), y2(z) are non-negative can be
weakened to the condition that Ψ′(w) > 0 for all w ≥ minz≥0 min{y1(z), y1(z)}.

Lemma 6. Suppose that P{Hn+1 ≤ k} ≤ P{Hn ≤ k} for all n and k. Then we
have

P{Hn ≤ k} � yk(ρ)

n
1
d−1

and
P{Hn > k} � n

yk(ρ)d−1
.
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Proof. We define ηk by y(ρ(1−ηk)) = yk(ρ). By Lemma 1 we have ηk ∼ c/yk(ρ)d−1

(for some constant c > 0).
Next observe that y(z−ρηk)′ = Ψ(y(z−ρηk)) and that y(z−ρηk)|z=0 < y`(0) for

all `. Further, y(z− ρηk)− y0(z) = y(z− ρηk) has exactly one positive zero. Hence,
by Lemma 5 it follows that y(z− ρηk)− y`(z) have at most one postive zero. (Note
that y(z − ρηk) is negative for z < ρηk. But for sufficiently large k we surely have
Ψ′(y(z − ρηk)) > 0 for all z > 0, compare with the remark following Lemma 5.)
In particular we know (by construction) that y(ρ− ρηk)− yk(ρ) = 0. Consequently
y(z−ρηk) ≤ yk(z) for 0 ≤ z ≤ ρ (and also y(z−ρηk) ≥ yk(z) for ρ ≤ z < ρ(1+ηk)).

First, set z = ρ. Since we have assumed that y(z − ρηk) ≤ yk(z) for 0 ≤ z ≤ ρ
we get

yk(ρ) =
∑
`≥0

y`P{H` ≤ k}ρ
`

`!

≥
∑
`≤n

y`P{H` ≤ k}ρ
`

`!

≥ P{H` ≤ k}
∑
`≤n

y`
ρ`

`!
.

Since y`ρ`/`! ∼ c1`
1
d−1−1 (for some constant c1 > 0 as `→∞) we immediately get

(as n→∞) ∑
`≤n

y`
ρ`

`!
∼ c2n

1
d−1 .

Thus, P{H` ≤ k} � yk(ρ)n−
1
d−1 .

Next, let x = ρ
(
1− 1

n

)
≤ ρ and assume without loss of generality that n ≤

yk(ρ)d−1. Here we have

y(x)− y(x− ρηk) ≥ y(x)− yk(x)

≥
∑
`≥n

y`P{H` > k}x
`

`!

≥ P{Hn > k}
∑
`≥n

y`
x`

`!

It is now an easy exercise to show (with help of Lemma 1) that∑
`≥n

y`
x`

`!
�
∫ ∞

n

y
1
d−1−1e−y/n dy � n

1
d−1

and that
y(x)− y(x− ρηk) ∼ c2n

1
d−1+1ηk

for some constant c2 > 0. Of course, this implies P{Hn > k} � n/yk(ρ)d−1 and
completes the proof of the lemma. �

By combining Lemma 5 and 6 we directly obtain Theorem 1. Note that the
assumption yk+1(ρ) ≥ (1 + δ)yk(ρ) combined with Lemma 6 provides exponential
tail estimates of the kind

P{|Hn − hn| ≥ η} � e−ηc4 , (9)

where hn = max{k : yk(ρ)d−1 ≤ n} (and c4 > 0 is a properly chosen constant). Of
course, (9) implies

EHn = hn +O(1)
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and consequently

P{|Hn −EHn| ≥ η} � e−ηc4

which also implies that VarHn = O(1) as n→∞.
Note further that if the limit limk→∞ yk+1(ρ)/yk(ρ) = α exists then hn =

max{k : yk(ρ)d−1 ≤ n} ∼ (log n)/(logα) and also

EHn ∼
log n
logα

.

Note that we cannot prove yk+1(ρ) ≥ (1 + δ)yk(ρ) for all polynomial increasing
tree families. However, the following lemma supports this conjectural relation and
will also be used in Section 5.

Lemma 7. There exists δ > 0 such that yk(ρ) � (1 + δ)k.

Proof. We choose γ < 1/e and define xk by y(xk) = eγk. Since Ψ(w) is a polynomial
of degree d we, thus, get

Ψ(y(xk)) ≤ Ceγkd

for some C > 0. Furthermore

y(xk)− yk(xk) ≤
∑
`≥k

1
`!

(log Ψ(y(xk)))
`

≤
∑
`≥k

1
`!

(γkd+ logC)`

� (γkd+ logC)k

k!

� (γkd)k

k!

Hence, y(xk)− yk(xk) → 0 as k →∞. Conseqently with δ = γ − 1 we have

yk(ρ) ≥ yk(xk)− y(xk) + o(1) � eγk = (1 + δ)k.

�

Finally, we show that we definitely have yk(ρ) � (1+δ)k for some δ > 0. Actually,
there is a local version.

Lemma 8. There exists a constant δ > 0 such that yk+1(ρ) ≤ (1 + δ)yk(ρ) for all
k ≥ 1.

Proof. By monotonicity we have yk(x) ≤ y(x) for 0 ≤ x ≤ ρ(1 − ηk) and yk(x) ≤
yk(c) for ρ(1−ηk) ≤ x ≤ ρ, where ηk is defined by y(ρ(1−ηk)) = yk(ρ) and satisfies
ηk ∼ c/yk(ρ)d−1. From this we get

yk+1(ρ) ≤
∫ ρ(1−ηk)

0

Ψ(y(t)) dt+ ρηkΨ(yk(ρ))

= y(ρ(1− ηk)) + ρηkΨ(yk(ρ))

≤ yk(ρ) +
C

yk(ρ)d−1
yk(ρ)d

≤ (1 + C) yk(ρ)

for some constant C > 0. �
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5. d-Ary Increasing Trees

In this section we consider d-ary increasing trees defined by Ψ(w) = (1 + w)d.
The special case d = 2 has been discussed in [9]. Nevertheless it is not obvious to
generalize this special case to the general one. In what follows we have tried to focus
on those properties that are not easy to generalize whereas for the remaining parts
we indicate the main lines and refer to the literature for technical details.

