EMBEDDED TREES AND THE SUPPORT OF THE ISE

Michael Drmota

Institute of Discrete Mathematics and Geometry

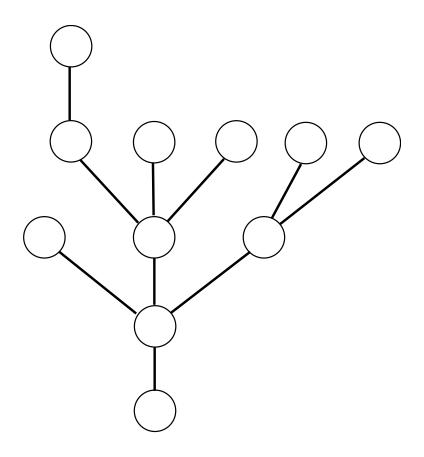
Vienna University of Technology

A 1040 Wien, Austria

michael.drmota@tuwien.ac.at

http://www.dmg.tuwien.ac.at/drmota/

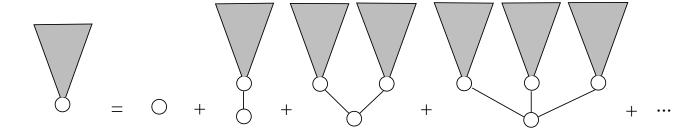
Catalan trees



Catalan trees

 $p_n = \text{number of Catalan trees with } n \text{ edges}; \ |P(t) = \sum_{n \geq 0} p_n t^n$

$$P(t) = \sum_{n \ge 0} p_n t^n$$



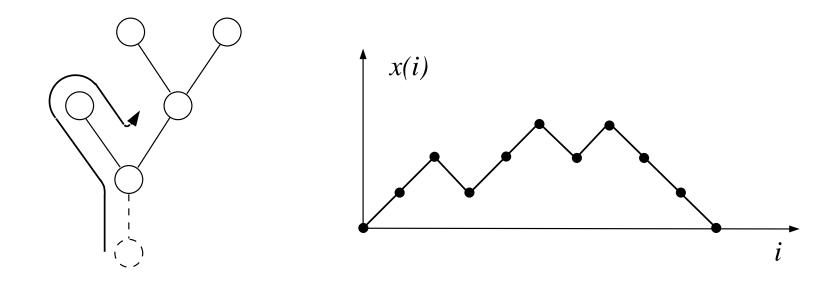
$$P(t) = 1 + tP(t) + t^2P(t)^2 + t^3P(t)^3 + \dots = \frac{1}{1 - tP(t)}$$

$$P(t) = \frac{1 - \sqrt{1 - 4t}}{2t} \implies \left| p_n = \frac{1}{n+1} {2n \choose n} \sim \frac{4^n}{\sqrt{\pi} \cdot n^{3/2}} \right|$$

(Catalan numbers)

Depth-First-Search

Rooted trees and discrete excursions



Bijection between

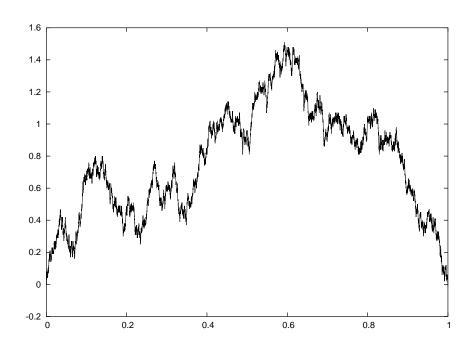
Catalan trees ←→ Dyck paths

random trees of size $n \longleftrightarrow random$ Dyck paths of length 2n

Remark: Alternatively we have a **parenthesis representation** (compare with the previous talk).

Depth-First-Search

Brownian excursion $(e(t), 0 \le t \le 1)$



Rescaled Brownian motion between 2 zeros.

Random function in C[0,1].

Depth-First-Search

Kaigh's Theorem

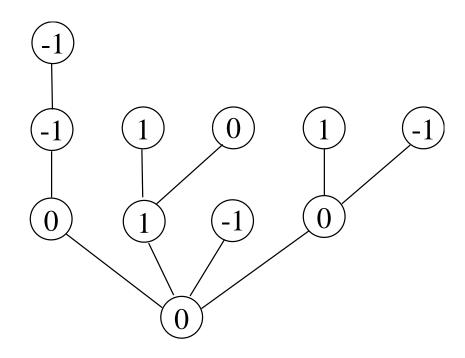
 $(X_n(t), 0 \le t \le 2n)$... random Dyck path of length 2n.

$$\implies \left(\frac{1}{\sqrt{2n}}X_n(2nt), 0 \le t \le 1\right) \stackrel{\mathsf{d}}{\longrightarrow} (e(t), 0 \le t \le 1).$$

Remark. This theorem also holds for more general random walks with independent increments conditioned to be an excursion.

