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1 Introduction

We start with a quick introduction of the redundancy problem. A code C, : A" — {0,1}* is
defined as a mapping from the set A" of all sequences =7 = (z1,...,z,) of length n over the finite
alphabet A to the set {0,1}* of all binary sequences. Given a probabilistic source model, we let
P(z7) be the probability of the message z7; given a code C,, we let L(Cy,zT) be the code length
for z7.

From Shannon’s works we know that the entropy Hp(P) = — >« P(27)1g P(27) is the ab-
solute lower bound on the expected code length, where lg := log, denotes the binary logarithm.
Hence —1g P(z") can be viewed as the “ideal” code length. The next natural question is to ask
by how much the length L(C,,,z7) of a code differs from the ideal code length, either for indi-
vidual sequences or on average. The pointwise redundancy R, (Cy,, P;x1) = L(Cp,xt) +1g P(z7),
while the average redundancy R, (Cp,P) and the mazimal redundancy R} (C,,P) are defined,
respectively, as

Ry(Cn, P) = Ep[Ry(Cy, P; XT')] = Ep[L(Ch, XT')] — Hp(P),
Ry (Cn, P) = max[R,(Ch, P; 7)),
Ty

where the underlying probability measure P represents a particular source model and E denotes
the expectation. Observe that while the pointwise redundancy can be negative, maximal and
average redundancies cannot, by Kraft’s inequality and Shannon’s source coding theorem, respec-
tively.

It has been known from the inception of the Huffman code (cf. [3]) that its average redundancy
is bounded from above by 1, but its precise characterization for memoryless sources was proposed
only recently in [11]. In [2] conditions for optimality of the Huffman code were given for a class
of weight function and cost criteria. Surprisingly enough, to the best of our knowledge, no one
was looking at another natural question: What code minimizes the maximal redundancy? More
precisely, we seek a prefix code C, such that

minnzlcz%x[L(Cn,m?) +1g P(z7)].
n 1

We shall prove here (cf. Theorem 1), that a generalized Shannon code is the optimal code in this
case. We also compute precisely the maximal redundancy of the optimal generalized Shannon
code for memoryless sources (cf. Theorem 4).

It must be said, however, that in practice the probability distribution (i.e., source) P is
unknown. So the next question is to find optimal codes for sources with unknown probabilities.
In fact, for unknown probabilities, the redundancy rate can be also viewed as the penalty paid
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for estimating the underlying probability measure. More precisely, universal codes are those for
which the redundancy is o(n) for all P € § where S is a class of source models (distributions).
The (asymptotic) redundancy-rate problem consists in determining for a class S the rate of growth
of the minimax quantities as n — oo either on average

Fn(S) = min, max[R, (Cn, P)], (1)
or in the worst case
R,(S) = mmin Iggg[Rn(Cn,P)], (2)

where C denotes the set of all codes satisfying the Kraft inequality.
First, we deal with the maximal minimaz redundancy R} (S) defined by (2). Shtarkov [9]
proved that

lg Z sup P(z]) | < Ry (S) <lg Z sup P(z?) | +1. (3)
o PES or PES
We replace the inequalities in the above by an exact formula. Namely, we shall prove in Theorem 2
that
R}(S) =1g | >_sup P(af) | + R¥(Q")
o7 Pes

where R%%(Q*) is the maximal redundancy of a properly chosen generalized Shannon code for the
(known) distribution Q*(z1) = supp P(¢7)/ 2 zn supp P(«7). For a class of memoryless sources
we derive an asymptotic expansion for the maximal minimax redundancy R;,(S) (cf. Theorem 5).

Finally, we deal with the most challenging problem. We have just argued that we can derive
precise formula for the mazimal minimax redundancy R} (S). Can we infer from this an asymptotic

expansion for the average minimax redundancy R,,(S) which is much harder to evaluate? We prove
in Theorem 3 that under certain additional conditions (i.e, 3 ,n P(z7)lg[sup P(z1)/P(z7)] is of

order magnitude smaller than the leading term of R} (S), that is, lg (Em? SUDPpcs P(x?))) the

following holds: R, (S) ~ R’(S). We also provide asymptotics of the average redundancy for
memoryless sources (cf. Theorem 6).

2 The Maximal Minimax Redundancy

We first consider sources with known distribution P and find an optimal code that minimizes the
maximal redundancy, that is, we compute

R;\(P) = min max|L(C, a7) + logy P(a?)]. @)
n 1

We recall that Shannon code C5 assigns length L(C5, z7) = [lg1/P(z?)] to the source sequence
z7. We define a generalized Shannon code CS% as

n [ llg1/P@?)] if el
L{at, C°) _{ [1?1/13(.@%)1 it 2h e A\ L

where £ C A", and the Kraft inequality holds. Note that Kraft’s inequality for generalized
Shannon codes reads as

Z P(z")2(~ e Pat) +1 Z P(z7)2(- 18 PE) < 1,
Tt el 2 el



Our first main result proves that a generalized Shannon code is an optimal code with respect
to the maximal redundancy.