For d-ary incerasing trees we have y(z) = (1−(d−1)z)−
1
d−1 −1 and ρ = 1/(d−1).

Further,

yn = n!(−(d− 1))n
(
− 1
d−1

n

)
∼ n!(d− 1)n

n
2−d
d−1

Γ
(

1
d−1

) .
As already mentioned in section 3, these kinds of trees surely satisfy

P{Hn+1 ≤ k} ≤ P{Hn ≤ k}.
Thus, in order to apply Theorem 1 (unconditionally) we have to show that there
exists δ > 0 with yk+1(ρ) ≥ (1 + δ)yk(ρ). In fact, we will prove much more.

For convenience, we set ỹ(z) = y(z) + 1 and ỹk(z) = yk(z) + 1. These functions
satisfy ỹ′(z) = ỹ(z)d and ỹ′k+1(z) = ỹk(z)d with initial values ỹk(0) = ỹ(0) = 1 and
ỹ0(z) ≡ 1.

Lemma 9. For all k ≥ 0 we have
ỹk+2(ρ)
ỹk+1(ρ)

≤ ỹk+1(ρ)
ỹk(ρ)

.

Proof. For 0 ≤ γ < 1 set

vk(z, γ) =

{
ỹ(z) for 0 ≤ z ≤ ρ(1− γ),
γ−1/(d−1)ỹk

(
z−ρ(1−γ)

γ

)
for ρ(1− γ) ≤ z ≤ ρ.

These functions satisfy
vk+1(z, γ) = vk(z, γ)d,

vk(0) = 1 and vk(ρ, γ) = γ−1/(d−1)ỹk(ρ). In particular, for γk = (ỹk+1(ρ)/ỹk(ρ))d−1

we have
vk(ρ, γk) = ỹk+1(ρ).

Now inductive application of Lemma 5 shows that ỹk+1(z)−vk(z, ρ) have (at most)
one positive zero. In particular we get

ỹk+1(z) ≤ vk(z, γk) for 0 ≤ z ≤ ρ.

By integration this also implies that

ỹk+2(z) ≤ vk+1(z, γk) for 0 ≤ z ≤ ρ

and consequently for z = ρ:

ỹk+2(ρ) ≤ vk+1(ρ, γk) = γ
−1/(d−1)
k ỹk+1(ρ) =

ỹk+1(ρ)2

ỹk(ρ)

which completes the proof of Lemma 9 �

Corollary . There exists α > 1 with

α = lim
k→∞

yk+1(ρ)
yk(ρ)

. (10)

Proof. Lemma 9 implies that there exists α ≥ 1 with

α = lim
k→∞

ỹk+1(ρ)
ỹk(ρ)

.

Since yk(ρ) →∞ this also implies (10). Finally, Lemma 7 implies that α > 1. �
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This already proves EHn ∼ c log n (for some constant c = 1/(logα) > 0) and
the concentration property P{|Hn −EHn| ≥ η} � e−cη.

Our next aims are to show that α = e1/cd , where cd is defined in (1) and to prove
the limit relation (2). For both purposes we will use the solution of the integral
equation (3). Then we will introduce properly defined auxiliary functions yk(α, z).
The procedure is almost the same as that of [9]. Therefore we will not work out all
details.

Note that it was already shown by Broutin et al. [2] that Hn/(log n) → cd in
probability. This result is, of course, in accordance with EHn ∼ cd log n.

Lemma 10. Set α0 = e1/cd , where cd is defined in (1). Suppose that 1 < α < α0

and that β < γ := cd − 1/(d− 1) denotes the smallest positive solution of

αβ =
β(d− 1) + 1

d
. (11)

Further, let F denote the set of monotonely decreasing and continuous functions
F (y) (y ≥ 0) that satisfy

F (y) = 1− yβ +O(yγ) (y → 0+)

and F (y) → 0 as y →∞. Then there exists a unique solution F ∈ F of the integral
equation

y
1
d−1F (y/α) =

Γ
(

d
d−1

)
Γ
(

1
d−1

)d ∫
y1+···+yd=y,yj≥0

d∏
j=1

(
F (yj)y

1
d−1−1

j

)
dy. (12)

Moreover, there exist C > 0 and κ > 0 such that

F (y) = O(e−C y
κ

) (13)

as y →∞.

Proof. It is easy to show that ρ defined by

ρ(F1, F2) = sup
y≥0

(
|F1(y)− F2(y)|y−γ

)
is a complete metric on F (compare with [9]) and that (12) is a contracting fixed
point equation on F that can be rewritten as F = A(F ) (with Lipschitz constant
L = dαγ/(1 + γ(d − 1)) < 1). Hence, by Banach’s fixed point theorem there is a
unique solution.

Finally, (13) can be proved in an inductive way. Let F0(y) = max{1− yβ , 0} and
Fn+1 = A(Fn). Then Fn → F and (by the same method as in [9]) one can show
(inductively) that Fn(y) ≤ Ce−y

κ

(for y ≥ 1 and some constant C > 0), where
κ = (log d)(log d− logα) > 0. �

Note that for every scaling factor c > 0 the function F (c y) is also a solution of
(12). Thus, we can assume (without loss of generality) that there is Fα that satisfies
(12) and ∫ ∞

0

Fα(y) y
1
d−1−1 dy = (d− 1)

1
d−1 Γ

(
1

d− 1

)
.