Embedded Trees

Integer labels, root has label 0, adjacent labels differ at most by 1:

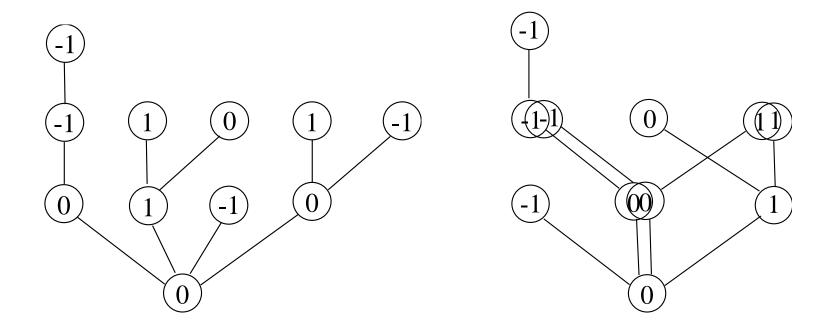


$$u_n = 3^n p_n = \frac{3^n}{n+1} {2n \choose n},$$

(the number of embedded trees with n edges)

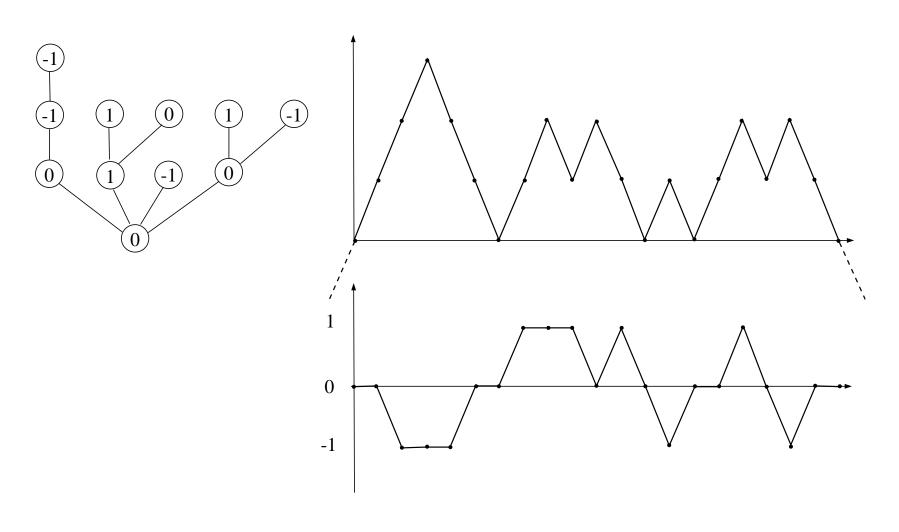
Embedded Trees

Interpretation as embedding



Brownian Snake

Discrete Brownian snake



Brownian Snake

Theorem (Chassaing+Marckert)

Consider Catalan trees and labels given by independent increments following a distribution η with $\mathbb{E} \eta = 0$.

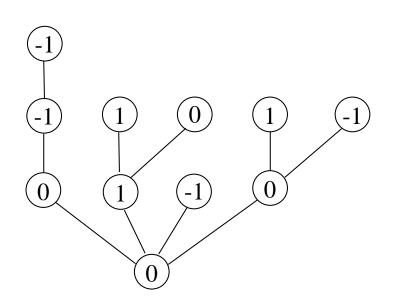
 $W_n(s)$... discrete Brownian snake corresponding to these trees and labels

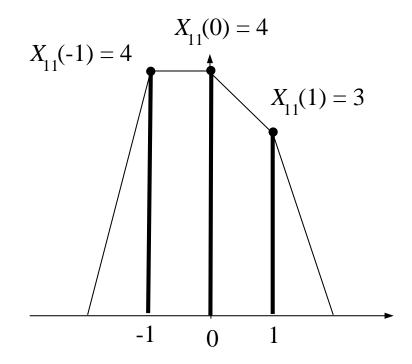
$$\implies \left(\frac{\gamma}{n^{1/4}}W_n(2nt), 0 \le t \le 1\right) \stackrel{\mathsf{d}}{\longrightarrow} (W(t), 0 \le t \le 1)$$

with $\gamma = \sqrt{2}(\operatorname{Var} \eta)^{-\frac{1}{2}}$.

W(t) ... Brownian snake

Value distribution





Theorem (Aldous)

Consider Catalan trees with labels given by independent increments following a distribution η with $\mathbb{E} \eta = 0$.

