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Abstract. Let K be a finite field and Q ∈ K[T ] a polynomial of pos-
itive degree. A function f on K[T ] is called (completely) Q-additive if

f(A + BQ) = f(A) + f(B), where A,B ∈ K[T ] and deg(A) < deg(Q).
We prove that the values (f1(A), ..., fd(A)) are asymptotically equidistributed
on the (finite) image set {(f1(A), ..., fd(A)) : A ∈ K[T ]} if Qj are pair-
wise coprime and fj : K[T ] → K[T ] are Qj-additive. Furthermore, it is
shown that (g1(A), g2(A)) are asymptotically independent and Gaussian if

g1, g2 : K[T ]→ R are Q1- resp. Q2-additive.

1. Introduction

Let g > 1 be a given integer. A function f : N → R is called (completely)
g-additive if

f(a+ bg) = f(a) + f(b)

for a, b ∈ N and 0 ≤ a < g. In particular, if n ∈ N is given in its g-ary expansion

n =
∑
j≥0

εg,j(n)gj

then
f(n) =

∑
j≥0

f(εg,j(n)).

g-additive functions have been extensively discussed in the literature, in particular
their asymptotic distribution, see [1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15]. We cite three
of these results (in a slightly modified form). We want to emphasise that Theorems
A and C also say that different g-ary expansions are (asymtotically) independent if
the bases are coprime.

Theorem A. (Kim [13]) Suppose that g1, . . . , gd ≥ 2 are pairwise coprime integers,
m1, . . . ,md positive integers, and let fj, 1 ≤ j ≤ d, be completely gj-additive
functions. Set

H := {(f1(n) mod m1, . . . , fd(n) mod md) : n ≥ 0}.

Then H is a subgroup of Zm1 × · · · × Zmd and for every (a1, . . . , ad) ∈ H we have

1
N

# {n < N : f1(n) mod m1 = a1, . . . , fd(n) mod md = ad} =
1
|H|

+O
(
N−δ

)
,

where δ = 1/(120d2g3m2) with

g = max
1≤j≤d

gj and m = max
1≤j≤d

mj

and the O-constant depends only on d and g1, . . . , gd.
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Remark. In [13] the set H is explicitly determined. Set Fj = fj(1) and dj =
gcd{mj , (qj − 1)Fj , fj(r) − rFj (2 ≤ j ≤ qj − 1)}. Then (a1, . . . , ad) ∈ H if and
only if the system of congruences Fjn ≡ aj mod dj , 1 ≤ j ≤ d, has a solution.

Theorem B. (Bassily-Katai [1]) Let f be a completely g-additive function and
let P (x) be a polynomial of degree r with non-negative integer coefficients. Then,
as N →∞,

1
N

#

n < N :
f(P (n))− rµf logg N√

rσ2
f logg N

< x

→ Φ(x)

and
1

π(N)
#

p < N : p prime ,
f(P (p))− rµf logg N√

rσ2
f logg N

< x

→ Φ(x),

where

µf =
1
g

g−1∑
r=0

f(r) and σ2
f =

1
g

g−1∑
r=0

f(r)2 − µ2,

and

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2 dt.

Remark. The result of [1] is more general. It also provides asymptotic normality
if f is not strictly g-additive but the variance grows sufficiently fast.

Theorem C. (Drmota [6]) Suppose that g1 ≥ 2 and g2 ≥ 2 are coprime integers
and that f1 and f2 are completely g1- resp. g2-additive functions.

Then, as N →∞,

1
N

#

n < N :
f1(n)− µf1 logg1

N√
σ2
f1

logg1
N

≤ x1,
f2(n)− µf2 logg2

N√
σ2
f2

logg2
N

≤ x2

→ Φ(x1)Φ(x2).

Remark. Here it is also possible to provide general versions (see Steiner [17]) but –
up to now – it was not possible to prove a similar property for three or more bases
gj .

The purpose of this paper is to generalize these kinds of result to polynomials
over finite fields.