Theorem 1 If the probability distribution P is dyadic, i.e. 1g P(x7) € Z (Z is the set of integers)
for all 7 € A", then R;(P) = 0. Otherwise, let p1,pa,...,pan be the probabilities P(z7),
2t € A", ordered in a nondecreasing manner, that is,

0<(-Igp1) <(—Igp2) <--- < (=Igpygpn) <1,

where () = x — |x| is the fractional part of x. Let now jo be the mazimal j such that

j—1 | 1 A" |
Zpig(* 8pi) 4 5 Zpig(* gpi) < 1, (5)
i—1 i—j

that is, the Kraft inequality holds for a generalized Shannon code. Then
R,(P) =1 - (=lgpjo)- (6)

Now, we turn our attention to universal codes for which the probability distribution P is
unknown. We assume that P belongs to a set S (e.g., class of memoryless sources with unknown
parameters). The following result summarizes our next finding. It transforms the Shtarkov bound
(3) into an equality.

Theorem 2 Suppose that S is a system of probability distributions P on A™ and set

Q') = g7 500 Pla).

where

cn(8) = Y sup P(yD).
y?EA"PeS

If the probability distribution Q* is dyadic, i.e. lgQ*(zT) € Z for all 7 € A", then
R.(S) = lgcn(S). (7)
Otherwise, let q1,q2,...,q .4 be the probabilities Q*(z7), =7 € A", ordered in such a way that
0<(-lgq) <(-1gge) <--- <(-Igqupn) <1,

and let jo be the mazimal j such that

2 ot 4 LR ot sa
N 18 - (184
> @2 +5 20 62 <1 (8)
1=1 1=
Then
R (S) =1gca(S) + R(QY), (9)

where R} (Q*) = 1—(—1ggqj,) is the mazimal redundancy of the optimal generalized Shannon code
designed for the distribution Q*.



Proof. By definition we have

R;(S) = min sup max(L(Cp,27) +1g P(z7])) = min max | L(Cy, zT) + sup lg P(z7)
CreC Pes 1‘717‘ CreC 1"17‘ PeS

= min max (L(Cn,w?) +1gQ*(z7) +1g ( Z sup P(Z’J?)))

Crec E{L y’{LeAn PeS
= R,(Q%) +1gcn(S),

where R (Q*) = 1—-(—1ggj,), and by Theorem 1 it can be interpreted as the maximal redundancy
of the optimal generalized Shannon code designed for the distribution Q*. |

3 The Average Minimax Redundancy

Now, we study the average minimax redundancy R, which is defined in (1). If S consist of
just one probability measure P one recognizes that the optimal code is the Huffman code. Our
ultimate goal is to establish a general precise result for the average minimax redundancy R, (S)
for non-trivial . From known results (cf. [1, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14]) we conclude that

(in these particular cases) R,(S) ~ R} (S). So our aim is to provide a quite general result in this
direction. We can prove the following result.

Theorem 3 Suppose that S is a system of probability distributions P on A"™. Then

sup P(z7)
_ ] c
Rn(S) <lgen(S) — }}éfg wZnP(iU?) lng?) + O(1). (10)
1
Furthermore, suppose that there erists a probability distribution @ in the convex hulll of S such
that
* (N
max |lg Q~ (2) <C,
| Qah)
then
sup P(z7)
R.(S) > 1gca(S) — su Pa)1gZEE | —c+o(). 11
n(8) 2 1gcn(S) Pelg%(l)g D) (1) (11)

We will show in Section 4 that these lower and upper bounds fit together quite well.
The proof of the upper bound is easy. The lower bounds are a little bit more involved. It
mainly relies on the following interesting fact (we are not aware of any relevant reference).

Lemma 1 Suppose that S is a subset of probability distributions P on a finite set X. Then for
all probability distributions @ contained in the convex hull of S we have

inf sup (Z P(z)lg %> =0. (12)

Q Pes \ ox Q(z)

TWe assume no topology on the set of all probability measures on X. Therefore the convex hull of S is just the
set of all finite convex combinations of elements of S.




4 Memoryless Sources

Finally, we illustrate our findings for memoryless sources. We consider a binary memoryless
source with P,(z7) = pF(1 — p)" ¥ where k is the number of “0” in 27 and p is the probability of
generating a “0”.