 $X_n(j)$... number of nodes with label j

$$\implies \boxed{\frac{1}{n+1} \sum_{j \in \mathbb{Z}} X_n(j) \delta_{\gamma j \, n^{-1/4}} \stackrel{\mathsf{d}}{\longrightarrow} \mu_{\mathsf{ISE}}}$$

with $\gamma = \sqrt{2} (\operatorname{Var} \eta)^{-\frac{1}{2}}$.

Theorem (Devroye+Janson)

Suppose additionally that η is integer valued and aperiodic.

$$(X_n(j))_{j \in \mathbb{Z}}$$
 ... profile corresponding to η $(X_n(j)$... number of nodes with label j) $(X_n(t), -\infty < t < \infty)$... the linearly interpolated process:

$$\implies \left(n^{-3/4} X_n(n^{1/4}t), -\infty < t < \infty \right) \xrightarrow{\mathsf{d}} (\gamma f_{\mathsf{ISE}}(\gamma t), -\infty < t < \infty) \right)$$

Integrated SuperBrownian Excursion (ISE)

Occupation measure of the Brownian snake: random measure

$$\mu_{\mathsf{ISE}}(A) = \int_0^1 \mathbf{1}_A(W(t)) \, dt$$

Density of the ISE: random density

$$f_{\text{ISE}}(s) = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_{0}^{1} \mathbf{1}_{[s,s+\varepsilon]}(W(t)) dt$$

Remark. The ISE has **finite support** $[L_{ISE}, R_{ISM}]$ (Its length $R_{ISE} - L_{ISE}$ is a random variable.)

 $[L_{\text{ISF}}, R_{\text{ISF}}]$... (random) support of the ISE

Theorem

 M_n ... largest label of a random embedded tree with n edges

 m_n ... smallest label of a random embedded tree with n edges

$$\Longrightarrow \left[\frac{M_n}{n^{1/4}} \xrightarrow{\mathsf{d}} \gamma^{-1} R_{\mathsf{ISE}}\right], \left[\frac{m_n}{n^{1/4}} \xrightarrow{\mathsf{d}} \gamma^{-1} L_{\mathsf{ISE}}\right].$$

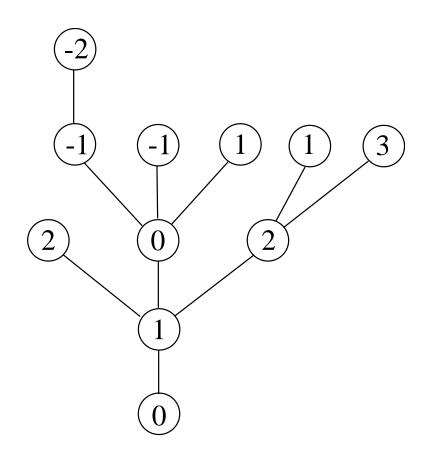
$$\boxed{\frac{m_n}{n^{1/4}} \xrightarrow{\mathsf{d}} \gamma^{-1} L_{\mathsf{ISE}}}$$

Remark.

$$\left(\frac{M_n}{n^{1/4}}, \frac{m_n}{n^{1/4}}\right) \xrightarrow{\mathsf{d}} \left(\gamma^{-1} R_{\mathsf{ISE}}, \gamma^{-1} L_{\mathsf{ISE}}\right), \qquad \frac{M_n - m_n}{n^{1/4}} \xrightarrow{\mathsf{d}} \gamma^{-1} (R_{\mathsf{ISE}} - L_{\mathsf{ISE}}).$$

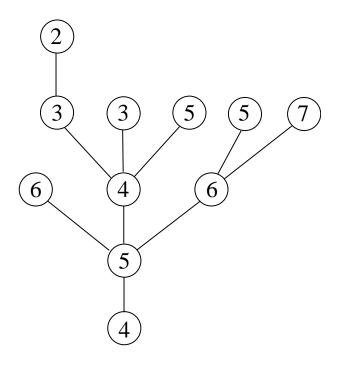
Simplified Problem:

Embedded Trees with increments ± 1



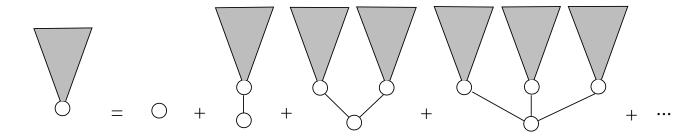
Generating functions

 $R_j(t)$... generating function of embedded trees, where we assume that the **root is labelled by** j (and labels of adjacent vertices differ by ± 1)



$$R_j(t) = R_0(t) \equiv R(t)$$

Generating functions

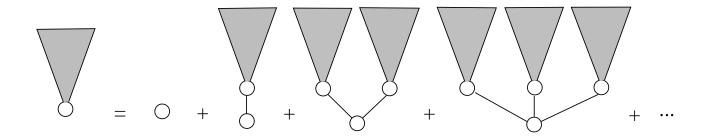


$$R_j(t) = \frac{1}{1 - t(R_{j-1}(t) + R_{j+1}(t))}$$

$$\implies R(t) = \frac{1}{1 - 2tR(t)} = \frac{1 - \sqrt{1 - 8t}}{4t} = \sum_{n > 0} \left| \frac{2^n}{n + 1} {2n \choose n} \right| t^n.$$