Note further that α = α0 is critical value for the fixed point equation (12) because
the Lipschitz constant L would equal 1 and, thus, we cannot apply Banach’s fixed
point theorem. Nevertheless it will possible to solve (12) even for α = α0, see
Lemma 14.

We introduce the Laplace transforms

Φα(u) =
1

(d− 1)
1
d−1 Γ

(
1
d−1

) ∫ ∞

0

Fα(y) y
1
d−1−1e−uy dy. (14)
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These are entire functions and are also given by Φα(0) = 1 and by the differential
equation

Φ′α(u) = − 1
αd/(d−1)

Φα
(u
α

)d
. (15)

Note that if α > 1 then (15) has always a unique (entire) solution. It is easy to find
a (formal) power series expansion Φα(u) =

∑
k cku

k which is also convergent in the
whole complex plane (see [8]). Furthermore, we definitely have limα→α0 Φα(u) =
Φα0(u) (uniformly for u in a compact subset of the complex plane).

We define auxiliary functions

yk(α, z) = αk/(d−1)Φα
(
αk(ρ− z)

)
, (16)

where k can be considered a real (not necessarily integral) parameter. The next
lemma collects some useful facts on yk(z). We omit the proof. All properties are
direct consequences of the definition and the properties of Fα (see also [9]).

Lemma 11. Suppose that 1 < α < α0 = e1/cd and β be given by (11). The functions
yk(α, z) be defined by (16). have the following properties.

(1) For all k > 0 the function yk(α, z) in monotone for z ≥ 0. The initial value
satisfies 0 < yk(α, 0) < 1, more precisely we have 1− yk(α, 0) ∼ Cα−βk for
some constant C depending on α. Furthermore yk(α, ρ) = αk/(d−1).

(2) The functions yk(α, z) satisfy the recurrence relation

y′k+1(α, z) = yk(α, z)
d.

(3) For all integers ` ≥ 0 and for all real numbers k > 0 the difference ỹ`(z)−
yk(α, z) has exactly one positive zero z`,k. In particular we have yk(α, z) ≤
ỹ`(z) for 0 ≤ z ≤ z`,k and yk(α, z) ≥ ỹ`(z) for z ≥ z`,k.

As a first application we provide an asymptotic expansion for the expected height
EHn.

Lemma 12. We have limk→∞ yk+1(ρ)/yk(ρ) = e1/(cd(d−1)) and consequently

EHn ∼ cd log n. (17)

Proof. Suppose that 1 < α < α0 and set ek := (d− 1)(log ỹk(ρ))/(logα). Then the
function yek(α, z) satisfies yek(α, 0) < yk(0) and

yek(α, ρ) = ỹk(ρ).

Hence, by Lemma 11 it follows that yek(α, z) ≤ ỹk(z) for 0 ≤ z ≤ ρ. Consequently
by integration it also follows that yek+1(α, z) ≤ ỹk+1(z) for 0 ≤ z ≤ ρ. In particular,

yek+1(α, ρ) = α
1
d−1 ỹk(ρ) ≤ ỹk+1(ρ)

Thus, we have ỹk+1(ρ)/ỹk(ρ) ≥ α1/(d−1) for all α < α0 and consequently
ỹk+1(ρ)/ỹk(ρ) ≥ α

1/(d−1)
0 = e1/cd

In a second (and much more involved) step we will show that for every ε > 0

log ỹk(ρ) ≤
k

cd(d− 1)
(1 + ε)

for sufficiently k ≥ k0(ε). Since we already know that the limit
limk→∞ yk+1(ρ)/yk(ρ) = α exists it follows that α = e1/(cd(d−1)). Finally, since
EHn = max{k : ỹk(ρ)d−1 ≤ n}+O(1) this also give (17).

We again fix α < α0 and define t(α) > 0 by

(1 + t(α))αβ logα =
d− 1
d

.

Note that limα→α0 t(α) = 0.
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Further, set δk(z) = ỹk(z)− yk+r(α, z), where r ≥ 0 is a parameter that will be
chosen appropriately. Note that ỹk(z) ≤ ỹ(z) and yk+r(α, z) ≤ ỹ(z) for 0 ≤ z < ρ =
1/(d− 1). By induction it follows that

δk(z) ≤
k∑
`=0

δ`(0)

(
d
d−1L(z)

)k−`
(k − `)!

,

where L = log 1/(1−(d−1)z), compare with the proof of Lemma 2. We now suppose
that r = 2kt(α), set z′ = 1

d−1 −α
−k(1+t(α)) and estimate ỹk(z′) = yk+2kt(α)(α, z′)+

δk(z′) from above. We have

yk+2kt(α)(α, z
′) = α

k(1+t(α))
d−1 α

kt(α)
d−1 Φα

(
αkt(α)ρ

)
= α

k(1+t(α))
d−1

(
1− C

αβkt(α)
(1 + o(1))

)
and

δk(z′) ≤
k∑
`=0

C

αβ`+2βkt(α)

(
d
d−1k(1 + t(α)) logα

)k−`
(k − `)!

=
C

αβk(1+2t(α))

k∑
`=0

(
d
d−1k(1 + t(α))αβ logα

)k−`
(k − `)!

=
C

αβk(1+2t(α))

k∑
`=0

kk−`

(k − `)!

∼ C

αβk(1+2t(α))

ek

2

=
1
2
α
k(1+t(α))
d−1

C

αβkt(α)

and consequently

ỹk(z′) ≤ α
k(1+t(α))
d−1

(
1− 1

2
C

αβkt(α)
(1 + o(1))

)
.

If we compare that with

yk+3kt(α)(α, z
′) = α

k(1+t(α))
d−1

(
1− C

α2βkt(α)
(1 + o(1))

)
we observe that (for sufficiently large k)

ỹk(z′) ≤ yk+3kt(α)(α, z
′).