Let Fq be a finite field of characteristic p (that is, q = |Fq| is a power of p)
and let Fq[T ] denotes the ring of polynomials over Fq. The set of polynomials in
Fq of degree < k will be denoted by Pk = {A ∈ Fq[T ] : degA < k}. Fix some
polynomial Q ∈ Fq[T ] of positive degree. A function f : Fq[T ] → G (where G is
any abelian group) is called (completely) Q-additive if f(A+BQ) = f(A) + f(B),
where A,B ∈ Fq[T ] and deg(A) <deg(Q). More precisely, if a polynomial A ∈ Fq[T ]
is represented in its Q-ary digital expansion

A =
∑
j≥0

DQ,j(A)Qj ,

where DQ,j(A) ∈ Pk are the digits, that is, polynomials of degree deg(DQ,j(A)) <
k = degQ, then

f(A) =
∑
j≥0

f(DQ,j(A)).

For example, the sum-of-digits function sQ : Fq[T ]→ Fq[T ] is defined by

sQ(A) =
∑
j≥0

DQ,j(A).
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Note that the image set of a Q-additive function is always finite and that (in contrast
to the integer case) the sum-of-digits function satisfies sQ(A+B) = sQ(A)+sQ(B).

2. Results

The first theorem is a direct generalization of Theorem A.

Theorem 1. Let Q1, Q2, . . . , Qd and M1,M2, . . . ,Md be non-zero polynomials in
Fq[T ] with degQi = ki,degMi = mi and (Qi, Qj) = 1 for i 6= j. Furthermore let
fi : Fq[T ]→ Fq[T ] be Qi-additive functions (1 ≤ i ≤ d). Set

H := {(f1(A) mod M1, . . . , fd(A) mod Md) : A ∈ Fq[T ]}.
Then H is a subgroup of Pm1 × · · · × Pmd and for every (R1, . . . , Rd) ∈ H we have

lim
l→∞

1
ql

# {A ∈ Pl : f1(A) mod M1 = R1, . . . , fd(A) mod Md = Rd} =
1
|H|

.

Since the image sets of fi are finite we can choose the degrees mi of Mi sufficiently
large and obtain

lim
l→∞

1
ql

# {A ∈ Pl : f1(A) = R1, . . . , fd(A) = Rd} =
1
|H ′|

,

where
H ′ := {(f1(A), . . . , fd(A)) : A ∈ Fq[T ]}.

In particular this theorem says that if there is A ∈ Fq[T ] with fi(A) = Ri (1 ≤ i ≤ d)
then there are infinitely many A ∈ Fq[T ] with that property.

The next theorem is a generalization of Theorem B.

Theorem 2. Let Q ∈ Fq[T ], k = degQ ≥ 1 be a given polynomial, g : Fq[T ] → R

be a Q-additive function, and set

µg :=
1
qk

∑
A∈Pk

g(A), σ2
g :=

1
qk

∑
A∈Pk

g(A)2 − µ2. (2.1)

Let P (T ) ∈ Fq[T ] with r = degP and suppose that σ2
g > 0. Then, as n→∞,

1
qn

#
{
A ∈ Pn :

g(P (A))− nr
k µg√

nr
k σ

2
g

≤ x
}
→ Φ (x) (2.2)

and
1
|In|

#
{
A ∈ In :

g(P (A))− nr
k µg√

nr
k σ

2
g

≤ x
}
→ Φ (x) , (2.3)

where In denotes the set of monic irreducible polynomials of degree < n.

Finally we present a generalization of Theorem C.

Theorem 3. Suppose that Q1 ∈ Fq[T ] and Q2 ∈ Fq[T ] are coprime polynomials
of degrees k1 ≥ 1 resp. k2 ≥ 1 such that at least one of the derivatives Q′1, Q′2 is
non-zero. Further suppose that g1 : Fq[T ] → R and g2 : Fq[T ] → R are completely
Q1- resp. Q2-additive functions.