Generating functions

 $R_j^{[0]}(t)$... generating function of embedded trees, where we assume that the **root is labelled by** j and **all labels are non-negative**



$$R_j^{[0]}(t) = \frac{1}{1 - t(R_{j-1}^{[0]}(t) + R_{j+1}^{[0]}(t))}$$

$$R_{-1}^{[0]}(t) = R_{-2}^{[0]}(t) = \dots = 0.$$

Generating functions (A MIRACLE occurs)

$$R_j^{[0]}(t) = R(t) \frac{u_j u_{j+4}}{u_{j+1} u_{j+3}}$$

where

$$u_j = u_j(t) = 1 - Z(t)^{j+1}$$

and

$$Z(t) = \frac{1 - (1 - 8t)^{1/4}}{1 + (1 - 8t)^{1/4}}$$

is the solution of the equation

$$Z + \frac{1}{Z} + 2 = \frac{1}{tR(t)}$$

(Bouttier, Di Francesco, and Guitter)

Maximum label

$$\mathbb{P}\{M_n \le j\} = \frac{[t^n] R_j^{[0]}(t)}{\frac{2^n}{n+1} \binom{2n}{n}}$$

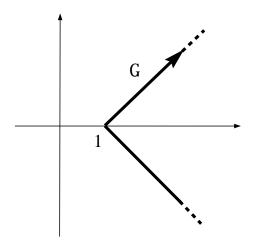
$$[t^n] R_j^{[0]}(t) = \frac{1}{2\pi i} \int_{\gamma} R_j^{[0]}(t) t^{-n-1} dt$$

Maximum label

$$\mathbb{P}\{R_{\text{ISE}} > \lambda\} = \frac{12}{i\sqrt{\pi}} \int_{\Gamma} \frac{v^5 e^{v^4}}{\sinh^2(\lambda v)} dv$$

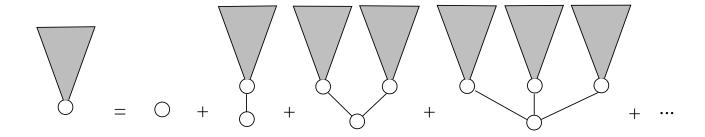
(Mireille Bousquet-Mélou)

$$\Gamma = \{1 - te^{-i\pi/4}, t \in (-\infty, 0]\} \cup \{1 + te^{i\pi/4}, t \in [0, \infty)\},\$$



Generating functions

 $R_j^{[0,L]}(t)$... generating function of embedded trees, where we assume that the root is labelled by j and where all labels are bounded between 0 and L



$$R_j^{[0,L]}(t) = \frac{1}{1 - t(R_{j-1}^{[0,L]}(t) + R_{j+1}^{[0,L]}(t))}$$

$$R_{-1}^{[0,L]}(t) = R_{L+1}^{[0,L]}(t) = 0.$$

Generating functions (A second **MIRACLE** occurs)

$$R_{j}^{[0,L]}(t) = \frac{\theta_{1}\left(\frac{2}{L+6},q\right)^{3}}{\theta_{1}\left(\frac{1}{L+6},q\right)^{2}\theta_{1}\left(\frac{4}{L+6},q\right)} \frac{\theta_{1}\left(\frac{j+1}{L+6},q\right)\theta_{1}\left(\frac{j+5}{L+6},q\right)}{\theta_{1}\left(\frac{j+4}{L+6},q\right)}$$

where q = q(t) be determined by the equation

$$t = \frac{\theta_1 \left(\frac{1}{L+6}, q\right)^4 \theta_1 \left(\frac{4}{L+6}, q\right)}{\theta_1 \left(\frac{2}{L+6}, q\right)^5}$$

and $\theta_1(u;q)$ is the **Jacobi theta function**

$$\theta_1(u;q) = 2i\sin(\pi u)\prod_{j\geq 1} \left(1 - 2q^j\cos(2\pi u) + q^{2j}\right).$$

Properties of the Jacobi theta function

$$\theta_1(u+1;q) = -\theta_1(u;q)$$

$$\theta_1(u+\tau;q) = -q^{-\frac{1}{2}}e^{-2\pi i u}\theta_1(u;q),$$

where

$$q = e^{2\pi i \tau}.$$

(Bouttier, Di Francesco, and Guitter)