Since 1 = ỹk(0) > yk+3kt(α)(α, 0) it follows from Lemma 11 that ỹk(z) ≤
yk+3kt(α)(α, z) even for all z ≥ z′. In particular we have (for sufficiently large k)

ỹk(ρ) ≤ yk+3kt(α)(α, ρ) = αk(1+3t(α))/(d−1) ≤ ek(1+3t(α))/cd .

Since we can choose α that t(α) is arbitrarily small this completes the proof of the
lemma. �

Remark . With a litte bit more care we can be precise. Following the ideas of
[7], that is, taking into account the dependence of Fα on α as α → α0 one gets
k/(cd(d− 1)) ≤ log yk(ρ) ≤ k/(cd(d− 1)) +O(

√
k · log k). Of course, this translates

to

EHn = cd log n+O
(√

log n (log log n)
)
. (18)

However, this bound is surely not best possible. As in the binary case one expects
that EHn = cd log n − c′d log log n + O(1). Since we are far away from optimality
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we have decided not to include a full proof of (18) but have restricted ourselves to
(17).

Lemma 13. Set α0 = e1/cd . Then we have

lim
k→∞

1
ỹk(ρ)

ỹk

(
ρ− u

ỹk(ρ)d−1

)
= Φα0(u).

Furthermore, for every 1 < α < α0

Φα(u) ≤ Φα0(u) for u > 0

and
Φα(u) ≥ Φα0(u) for u < 0

Proof. Set

V`,k(u) =
1

ỹk(ρ)
ỹ`

(
ρ− u

ỹk(ρ)d−1

)
.

By definition these functions satisfy V ′`+1,k(u) = −V`,k(u)d.
Our first aim is to show that V`+1,k+1(u) − V`,k(u) has (at most) one zero for

u ≤ ỹk(ρ)d−1. This is obviously true for ` = 0 (since ỹ0(u) = 1 and ỹ1(u) = 1 + u).
Next observe that

V`,k(−ỹk(ρ)d−1) =
1

ỹk(ρ)
and (by using ỹ`+1(u) ≤ ỹ(u) for u ≥ 0)

V`+1,k+1(−ỹk(ρ)d−1) =
1

ỹk+1(ρ)
ỹ`+1

(
ρ− ỹk(ρ)d−1

ỹk+1(ρ)d−1

)
≤ 1
ỹk+1(ρ)

ỹk+1(ρ)
ỹk(ρ)

=
1

ỹk(ρ)

we can proceed as in the proof of Lemma 5.
Since Vk,k(0) = Vk+1,k+1(0) we get

Vk,k(u) < Vk+1,k+1(u) for u < 0

and
Vk,k(u) > Vk+1,k+1(u) for u > 0.

Hence, there exists a function V (u) with V (u) = limk→∞ Vk,k(u). Note that

V ′k+1,k+1(u) = − 1

α
d/(d−1)
k

Vk,k

(
u

αk

)d
, (19)

where αk =
(
ỹk+1(ρ)/ỹk(ρ)

)d−1 converges (monotonely) to α0 = e1/cd . Since V (u)
is monotone this also shows that supk≥1 supu1≤u≤u2

V ′k,k(u) is bounded for each
interval [u1, u2]. Consequently V (u) is continuous and, thus, (19) implies that

V ′(u) = − 1

α
d/(d−1)
0

V

(
u

α0

)d
.

Since V (0) = 1 this also shows that V (u) = Φα0(u).
Now fix some 1 < α < α0 and define ek = (d−1)(log ỹk(ρ))/(logα). By Lemma 11

the function

Φα(u) =
1

α
ek
d−1

yek

(
ρ− u

αek

)
satisfies

Vk,k(u) < Φα(u) for u < 0

and
Vk,k(u) > Φα(u) for u > 0.

Hence, the same inequalities are satisfied for the limit V (u) = Φα0(u), too. �
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Lemma 14. Let α = α0 = e1/cd . Then (12) has a unique continuous and
monotonely decreasing solution Fα0 that satisfies

Φα0(u) =
1

(d− 1)
1
d−1 Γ

(
1
d−1

) ∫ ∞

0

Fα0(y) y
1
d−1−1e−uy dy. (20)

Furthermore, we have

1− Fα0(y) = O(yβ) (y → 0+) (21)

for all β < cd − 1/(d− 1) and

Fα0(y) = O(e−Cy
κ

) (y →∞) (22)

for some C > 0 and κ > 0.

Proof. We want to define Fα0(y) = limα→α0 Fα(y). Since

Fα(y) = y1− 1
d−1

(d− 1)
1
d−1 Γ

(
1
d−1

)
2πi

∫ ∞

−∞
Φα(it)eiyt dt

we can do this formally by interchanging the limit and the integral. In order to
justify this formal procedure we proceed similarly to [9]. Since the integral is not
absolutely convergent we have to use partial integration to replace it by the inverse
Laplace transform of Φ′(u) etc. (we omit the technical details). In particular we get
(20).

Next set Φ∞(u) := Γ
(

1
d−1

)
u−

1
d−1 and suppose that u > 0. Then we get from

Lemma 13

Φ∞(u)− Φα(u) ≥ Φ∞(u)− Φα0(u)

=
1

(d− 1)
1
d−1 Γ

(
1
d−1

) ∫ ∞

0

(1− Fα0(y)) y
1
d−1−1e−uy dy

≥ 1− Fα0(u)

(d− 1)
1
d−1 Γ

(
1
d−1

) ∫ ∞

u

y
1
d−1−1e−uy dy

� (1− Fα0(u))u
− 1
d−1 .

Since Φ∞(u)− Φα(u) ∼ Cu−
1
d−1−β we directly obtain (21).