Then, as n→∞,

1
qn

#

A ∈ Pn :
g1(A)− n

k1
µg1√

n
k1
σ2
g1

≤ x1,
g2(A)− n

k2
µg2√

n
k2
σ2
g2

≤ x2


→ Φ (x1) Φ (x2) .

Furthermore, Theorems 1 and 3 say that Q-ary digital expansions are (asymp-
totically) independent if the base polynomials are pairwise coprime.
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3. Proof of Theorem 1

Throughout the paper we will use the additive character E defined by

E(A) := e2πi tr(Res(A))/p, (3.1)

that is defined for all formal Laurent series

A =
∑
j≥−k

ajT
−j

with k ∈ Z and aj ∈ Fq. The residue Res(A) is given by Res(A) = a1 and tr is the
usual trace tr : Fq → Fp.

Let Q1, Q2, . . . , Qd and M1,M2, . . . ,Md be non-zero polynomials in Fq[T ] with
degQi = ki,degMi = mi and (Qi, Qj) = 1 for i 6= j. Furthermore let fi be
completely Qi-additive functions. For every tuple R = (R1, . . . , Rd) ∈ Pm1 × · · · ×
Pmd set

gRi(A) := E

(
Ri
Mi

fi(A)
)

(3.2)

and

gR(A) :=
d∏
i=1

gRi(A) = E

(
d∑
i=1

Ri
Mi

fi(A)

)
. (3.3)

Proposition 1. Let Q1, Q2, . . . , Qd, M1,M2, . . . ,Md, and R = (R1, . . . , Rd) be as
above. Then we either have

gR(A) = 1 for all A ∈ Fq[T ]

or

lim
l→∞

1
ql

∑
A∈Pl

gR(A) = 0.

We will first prove Proposition 1 (following the lines of Kim [13]). Theorem 1 is
then an easy corollary.

3.1. Preliminaries.

Lemma 1. Let H 6= 0,H,G ∈ Fq[T ], and let E be the character defined in (3.1),
then: ∑

degR<degH

E

(
G

H
R

)
=
{
qdegH if H divides G

0 otherwise. (3.4)

The next lemma is a version of the Weyl–van der Corput inequality.

Lemma 2. For each A ∈ Fq[T ] let uA be a complex number, with |uA| = 1, then∣∣∣∣∣ 1
ql

∑
A∈Pl

uA

∣∣∣∣∣
2

≤ 1
qr

+
1
qr

∑
D∈Pr\{0}

∣∣∣∣∣ 1
ql

∑
A∈Pl

uAuA+D

∣∣∣∣∣ . (3.5)

Proof. Since 〈Pl,+〉 is a group we have

qr
∑
A∈Pl

uA =
∑
B∈Pr

∑
A∈Pl

uA−B

=
∑
A∈Pl

1

(∑
B∈Pr

uA−B

)
.
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Hence, using the Cauchy-Schwarz-inequality

q2r

∣∣∣∣∣∑
A∈Pl

uA

∣∣∣∣∣
2

≤
∑
A∈Pl

12
∑
A∈Pl

∣∣∣∣∣ ∑
B∈Pr

uA−B

∣∣∣∣∣
2

= ql
∑
A∈Pl

∑
B∈Pr

∑
C∈Pr

uA−BuA−C

= ql
∑
D∈Pr

∑
A∈Pl

∑
B∈Pr

uA−BuA−B+D

= ql
∑
D∈Pr

∑
B∈Pr

∑
A∈Pl

uA−BuA−B+D

= ql+r
∑
D∈Pr

∑
A∈Pl

uAuA+D

= ql+r
∑
A∈Pl

|uA|2 + ql+r
∑

D∈Pr\{0}

∑
A∈Pl

uAuA+D.