Properties of the Jacobi theta function

Lemma

$$\left(\frac{\theta_1(2\alpha)}{\theta_1(\alpha)}\right)^2 \theta_1(u)\theta_1(u+2\alpha)\theta_1(u+4\alpha)$$

$$= \frac{\theta_1(4\alpha)}{\theta_1(2\alpha)}\theta_1(u+\alpha)\theta_1(u+2\alpha)\theta_1(u+3\alpha)$$

$$+ \theta_1(u-\alpha)\theta_1(u+3\alpha)\theta_1(u+4\alpha) + \theta_1(u)\theta_1(u+\alpha)\theta_1(u+5\alpha)$$

Proof

Both sides transform in the same way under the transformations $u \mapsto u+1$ and $u\mapsto u+\tau$ (where $q=e^{2\pi i\tau}$). Hence, the ratio is an elliptic function. The possible poles $(0,-2\alpha,-4\alpha,\ldots)$ have vanishing residues. Thus, the ratio is constant which is actually 1 (by setting $u=-\alpha$).

Elliptic Functions

Weierstrass ℘-function

$$\wp(z;\tau) = \frac{1}{z^2} + \sum_{(m_1,m_2) \in \mathbb{Z}^2 \setminus \{(0,0)\}} \left(\frac{1}{(z - m_1 \tau - m_2)^2} - \frac{1}{(m_1 \tau + m_2)^2} \right),$$

where $\Im(\tau) > 0$ and $z \notin \mathbb{Z} + \tau \mathbb{Z}$

$$\wp(z+1;\tau) = \wp(z+\tau;\tau) = \wp(z;\tau)$$

Elliptic Functions

Relation to Jacobi's θ_1 -function

$$\frac{\theta_1'''(0,q)}{3\theta_1'(0,q)} - \frac{\theta_1''(u,q)}{\theta_1(u,q)} + \left(\frac{\theta_1'(u,q)}{\theta_1(u,q)}\right)^2 = \wp(u;\tau)$$

Elliptic Functions

Eisenstein series

$$G_k(\tau) = \sum_{(m_1, m_2) \in \mathbb{Z}^2 \setminus \{(0,0)\}} \frac{1}{(m_1 + m_2 \tau)^k}.$$

$$G_4(\tau) = \frac{5}{8} \left(\frac{\theta_1'''(0,q)}{\theta_1'(0,q)} \right)^2 + \frac{3}{8} \frac{\theta_1^{(5)}(0,q)}{\theta_1'(0,q)},$$

Main Result

$$\mathbb{P}\{R_{\text{ISE}} \le \lambda_1, -L_{\text{ISE}} \le \lambda_2\} = \frac{20}{3i\pi^{5/2}} \int_{\Gamma} \wp\left(-\frac{i\lambda_1}{\pi}v; -\frac{i(\lambda_1 + \lambda_2)}{\pi}v\right) v^5 e^{\frac{5}{9}v^4} dv$$

Corollary

$$\left| \mathbb{P}\{R_{\text{ISE}} - L_{\text{ISE}} \le \lambda\} = -\frac{20}{3\pi^{7/3}} \int_0^{\lambda} \int_{\Gamma} \frac{\partial}{\partial \tau} \wp\left(-\frac{is}{\pi}v; -\frac{i\lambda}{\pi}v\right) v^6 e^{\frac{5}{9}v^4} dv ds \right|$$

Proof

$$\mathbb{P}\{M_n \le k, \, m_n \ge -j\} = \frac{[t^n] \, R_j^{[0,j+k]}(t)}{\frac{2^n}{n+1} \binom{2n}{n}}.$$

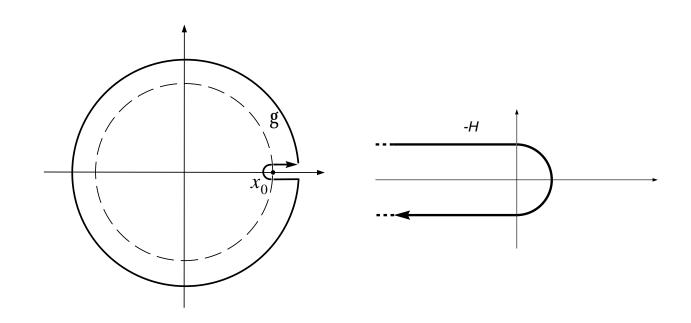
$$[t^n] R_j^{[0,j+k]}(t) = \frac{1}{2\pi i} \int_{\gamma} R_j^{[0,j+k]}(t) t^{-n-1} dt,$$