In a similar way we get (for u < 0 and any y0 > 0)

Φα(u) ≥ Φα0(u)

=
1

(d− 1)
1
d−1 Γ

(
1
d−1

) ∫ ∞

0

Fα0(y) y
1
d−1−1e−uy dy

≥ Fα0(y0)

(d− 1)
1
d−1 Γ

(
1
d−1

) ∫ y0

0

y
1
d−1−1e−uy dy.

Since Φ(u) � e(−u)δ (for some δ > 1) we get the upper bound (22) for all κ <
1/(δ − 1). �

With help of Φα0(u) we can also work with the auxiliary functions yk(α0, z).

Lemma 15. The functions yk(α0, z) are entire functions. Furthermore the Taylor
coefficients of yk(α0, z) =

∑
n≥0 yk,n(α0)zn/n! are given by

yk,n(α0) =
(d− 1)n

Γ
(

1
d−1

) ∫ ∞

0

Fα0((d− 1)vα−k0 )v
1
d−1−1+ne−v dv
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and asymptotically by

yk,n(α0) = yn Fα0((d− 1)nα−k0 ) + o(yn), (23)

where the error term is uniform for n ≥ 0 as k →∞.

Proof. Since Φα0(u) is entire, the same is true for yk(α0, z). Next, the explicit
expression for yk,n(α0) follows immediately from the definition of yk(α0, z) and
from (20).

Finally, the kernel vne−v is concentrated in the interval [n−n 1
2+ε, n+n

1
2+ε] and

consequently the factor Fα0((d− 1)vα−k0 )v
1
d−1−1 can be asymptotically replaced by

Fα0((d − 1)nα−k0 )n
1
d−1−1. If c1 ≤ n/αk ≤ c2 (for some arbitrary constants) then

(23) is surely uniform. By combining (23) for c1 ≤ n/αk ≤ c2 with the tail estimates
of F (from Lemma 14) we can extend this uniformity to all n ≥ 0 as k →∞. �

Finally, we provide an approximation for P{Hn ≤ k}. The idea is to show that
ỹk(z) can be properly approximated by yek(α0, z) in a complex neighbourhood of
z = ρ, where ek = (d − 1)(log ỹk(ρ))/(logα0). (Note that by definition ỹk(ρ) =
yek(α0, ρ).) It then follows by Cauchy’s formula that also the Taylor coefficients are
comparable. (We do not work out details since exactly the same procedure has been
applied in [9] for the special case d = 2.) Hence, ynP{Hn ≤ k} is approximated by
yek,n(α0). Note that Lemma 15 says that yek,n(α0) is approxmated by

yn Fα0((d− 1)nα−ek0 ) = yn Fα0((d− 1)n/ỹk(ρ)d−1).

This completes the proof of Theorem 2.

6. Recursive Trees

Recursive trees are defined by Ψ(w) = ew. Thus, they do not constitute a polyno-
mial increasing tree family. Nevertheless they behave very similarly to d-ary increas-
ing trees. (However, the generating functioin y(z) = log(1/(1 − z)) =

∑
n≥1 z

n/n

has a logarithmic singularity and not an algebraic one.)
The distribution of the height is encoded by the generating functions yk(z) =∑
n≥0 P{Hn ≤ k}zn/n that are given by y0(z) = 0 and recusively by

y′k+1(z) = eyk(z) (yk+1(0) = 0).

In what follows It will be (partly) more convenient to work instead with

Yk(z) = y′k(z) =
∑
n≥0

P{Hn+1 ≤ k}zn.

Here we have Y1(z) = 1 and

Y ′k+1(z) = Yk+1(z)Yk(z) (Yk+1(0) = 1).

Thus, Yk(z) looks similar to yk(z) in the case of binary increasing trees. Therefore
it is not unexpected that the asymptotic behaviour is (almost) the same as for d-
ary increasing trees. In fact, one can proceed (almost) in the same way as above.
However, there are several (non-trivial) differences. In what follows we will focus on
these differences and will not work out all details.

We start with an analogue to Lemma 5.

Lemma 16. Suppose that Y1(z), Y2(z), Y 1(z), Y 2(z) are non-negative continuous
functions that are defined for z ≥ 0 such that Y1(0) < Y 1(0), Y2(0) < Y 2(0),
Y ′2(z) = Y2(z)Y1(z), Y

′
2(z) = Y 2(z)Y 1(z), and that the difference Y 1(z)−Y1(z) has

exactly one positive zero. Then the difference Y 2(z)−Y2(z) has at most one positive
zero.
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Proof. For j = 1, 2 set

yj(z) =
∫ z

0

Yj(t) dt and yj(z) =
∫ z

0

Y j(t) dt.

Then we have y1(z) < y1(z), y2(z) < y2(z) (at least) for a small interval 0 < z < ζ
and also y′2(z) = ey1(z) and y′2(z) = ey1(z). Furthermore, since Y 1(z) − Y1(z) is
positive (for small positive z) and has at most one positive zero, the same follows
for

y1(z)− y1(z) =
∫ z

0

(
Y 1(t)− Y1(t)

)
dt,

compare with the proof of Lemma 5. Now observe that (ey − ez)/(y − z) > 0 for
real y, z with y 6= z. Hence,

Y 2(z)− Y2(z) = y′2(z)− y′2(z) = ey1(z) − ey1(z) =
ey1(z) − ey1(z)

y1(z)− y1(z)
(y1(z)− y1(z))

has at most one positive zero, too. �

The next property is an analogue to Lemma 9.

Lemma 17. For all k ≥ 0 we have

Yk+2(1)
Yk+1(1)

≤ Yk+1(1)
Yk(1)

.