It should be mentioned that all subsequent results can be generalized to memoryless sources
and to Markov sources with an arbitrary finite alphabet. However, for the sake of brevity and
transparency of we have decided to treat just memoryless sources with the binary alphabet.

4.1 The Maximal Redundancy of the Generalized Shannon Code

We start with the following result of the maximal redundancy for the optimal generalized Shannon
code. We give a detailed proof of this result in the Appendix.
Theorem 4 Suppose that 1g 1%1’ is irrational. Then as n — oo,

_loglog2

R:(P,) = +o(1) = 0.5287... + o(1).

log 2
If 1g 1%1’ = % is rational and non-zero then, as n — oo,

| M 1g(M(2'M —1)) — (Mnlgl/(1 —p))] + (Mnlgl/(1 —p)
M

Ry (Bp) = - +o(1).

Finally, if 1g lp%p =0 thenp = 3 and Ry (Pyj3) = 0.

The next step is to consider memoryless sources P, such that p is contained in an interval
[a, b], i.e. we restrict on a quite special (but natural) case for S. Here the result reads as follows.

Theorem 5 Let 0 < a < b<1 be given and let Sop = {Pp : a < p <b}. Then, as n — 0.

. 1 loglog 2
Ri(Sap) = 3l +1g Cap = = 0= +o(1), (13)

where

1 b d 2
Cap = \/ﬁ/a \/aﬁ = \/;(arcsin\/l; — arcsin/a).

Remark. Expression (13) is the first asymptotic expansion with the correct constant term (i.e.,
containing the term R} (Q*)). This is of some importance since it is proposed (cf. [13]) to design
optimal codes that optimize the constant term.

4.2 The Average Redundancy of Memoryless Sources

By applying our general Theorem 3 we obtain the following slightly generalized result for the
average redundancy of memoryless sources:

Theorem 6 Let 0 < a < b<1 be given and let Sqp = {Pp : a < p <b}. Then, as n — oco.

Fa(Sap) = 3 lem + 0(1). (14)



Remark: Note that this result has been known for Sy, (cf. [1, 6, 10, 13]).
Sketch of Proof. There are mainly two things which have to be checked. First we note that

sup P(z7)
PeS,
sup P(z?)lg———— | = 0(1),
o (S | o0
which is implied by
k n—k
- ")k k (%) (1_%) 1
= (k p*(1 —p) log 2
But (15) follows directly by applying the inequality logz < z — 1 for
1-— 1—
logMSk/—n—l and log k/ng k/n—l.
P P l—p l-p

Second we have to show that there exists a convex combination Q of the probability distribu-
tions Py, (an < k < bn) such that, as n — oo

max |lg —< (21) = 0(1).

o Q1)
For example, if 0 < a < b < 1 we can use

Q=7 BiP

=5 kL k/ns
B an<k<bn
where
By = 1/4/n for [an] < k < |bn],
ke 1 for k= [an| and k = |bn].

and B = Zk ,Bk | |
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Appendix: Proof of Theorem 4

Set oy, = 1g =2 and B, = lg t15. Then —lg(p¥(1 — p)"~*) = a,k + Bpn. First we assume that a, is
irrational. We know from [11] that for every Riemann integrable function f : [0,1] - R we have

n

tim 3 (1) -9 sk + ) = [ ) (16)

k=0
Now set fs,(z) = 2% for 0 < z < 59 and fs,(z) = 2°~! for s9 < z < 1. We obtain

280—1

s~ (n e
nh_)rréog(k)pk( p) kaO((ak+Bn)) log2 "

In particular, for s = 1 + —1301?05—2 =0.4712... we get fo z)dz = 1 so that (5) holds. This implies that

limy o0 R%(P,) =1 — 5o = 0.5287....

If a, = &% is rational and non-zero then we have (cf. [11] or [12] Chap. 8)
. " n k n—k —
i > ()@= *stagk + ) = 5 Z £ ({5 +6m)) (1)
1 m~+ {(MB,n
:sz<7<Mp>>_ (18)
m=0
Of course, we have to use fs,(x), where s is of the form so = W, and choose maximal mg such
that
M— mo—1 M—1
m+ Mﬂp ) _ 2(Mﬁpn>/M m/M m/M—1
i 30 o (MY BRI e
= m=0 m=myg
9((MBpn)y+mo)/M—1
<1.
e =gy <t
Thus,

mo = M + [ M1g(M(2"/" — 1)) — (Mnlg1/(1 - p))]

and consequently

M
R:(P) = 1—so+o0(l)=1- W +o(1)
_ [MIg(M2VM —1)) — (Mnlg1/(1 - p))] + (Mnp,)
= — + o(1).
M
This completes the proof of the theorem. [ |