 $\gamma = \gamma_1 \cup \gamma_2 \cup \gamma_3 \cup \gamma_4$, where $x_0 = \frac{1}{8}$, c > 0,

$$\gamma_{1} = \left\{ x = x_{0} \left(1 - c \frac{i + n^{1/4} - s}{n} \right) : 0 \le s \le n^{1/4} \right\},$$

$$\gamma_{2} = \left\{ x = x_{0} \left(1 - c \frac{1}{n} e^{-i\varphi} \right) : -\frac{\pi}{2} \le \varphi \le \frac{\pi}{2} \right\},$$

$$\gamma_{3} = \left\{ x = x_{0} \left(1 + c \frac{i + s}{n} : \right) 0 \le s \le n^{1/4} \right\},$$



Lemma 1

Suppose that $|1-q| \ge c/L$ for some constant c > 0 (where $q = e^{2\pi i \tau}$). Then

$$\frac{\theta_1\left(\frac{1}{L+6},q\right)^4\theta_1\left(\frac{4}{L+6},q\right)}{\theta_1\left(\frac{2}{L+6},q\right)^5} = \frac{1}{8}\left(1 - \frac{25}{(L+6)^4}G_4(\tau) + O\left(\frac{1}{L^6|1-q|^6}\right)\right).$$

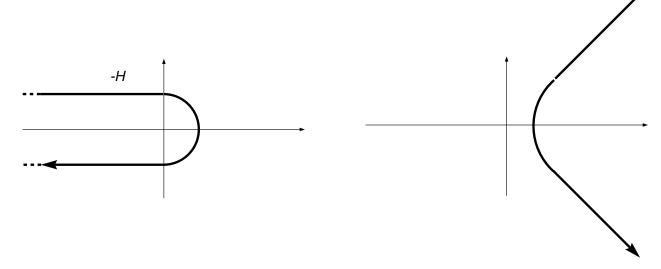
Remark.

$$G_4(\tau) = \frac{\pi^4}{45}\tau^{-4} + O(\tau^{-3})$$

uniformly for $\tau \to 0$ with $\varepsilon \le \arg(\tau) \le \pi - \varepsilon$ (for any $\varepsilon > 0$)

Corollary

$$t = \frac{\theta_1 \left(\frac{1}{L+6}, q\right)^4 \theta_1 \left(\frac{4}{L+6}, q\right)}{\theta_1 \left(\frac{2}{L+6}, q\right)^5} = \frac{1}{8} \left(1 - \frac{5\pi^4}{9L^4\tau^4} + O(\dots)\right)$$



Contour for $1/\tau^4$ and for i/τ .

Lemma 2

Suppose that $|1-q| \ge c/L$ for some constant c > 0 (where $q = e^{2\pi i \tau}$). Then

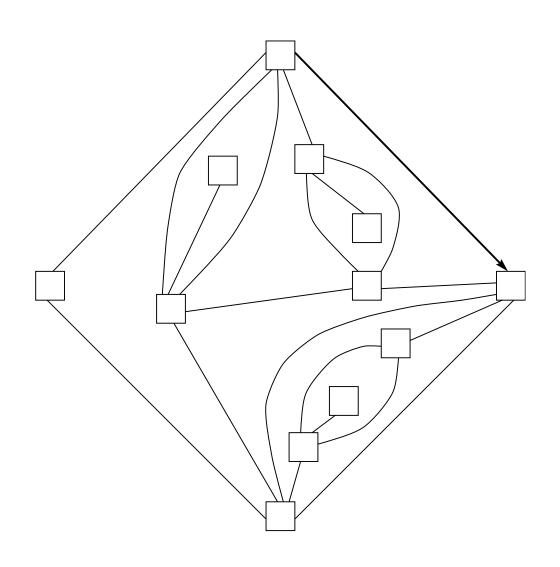
$$R_j^{[0,L]}(t) = 2\left(1 - \frac{3}{(L+6)^2}\wp\left(\frac{j+1}{L+6};\tau\right) + O\left(\frac{1}{L^4|1-q|^4}\right)\right)$$

uniformly for $\varepsilon \leq j/L \leq 1-\varepsilon$ (for any $\varepsilon > 0$).