Proof. We proceed as in the proof of Lemma 9. For 0 ≤ γ < 1 set

Vk(z, γ) =

{
1

1−z for 0 ≤ z ≤ 1− γ,

γ−1Yk

(
z−(1−γ)

γ

)
for 1− γ ≤ z ≤ ρ.

These functions satisfy

Vk+1(z, γ) = Vk+1(z, γ)Vk(z, γ),

Vk(0) = 1 and Vk(1, γ) = γ−1Yk(1). In particular, for γk = Yk+1(1)/Yk(1) we have
Vk(1, γk) = Yk+1(1). Now inductive application of Lemma 16 shows that Yk+1(z)−
Vk(z, ρ) have (at most) one positive zero. In particular we get

Yk+1(z) ≤ Vk(z, γk) for 0 ≤ z ≤ 1

and after integration

Yk+2(1) ≤ Vk+1(1, γk) = γ−1
k Yk+1(1) =

Yk+1(1)2

Yk+1(1)
.

�

We will show in Lemma 20 that Yk+1(1)/Yk(1) ≥ e1/e > 1. Thus, we can apply
the same procedure as in the proof of Lemma 6 and obtain an implicit representation
for the expected height:

EHn = hn +O(1),

where hn = max{k : Yk(1) ≤ n} and exponental bounds for the distribution of Hn:

P{|Hn −EHn| ≥ η} � e−ηc

for some c > 0.
Next we will define auxiliary functions yk(α, z) and Y k(α, z). For this purpose

we have to solve an integral equation that is similar to (12). We omit the proof. It
is completely the same as that of Lemma 10.
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Lemma 18. Suppose that 1 < α < e1/e and that β < e denotes the smallest positive
solution of

αβ = β.

Further, let F denote the set of monotonely decreasing and continuous functions
F (y) (y ≥ 0) that satisfy

F (y) = 1− yβ +O(ye)) (y → 0+)

and F (y) → 0 as y →∞. Then there exists a unique solution F ∈ F of the integral
equation

F (y/α) =
∫ y

0

F (z/α)F (y − z) dz (24)

Moreover, there exists κ > 0 such that

Fα(y) = O(e−y
κ

) (25)

as y →∞.

Again, we can assume that (after a proper scaling) Fα(y) = F (c y) satisfies∫∞
0
Fα(y) dy = 1.

Next, consider the Laplace transforms

Φα(u) =
∫ ∞

0

Fα(y)e−yu dy.

They satisfy Φα(0) = 1 and

Φ′α(u) = − 1
α

Φα(u)Φα(u/α).

As above this differential equation has a (unique entire) solution for each α > 1 (in
particular for α = e1/e).

For α > 1 define the auxiliary functions

Y k(α, z) = αkΦα
(
αk(1− z)

)
, (26)

where k can be considered a real (not necessarily integral) parameter and

yk(α, z) =
∫ z

0

Y k(α, t) dt = log Y k+1(α, z).

The next lemma collects some facts on Y k(α, z) if α < e1/e.

Lemma 19. Suppose that 1 < α < e1/e and let β < e be given by αβ = β. Let
Y k(α, z) be defined by (26). Then we have

(1) For all k > 0 the function Y k(α, z) in monotone for z ≥ 0. The initial value
satisfies 0 < Y k(α, 0) < 1, more precisely, 1− Y k(α, 0) ∼ Cα−βk for some
constant C depending on α. Furthermore we have Y k(α, 1) = αk.

(2) The functions Y k(α, z) satisfy the recurrence relation

Y
′
k+1(z) = Y k+1(z)Y k(z).

(3) For all integers ` ≥ 0 and for all real numbers k > 0 the difference Y`(z)−
Y k(α, z) has exactly one positive zero z`,k. In particular we have Y k(z) ≤
Y`(z) for 0 ≤ z ≤ z`,k and Y k(z) ≥ Y`(z) for z ≥ z`,k.

Note that yk(z) = log Yk+1(z) and yk(α, z) = log Y k+1(α, z). Hence, correspond-
ing properties are also true for yk(α, z) and yk(z).

The next lemma is an analogue to Lemma 12.

Lemma 20. We have limk→∞ Yk+1(1)/Yk(1) = e1/e and consequently

EHn ∼ e log n. (27)
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Proof. Suppose that 1 < α < e1/e and set ek := yk(1)/(logα)−1. Then the function
yek(α, z) satisfies yek(α, 0) < yk(0) and

yek(α, 1) = ỹk(1).

Hence, by Lemma 19 (reformulated for yk(α, z)) it follows that yek(α, z) ≤ ỹk(z)
for 0 ≤ z ≤ 1. Hence, by integration it also follows that yek+1(α, z) ≤ ỹk+1(z) for
0 ≤ z ≤ 1. In particular,

yek+1(α, 1) = yk(1) + logα ≤ yk+1(1)

Thus, we have yk+1(1)− yk(1) ≥ logα for all α < e1/e and consequently yk+1(1)−
yk(1) ≥ 1/e. This also shows that Yk(1)/Yk−1(1) ≥ e1/e.

In a second step we will show that for every ε > 0

yk(1) ≤ k

e
(1 + ε)

for sufficiently k ≥ k0(ε). Of course, this is sufficient to complete the proof of
Lemma 20.

We again fix α < e1/e and define t(α) > 0 by

(1 + t(α))αβ logα = 1.

Note that limα→α0 t(α) = 0.
Further, set δk(z) = yk(z)− yk+r(α, z), where r ≥ 0 is a parameter that will be

chosen appropriately. Note that ỹk(z) ≤ ỹ(z) and yk+r(α, z) ≤ ỹ(z) for 0 ≤ z < 1.
By induction it follows that

δk(z) ≤
k∑
`=0

δ`(0)
L(z)k−`

(k − `)!
,

where L = log 1/(1−z). We now suppose that r = 2kt(α)−1, set z′ = 1−α−k(1+t(α))

and estimate yk(z′) = yk+2kt(α)−1(α, z′) + δk(z′) from above. We have

yk+2kt(α)−1(α, z
′) = k(1 + t(α))− C

αβkt(α)
(1 + o(1))

and

δk(z′) ≤
k∑
`=0

C

αβ`+2βkt(α)

(k(1 + t(α)) logα)k−`

(k − `)!