The desired result follows from |uA| = 1. �

Lemma 3. Let f be a completely Q-additive function, and t ∈ N,K,R ∈ Fq[T ]
with degR, degK < degQt. Then for all N ∈ Fq[T ] satisfying N ≡ RmodQt we
have

f(N +K)− f(N) = f(R+K)− f(R). (3.6)

Proof. Due to the above conditions, N = A ·Qt + R for some A ∈ Fq[T ]. Since
f is completely Q-additive, and deg(R+K) < deg(Qt), we have

f(N +K)− f(N) = f(AQt +R+K)− f(AQt +R)
= f(A) + f(R+K)− (f(A) + f(R))
= f(R+K)− f(R). (3.7)

�

3.2. Correlation Estimates. In this section we will first prove a correlation esti-
mate (Lemma 4) which will be applied to prove a pre-version (Lemma 5) of Propo-
sition 1.

Let Q ∈ Fq[T ] of degQ = k, M ∈ Fq[T ] of degM = m, and f be a (completely)
Q-additive function. Furthermore for R ∈ Pm set g(A) := E

(
R
M f(A)

)
.

Unless otherwise specified, n and l are arbitrary integers, and D ∈ Fq[T ] arbitrary
as well. We introduce the correlation functions

Φn(D) =
1
qn

∑
A∈Pn

g(A)g(A+D)

and
Φl,n =

1
ql

∑
A∈Pl

|Φn(A)|2 .

Lemma 4. Suppose that |Φk(R)| < 1. Then

1
ql

∑
H∈Pl

∣∣∣∣∣ 1
qn

∑
A∈Pn

E

(
R

M
(f(A+H)− f(A))

)∣∣∣∣∣
2

� exp
(
−min{n, l}1− |Φk(R)|2

kqk

)
.

Proof. We begin by establishing some recurrence relations for Φn and Φl,n,
namely

Φk+n(QK +R) = Φk(R)Φn(K) (3.8)
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for polynomials K,R with R ∈ Pk. By using the relation g(AQ + B) = g(A)g(B)
and splitting the sum defining Φk+n(QK + R) according to the residue class of A
modulo Q we obtain

qk+nΦk+n(QK +R) =
∑
I∈Pk

∑
A∈Pn

g(AQ+ I)g(AQ+ I +QK +R)

=
∑
I∈Pk

∑
A∈Pn

g(A)g(I)g(A+K)g(I +R)

=
∑
I∈Pk

g(I)g(I +R)
∑
A∈Pn

g(A)g(A+K)

= qkΦk(R)qnΦn(K).

This proves (3.8).
Next observe that

qk+lΦk+l,k+n =
∑
I∈Pk

∑
A∈Pl

Φk+n(QA+ I)Φk+n(QA+ I)

=
∑
I∈Pk

∑
A∈Pl

Φk(I)Φn(A)Φk(I)Φn(A)

=
∑
I∈Pk

Φk(I)Φk(I)
∑
A∈Pl

Φn(A)Φn(A)

= qkΦk,kqlΦl,n. (3.9)

Thus

Φk+l,k+n = Φk,kΦl,n (3.10)

and consequently

Φik+l,ik+n = (Φk,k)i Φl,n. (3.11)

Since |Φl,n| ≤ 1 we also get |Φik+l,ik+n| ≤ |Φk,k|i.
Hence, if n and l are given then we can represent them as n = ik + r, l = ik + s

with i = min([n/k], [l/k]) and min(r, s) < k. By definition we have

Φk,k =
1
qk

∑
A∈Pk

|Φk(A)|2

with |Φk(A)| ≤ 1 for all A. Since |Φk(R)| < 1 we also have

Φk,k ≤ 1− 1− |Φk(R)|2

qk
≤ exp

(
−1− |Φk(R)|2

qk

)
< 1

and consequently

|Φl,n| ≤ |Φk,k|i � exp
(
−min{l, n}1− |Φk(R)|2

kqk

)
.

�

Remark. We want to remark that |Φk(R)| = 1 is a rare event. In particular, we
have

∀R : |Φk(R)| = 1 ⇔ ∀R ∀A ∈ Pk : g(A)g(A+R) is constant

⇔ ∀R, ∀A,B ∈ Pk : g(A)g(A+R) = g(B)g(B +R)
⇔ ∀A,B ∈ Pk : g(A+B) = g(A)g(B).