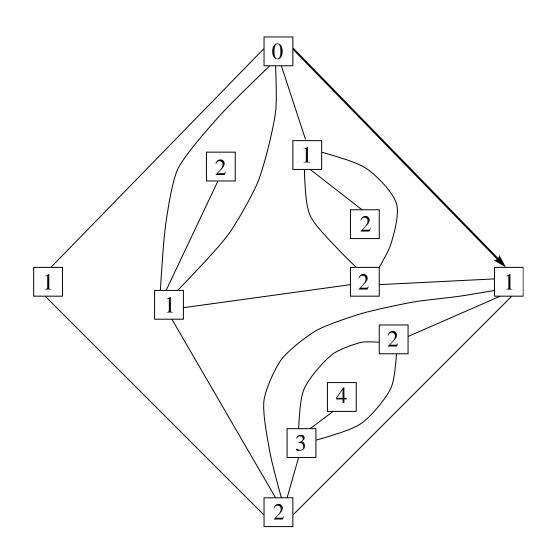
Recall that

$$R_n^{[0,L]}(t) = \frac{\theta_1 \left(\frac{2}{L+6}, q\right)^3}{\theta_1 \left(\frac{1}{L+6}, q\right)^2 \theta_1 \left(\frac{4}{L+6}, q\right)} \frac{\theta_1 \left(\frac{n+1}{L+6}, q\right) \theta_1 \left(\frac{n+5}{L+6}, q\right)}{\theta_1 \left(\frac{n+2}{L+6}, q\right) \theta_1 \left(\frac{n+4}{L+6}, q\right)}$$

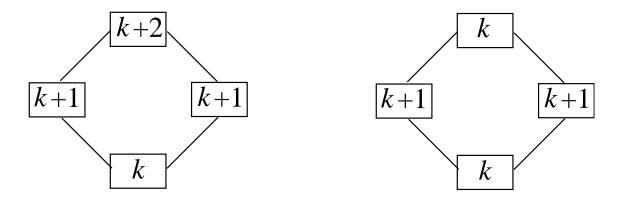
Schaeffer bijection: start with a quadrangulation



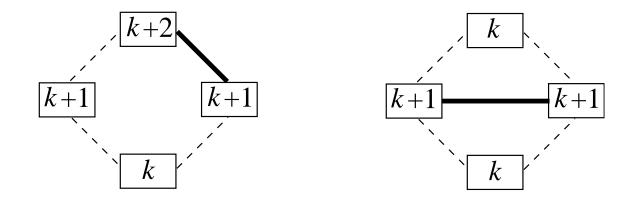
Schaeffer bijection: calulate the distance to the root vertex



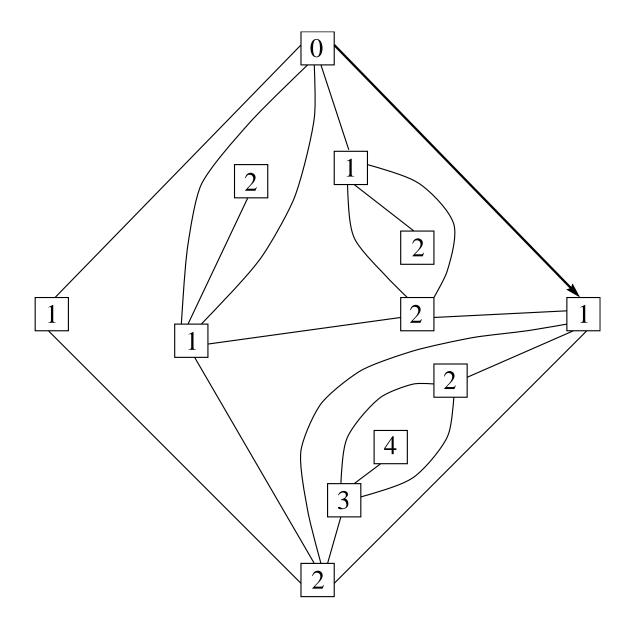
Schaeffer bijection: there are only two possible constellations