=
C

αβk(1+2t(α))

k∑
`=0

(
k(1 + t(α))αβ logα

)k−`
(k − `)!

=
C

αβk(1+2t(α))

k∑
`=0

kk−`

(k − `)!

∼ C

αβk(1+2t(α))

ek

2

=
1
2

C

αβkt(α)

and consequently

yk(z′) ≤ k(1 + t(α)) logα− 1
2

C

αβkt(α)
(1 + o(1)).

If we compare that with

yk+3kt(α)−1(α, z
′) = k(1 + t(α)) logα− C

α2βkt(α)
(1 + o(1))

we observe that (for sufficiently large k)

yk(z′) ≤ yk+3kt(α)−1(α, z
′).
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Since yk(0) > yk+3kt(α)(α, 0) it follows from Lemma 19 (resp. from its reformulation
to yk(α, z)) that ỹk(z) ≤ yk+3kt(α)(α, z) even for all z ≥ z′. In particular we have
(for sufficiently large k)

yk(1) ≤ yk+3kt(α)−1(α, 1) = k(1 + 3t(α)) logα ≤ k

e
(1 + 3t(α))

Since we can choose α that t(α) is arbitrarily small this completes the proof of the
lemma. �

The remaining parts of the proof of Theorem 3 is completely analogous to the
corresponding part of the proof of Theorem 2. One has to show that (24) has a
unique solution for α0 = e1/e and that Y ek(e

1/e, z) is a proper approximation for
Yk(z). This leads to an approximation for P{Hn ≤ k} of the form Fe1/e(n/Yk(1)).
We leave the details to the reader.

7. Scale-Free Trees

Plane oriented trees are defined by Ψ(w) = 1/(1 − w) and do not constitute a
polynomial increasing tree family, either, but their behaviour is also very similar
to d-ary increasing trees. In fact, we will deal with generalized plane oriented trees
defined by Ψ(w) = 1/(1 − w)r, where r is a positive rational number. These kinds
of trees are also called scale-free trees (see [11]) because the tail of the degree distri-
bution has an asymptotic power law. They are also constructed by a tree evolution
process, where the probability that a node of out-degree j is chosen is proportial
to r + j (compare with Section 3). Unfortunately we are only able to discuss the
irrational case in full generatlity. (Exponential tail estimates the heigth distribution
can be obtained for all cases, see [10].)

Recall that y(z) =
∑
n≥1 ynz

n/n! that satisfies y′(z) = (1− y(z))−r is given by

y(z) = 1−
(
1− (r + 1)z

)1/(r+1)

and the coefficients by

yn = n!(−1)n−1(r + 1)n
(

1/(r + 1)
n

)
.

The height distribution for scale-free trees is encoded by the generating functions
yk(z) =

∑
n≥0 ynP{Hn ≤ k}zn/n! that are given by y0(z) = 0 and recusively by

y′k+1(z) =
1

(1− yk(z))r
(yk+1(0) = 0).

By taking derivatives it follows that

y′′k+1(z) = r
(
y′k+1(z)

)1+ 1
r y′k(z).

Let r = A/B where A,B are coprime positive integers and set

Yk(z) = (y′k(z))
1
A .

Here we have Y1(z) = 1 and

Y ′k+1(z) =
1
B
Yk+1(z)B+1Yk(z)A (Yk+1(0) = 1).

Thus, Yk(z) looks very similar to yk(z) in the case of (A + B + 1)-ary increasing
trees. However, Yk(z) does not directly encode the height distribution. In particular,
we have to use a two step procudure. First we work with Yk(z) and then we apply
the results for

y′k(z) = Yk(z)A =
∑
n≥0

yn+1P{Hn+1 ≤ k}z
n

n!
.
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We start with an analogue to Lemma 5 resp. Lemma 16 which is in fact a key
property for the whole proof of Theorem 4. The proof of Lemma 21 is completely
the same as that of Lemma 16.

Lemma 21. Suppose that Y1(z), Y2(z), Y 1(z), Y 2(z) are non-negative continuous
functions that are defined for z ≥ 0 such that Y1(0) < Y 1(0), Y2(0) < Y 2(0),
Y ′2(z) = 1

BY2(z)B+1Y1(z)A, Y
′
2(z) = 1

BY 2(z)B+1Y 1(z)A, and that the difference
Y 1(z)− Y1(z) has exactly one positive zero. Then the difference Y 2(z)− Y2(z) has
at most one positive zero.

Next one can prove is an analogue to Lemma 17:

Yk+2(1/(r + 1))
Yk+1(1/(r + 1))

≤ Yk+1(1/(r + 1))
Yk(1/(r + 1))

.

The proof is a mixture of the proofs of Lemma 9 and Lemma 17 (see also [10]).
Thus, the limit limk→∞ Yk+1(1/(r + 1))/Yk(1/(r + 1)) exists. If we

know that this limit is greater than 1 then it also follows that
limk→∞ y′k+1(1/(r + 1))/y′k(1/(r + 1)) > 1. In that case we can proceed simi-
larly to Lemma 6 and obtain an implicit representation for the expected height:

EHn = hn +O(1),

where hn = max{k : y′k(1/(r + 1))1+
1
r ≤ n} and exponentail bounds for the distri-

bution of Hn:
P{|Hn −EHn| ≥ η} � e−ηc

for some c > 0. This proves the concentration property of Theorem 4.
We now show that we actually have

lim
k→∞

Yk+1(1/(r + 1))/Yk(1/(r + 1)) > 1. (28)

For this purpose we use (again) proper solutions of the integral equation

y
1

A+B F (y/α) =
Γ
(
1 + 1

A+B

)
Γ
(

1
A+B

)A+B+1

∫
y1+···+yA+B+1=y,yj≥0

B+1∏
j=1

(
F (yj/α)y

1
A+B−1

j

)
(29)

×
A+B+1∏
`=B+2

(
F (y`)y

1
A+B−1

`

)
dy.