Thus, there exists R with |Φk(R)| < 1 if and only if there exist A,B ∈ Pk with
g(A)g(B) 6= g(A+B).
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Next we prove a pre-version of Proposition 1.

Lemma 5. Let Q1, Q2, . . . , Qd ∈ Fq[T ] be pairwise coprime polynomials,
M1,M2, . . . ,Md ∈ Fq[T ], and R = (R1, R2, . . . , Rd) ∈ Pm1 × · · · × Pmd such that
|Φkj (Rj)| < 1 for at least one j = 1, . . . , d. Then

lim
l→∞

1
ql

∑
A∈Pl

gR(A) = 0, (3.12)

where gR(A) =
∏d
j=1 gRj (A) with gRj (A) = E

(
Rj
Mj
fj(A)

)
.

Proof. Set Bj = Q
tj
j , where bj = tj degQj satisfies that r ≤ bj ≤ 2r with r = l

3d .
Given S = (S1, S2, . . . , Sd) and B1, B2, . . . , Bd, we define NS := {A ∈ Pl : A ≡
S1 modB1, . . . , A ≡ Sd modBd}. By the Chinese remainder theorem we have for
l ≥

∑d
j=1 bj

|NS | =
ql∏d

j=1 q
bj

= q
l−
∑d

j=1
bj

Furthermore set S := Pb1 × · · · × Pbd . By Lemma 3 we obtain for D ∈ Pr \ {0}:∑
A∈Pl

gR(A)gR(A+D) =
∑
S∈S

∑
A∈NS

gR(A)gR(A+D)

=
∑
S∈S

∑
A∈NS

d∏
j=1

gRj (Sj)gRj (Sj +D)

=
∑
S∈S

d∏
j=1

gRj (Sj)gRj (Sj +D)
∑
A∈NS

1

=
d∏
j=1

∑
Sj∈Pbj

gRj (Sj)gRj (Sj +D)
ql∏d

j=1 q
bj

= ql
d∏
j=1

1
qbj

∑
Sj∈Pbj

gRj (Sj)gRj (Sj +D).

According to Lemma 2 we obtain for r ≤ l∣∣∣∣∣∑
A∈Pl

gR(A)

∣∣∣∣∣
2

≤ q2l−r + ql−r
∑

D∈Pr\{0}

∣∣∣∣∣∑
A∈Pl

gR(A)gR(A+D)

∣∣∣∣∣
= q2l−r

∑
D∈Pr\{0}

∣∣∣∣∣∣
d∏
j=1

q−bj
∑

Sj∈Pbj

gRj (Sj)gRj (Sj +D)

∣∣∣∣∣∣︸ ︷︷ ︸
Σ1

+O(q2l−r).

Hölder’s inequality gives

Σ1 ≤ qr/(d+1)
d∏
j=1

 ∑
D∈Pr\{0}

∣∣∣∣∣∣q−bj
∑

Sj∈Pbj

gRj (Sj)gRj (Sj +D)

∣∣∣∣∣∣
d+1


1/(d+1)

≤ qr
d∏
j=1

q−r ∑
D∈Pr\{0}

∣∣∣∣∣∣q−bj
∑

Sj∈Pbj

gRj (Sj)gRj (Sj +D)

∣∣∣∣∣∣
2


1/(d+1)

.
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For some j we have |Φkj (Rj)| < 1, so that Lemma 4 is applicable and thus

q−r
∑

D∈Pr\{0}

∣∣∣∣∣∣q−bj
∑

Sj∈Pbj

gRj (Sj)gRj (Sj +D)

∣∣∣∣∣∣
2

→ 0

as r = l/(3d)→∞. For all other j we trivially estimate by ≤ 1 and obtain

1
ql

∣∣∣∣∣∑
A∈Pl

gR(A)

∣∣∣∣∣→ 0 (3.13)

as l→∞. �

3.3. Proof of Proposition 1. As above we set gR(A) =
∏d
j=1 gRj (A) =

E
(∑d

j=1
Rj
Mj
fj(A)

)
. We split up the proof into several cases.