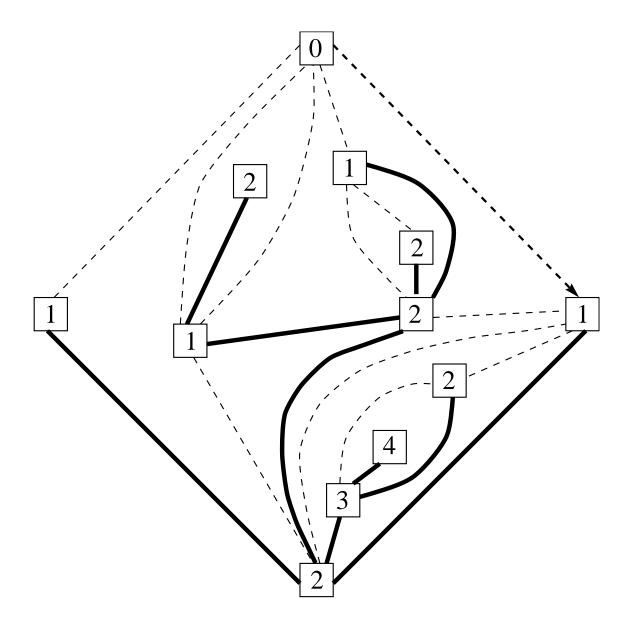
Schaeffer bijection: include fat edges



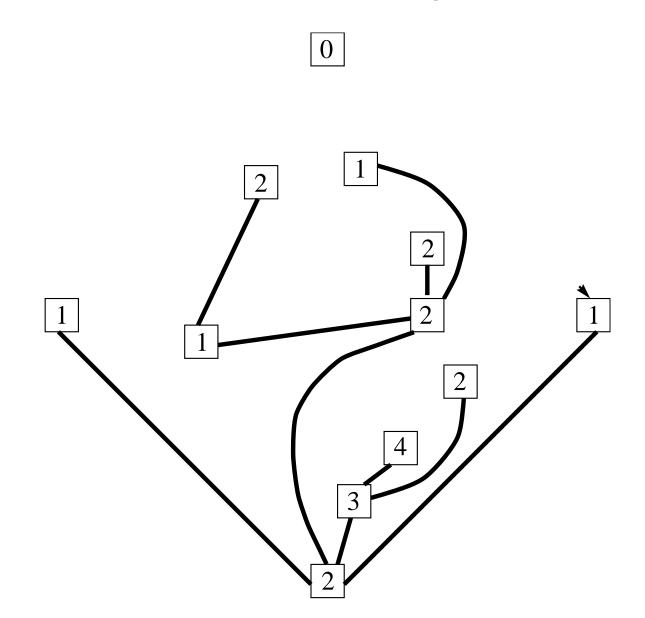
Schaeffer bijection: include fat edges



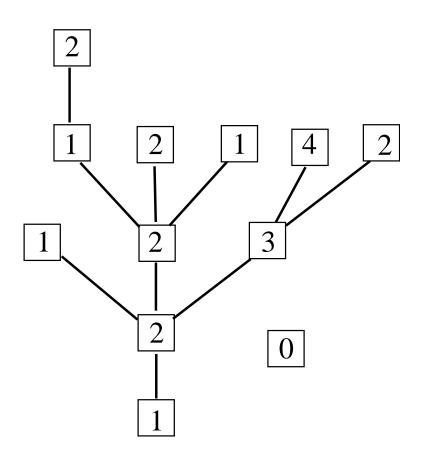
Schaeffer bijection: include fat edges



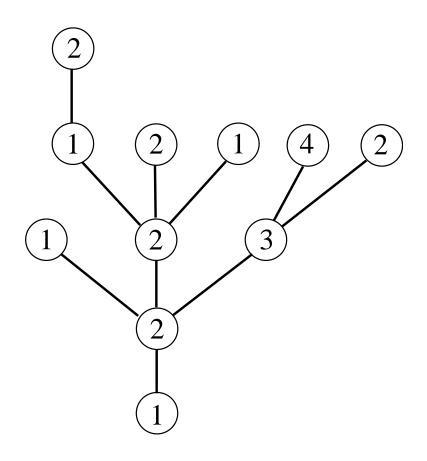
Schaeffer bijection: delete the dotted edges



Schaeffer bijection: a labelled tree occurs

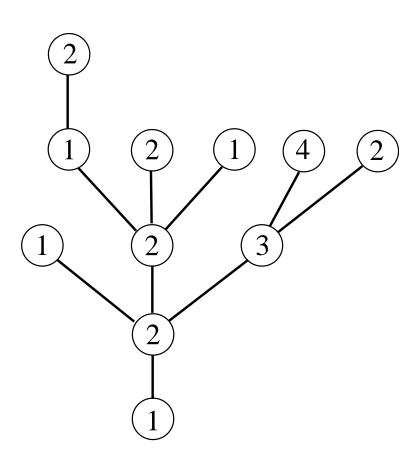


Schaeffer bijection: a labelled tree occurs



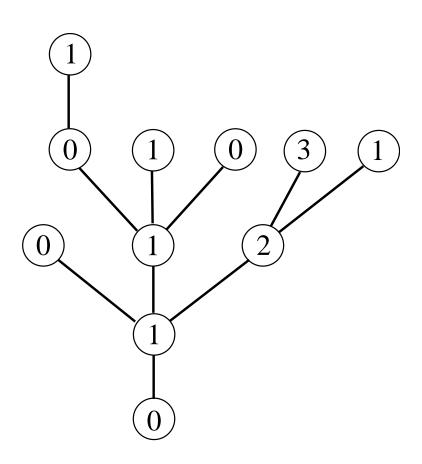
Well-Labelled Trees

Positive labels, root has label 1, adjacent labels differ at most by 1:



Well-Labelled Trees

Nonnegative labels, root has label 0, adjacent labels differ at most by 1



Thank You!