If 1 < α < α0 then there exists a unique solution of the form Fα(y) = 1−cyβ+O(yγ)
(y → 0+), where β is the smallest positive solution of the equation (B+1)+Aαβ =
1 + (A+B)β or of

rαβ + 1 = (r + 1)β.
The constant c > 0 is chosen in a way that∫ ∞

0

Fα(y) y
1

A+B−1e−uy dy = (r + 1)
1

A+B Γ
(

1
A+B

)
.

Furthermore, we have F (y) = O(e−Cy
κ

) for some constants C > 0 and κ > 0.
Withe help of F (y) we define

Φα(u) =
1

(r + 1)
1

A+B Γ
(

1
A+B

) ∫ ∞

0

Fα(y) y
1

A+B−1e−uy dy. (30)

These are entire functions and are also given by Φα(0) = 1 and by the differential
equation

Φ′α(u) = − 1
B

1
αA/(A+B)

Φα(u)B+1Φα
(u
α

)A
. (31)
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Finally define auxiliary functions

Y k(α, z) = αk/(A+B)Φα
(
αk(ρ− z)

)
, (32)

where ρ = 1/(r + 1). These functions satisfy

Y
′
k+1(α, z) =

1
B
Y k+1(α, z)B+1Y k(α, z)A,

0 < Y k(α, 0) < 1 (more precisely 1 − Y k(α, 0) ∼ Cα−βk) and Y k(α, 1/(r + 1)) =
αk/(A+B).

By using the same ideas as in the first part of the proof of Lemma 12 it follows
that Yk+1(1/(r + 1))/Yk(1/(r + 1)) ≥ α1/(A+B) > 1 for all α < α0. In particular,
this completes the proof of (28) and consequently the concentration property of Hn.

Furthermore, these auxiliary functions can be also used to determine the limit of
Yk+1(1/(r+1))/Yk(1/(r+1)) (and consequently we get an asymptotic representation
of EHn, see Lemma 22).

Next set

Gα(y) =
Γ
(

A
A+B

)
Γ
(

1
A+B

)A ∫
z1+···+zA=1,zj≥0

A∏
j=1

(
F (yzj)z

1
A+B−1

j

)
dz

and

Φα(u) = Φα(u)A =
1

(r + 1)
r

1+r Γ
(

r
1+r

) ∫ ∞

0

G(y)y−
1

1+r e−yu dy.

Alternatively, Φα(u) is given by Φα(0) = 1 and by the differential equation

Φ
′
α(u) = − r

αr/(1+r)
Φα(u)1+

1
rΦα

(u
α

)
.

Hence, the functions
y′k(α, z) = α

rk
1+rΦ

(
αk(ρ− z)

)
satisfy

y′′k+1(α, z) = r
(
y′k+1(α, z)

)1+ 1
r y′k(α, z),

0 < y′k(α, 0) < 1 (more precisely 1 − y′k(α, 0) ∼ C ′α−βk) and y′k(α, 1/(r + 1)) =
αrk/(1+r).

Finally, if we consider

yk(α, z) =
∫ z

0

y′k(α, t) dt

then we have

y′k+1(α, z) =
1

(1− yk(α, z))r

with yk(α, 0) ∼ −C ′′α−βk and 1− yk(α, 1/(r + 1)) ∼ α−(k+1)/(r+1).
Now we are in a position to prove the next property.

Lemma 22. We have limk→∞ y′k+1(1/(r + 1))/y′k(1/(r + 1)) = e1/(cr(1+
1
r )) and

consequently

EHn ∼ cr log n. (33)

Proof. As already mentioned it follows as in the proof of Lemma 12 that
Yk+1(ρ)/Yk(ρ) ≥ α1/(A+B) > 1 for all α < α0. Consequently, y′k+1(ρ)/y

′
k(ρ) ≥

α
1/(1+ 1

r )
0 . (Here ρ = 1/(r + 1).)
In order to prove a corresponding upper bound it is sufficient to prove that

yk(ρ) ≤ 1− α
k

1+r (1+ε)

0
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for sufficiently large k. We again fix α < α0 and define t(α) > 0 by

(1 + t(α))αβ logα = 1 +
1
r
.

Note that limα→α0 t(α) = 0.
If δk(z) = yk(z)− yk+r(α, z) then we have

δk(z) ≤
k∑
`=0

δ`(0)

(
r
r+1L(z)

)k−`
(k − `)!

,

where L = log 1/(1− (r+ 1)z). As in the proof of Lemma 12 we set r = 2kt(α) and
z′ = 1

r+1 − α−k(1+t(α)) and estimate ỹk(z′) = yk+2kt(α)(α, z′) + δk(z′) from above.
We leave the details to the reader. �

The remaining parts of the proof of Theorem 4 are (again) completely analogous
to the corresponding parts of the proof of Theorem 2 resp. of Theorem 3. One has
to show that (29) has a unique solution for α0 = e1/c

′
r and that y′ek(e

1/c′r , z) is a
proper approximation for yk(z). This leads to an approximation for P{Hn ≤ k} of
the form G

e1/c
′
r

(
(r + 1)n/(y′k(ρ))

1+ 1
r

)
. We leave (again) the details to the reader.
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