Case 1: There exist j and A,B ∈ Pkj with gj(A)gj(B) 6= gj(A+B).

This case is covered by by Lemma 5 (compare with the remark following Lemma 4).

Case 2: For all j and for all A,B ∈ Pkj we have gj(A)gj(B) = gj(A+B).

In this case we also have (due to the additivity property) gj(A)gj(B) = gj(A+B)
for all A,B ∈ Fq[T ] and consequently g(A)g(B) = g(A+B) for all A,B ∈ Fq[T ].

Case 2.1: In addition we have g(A) = 1 for all A ∈ Fq[T ].

This case is the first alternative in Proposition 1.

Case 2.2: In addition there exists A ∈ Fq[T ] with g(A) 6= 1.

For simplicity we assume that q is a prime number. Thus, if A =
∑
i≥0 aiT

i then
we have g(A) =

∏
i≥0 g(T i)ai . Consequently there exists i ≥ 0 with g(T i) 6= 1.

Furthermore
q−1∑
a=0

g(T j)a =

{
q if g(T j) = 1
0 if g(T j) 6= 1.

Hence, if l > i we surely have∑
A∈Pl

g(A) =
q−1∑
a0=0

q−1∑
a1=0

· · ·
q−1∑

al−1=0

g(T 0)a0g(T 1)a1 · · · g(T l−1)al−1

=

(
q−1∑
a0=0

g(T 0)a0

)
· · ·

 q−1∑
al−1=0

g(T l−1)al−1


= 0 (3.14)

If q is a prime power the can argue in a similar way. This completes the proof of
Proposition 1.

3.4. Completion of the Proof of Theorem 1. We define two (additive) groups

G := {R = (R1, R2, . . . , Rd) ∈ Pm1 × · · · × Pmd : ∀ A ∈ Fq[T ] gR(A) = 1}
and

H0 :=

{
S ∈ Pm1 × · · · × Pmd : ∀R ∈ G : E

(
d∑
i=1

−SiRi
Mi

)
= 1

}
.

Furthermore, set

F (S) :=
1
|G|

∑
R∈G

E

(
d∑
i=1

−SiRi
Mi

)
. (3.15)
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Now, by applying Proposition 1 we directly get
1
ql

#{A ∈ Pl : f1(A) ≡ S1 modM1, . . . , fd(A) ≡ Sd modMd}

=
1
ql

∑
A∈Pl

1

q

∑d

j=1
mj

∑
R∈Pm1×···×Pmd

E

 d∑
j=1

Rj
Mj

(fj(A)− Sj)


=

1

q

∑d

j=1
mj

∑
R∈Pm1×···×Pmd

E
 d∑
j=1

−SjRj
Mj

 · 1
ql

∑
A∈Pl

gR(A)


=

1

q

∑d

j=1
mj

∑
R∈G

E

 d∑
j=1

−SjRj
Mj

+ o(1)

=
|G|

q

∑d

j=1
mj
F (S) + o(1).

More precisely the coefficient F (S) characterizes H0.

Lemma 6. We have
1. F (S) = 1 for S ∈ H0

2. F (S) = 0 for S 6∈ H0.
Furthermore |G| · |H0| = |Pm1 × · · · × Pmd | = qm1+···+md .

Proof. It is clear that F (S) = 1 if S ∈ H0.
Now suppose that S 6∈ H0. Then there exists R0 = (R0

1, R
0
2, . . . , R

0
d) ∈ G with

E
(∑d

i=1−
SiR

0
i

Mi

)
6= 1. Since

∑
R∈G

E

(
d∑
i=1

−SiRi
Mi

)
=

∑
R∈G

E

(
d∑
i=1

−Si(Ri +R0
i )

Mi

)

= E

(
d∑
i=1

−SiR
0
i

Mi

)∑
R∈G

E

(
d∑
i=1

−SiRi
Mi

)
it follows that F (S) = 0.

Finally, by summing up over all S ∈ Pm1 × · · · × Pmd it follows that |G| · |H0| =
|Pm1 × · · · × Pmd |. �

In fact we have now shown that (as l→∞)
1
ql

#{A ∈ Pl : f1(A) ≡ S1 modM1, . . . , fd(A) ≡ Sd modMd} =
1
|H0|

+ o(1)

if S = (S1, . . . , Sd) ∈ H0 and (as l→∞)
1
ql

#{A ∈ Pl : f1(A) ≡ S1 modM1, . . . , fd(A) ≡ Sd modMd} = o(1)

if S = (S1, . . . , Sd) 6∈ H0. The final step of the proof of Theorem 1 is to show that

H = {(f1(A) mod M1, . . . , fd(A) mod Md) : A ∈ Fq[T ]} = H0.

In fact, if S ∈ H0 then we trivially have S ∈ H.
Conversely, if S ∈ H then there exists A ∈ Fq[T ] with f1(A) ≡

S1 modM1, . . . , fd(A) ≡ Sd modMd. In particular, it follows that

gR(A) = E

 d∑
j=1

Rj
Mj

fj(A)

 = E

 d∑
j=1

RjSj
Mj

 .
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Moreover, for all R ∈ G we have

E

 d∑
j=1

RjSj
Mj

 = 1.

Consequently, S ∈ H0. This proves H = H0 and also completes the proof of
Theorem 1.

4. Proof of Theorem 2

4.1. Preliminaries. The first lemma shows how we can extract a digit DQ,j(A)
with help of exponential sums.

Lemma 7. Suppose that Q ∈ Fq[T ] with degQ = k ≥ 1. Set

cH,D =
1
qk
E

(
−DH

Q

)
.

Then ∑
H∈Pk

cH,D E

(
AH

Qj+1

)
=
{

1 if DQ,j(A) = D
0 if DQ,j(A) 6= D.

Proof. Consider the Q-ary expansion

A =
∑
j≥0

DQ,j(A)Qj with DQ,j(A) ∈ Pk. (4.1)

Then it follows that for H ∈ Pk

E

(
AH

Qj+1

)
= E

(
DQ,j(A)H

Q

)
.

Consequently, for every D ∈ Pk we obtain∑
H∈Pk

cH,DE

(
AH

Qj+1

)
=

1
qk

∑
H∈Pk

E

(
−DH

Q

)
E

(
AH

Qj+1

)
=

1
qk

∑
H∈Pk

E

(
H

Q
(DQ,j(A)−D)

)
=

{
1 if DQ,j(A) = D,
0 if DQ,j(A) 6= D.

�

The next two lemmas are slight variations of estimates of [2].

Lemma 8. Suppose that Q ∈ Fq[T ] has degree degQ = k ≥ 1 and that P ∈ Fq[T ]
is a polynomial of degree degP = r ≥ 1. Then

1
qn

∣∣∣∣∣ ∑
A∈Pn

E

(
H

Qj+1
P (A)

)∣∣∣∣∣
� n22−r

max
(
q−(j+1)k2−r , q−n2−r , q(j+1)k2−r−nr2−r

)
(4.2)

Corollary 1. Let n1/3 ≤ j + 1 ≤ rn
k − n

1/3. Then there exists a constant c > 0
such that uniformly in that range

1
qn

∣∣∣∣∣ ∑
A∈Pn

E

(
H

Qj+1
P (A)

)∣∣∣∣∣� e−cn
1/3
.

A similar estimate holds for monic irreducible polynomials In of degree < n.
Note that |In| = qn/((q − 1)n) +O(qn/2) ∼ qn/(q − 1)n).
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Lemma 9. Let 2r
k n

1/3 ≤ j + 1 ≤ rn
k −

2r
k n

1/3, and H be a polynomial coprime to
Q. Then

1
|In|

∣∣∣∣∣ ∑
A∈In

E

(
H

Qj+1
P (A)

)∣∣∣∣∣� (log n) · n4/3+2−2−2r
q−r2

−2rn1/3
. (4.3)

With help of theses estimates we can prove the following frequency estimates.

Lemma 10. Let m be a fixed integer and 2r
k n

1/3 ≤ j1 < j2 < · · · < jm ≤ nr
k −

2r
k n

1/3. Then

1
qn
·# {A ∈ Pn : DQ,j1(P (A)) = D1, . . . , DQ,jm(P (A)) = Dm}

=
1
qkm

+O
(
e−cn

1/3
)

and
1
|In|
·# {A ∈ In : DQ,j1(P (A)) = D1, . . . , DQ,jm(P (A)) = Dm}

=
1
qkm

+O
(
e−cn

1/3
)

uniformly for all D1, . . . , Dm ∈ Pk and for all j1, . . . , jm in the mentioned range.

Proof. By Lemma 7 we have

1
qn

# {A ∈ Pn : DQ,j1(P (A)) = D1, . . . , DQ,jm(P (A)) = Dm} =

=
1
qn

∑
A∈Pn

( ∑
H1∈Pk

cH1,D1E

(
H1

Qj1+1
P (A)

))
· · ·

( ∑
Hm∈Pk

cHm,DmE

(
Hm

Qjm+1
P (A)

))

=
∑

H1,... ,Hm∈Pk

cH1,D1 · · · cHm,Dm
1
qn

∑
A∈Pn

E

(
P (A)

(
H1

Qj1+1
+ · · ·+ Hm

Qjm+1

))
= c0,D1 · · · c0,Dm

+
∗∑

H1,... ,Hm∈Pk

cH1,D1 · · · cHm,Dm
1
qn

∑
A∈Pn

E

(
P (A)

(
H1

Qj1+1
+ · · ·+ Hm

Qjm+1

))
=

1
qkm

+ S,

where
∑∗ denotes that we sum just over all (H1, . . . , Hm) 6= (0, . . . , 0). In order

to complete the proof we just have to show that S = O(e−cn
1/3

).
Let l be the largest i with Hi 6= 0 then

1
qn

∑
A∈Pn

E

(
P (A)

(
H1

Qj1+1
+ · · ·+ Hm

Qjm+1

))
=

1
qn

∑
A∈Pn

E

(
P (A)

H

Qjl+1

)
where H = Hl + Hl−1Q

jl−jl−1 + · · · + H1Q
jl−j1 . By our assumption we have

2r
k n

1/3 ≤ jl ≤ nr
k −

2r
k n

1/3. Hence by Lemma 8 the first result follows.
The proof for A ∈ In is completely the same. �

4.2. Weak Convergence. The idea of the proof of Theorem 2 is to compare the
distribution of g(P (A)) with the distribution of sums of independent identically
distributed random variables. Let Y0, Y1, . . . be independent identically distributed
random variables on Pk with P[Yj = D] = q−k for all D ∈ Pk. Then Lemma 10 can
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be rewritten as
1
qn

# {A ∈ Pn : DQ,j1(P (A)) = D1, . . . , DQ,jm(P (A)) = Dm}

= P[Yj1 = D1, . . . , Yjm = Dm] +O
(
e−cn

1/3
)
.

Note further that this relation is also true if j1, . . . , jm vary in the range 2r
k n

1/3 ≤
j1, j2, · · · , jm ≤ nr

k −
2r
k n

1/3 and are not ordered. It is even true if some of them
are equal.

In fact, we will use a moment method, that is, we will show that the moments
of g(P (A)) can be compared with moments of the normal distribution. Finally
this will show that the corresponding (normalized) distribution function of g(P (A))
converges to the normal distribution function Φ(x).

It turns out that we will have to cut off the first and last few digits, that is, we
will work with

g̃(P (A)) :=
∑

2r
k n

1/3≤j≤nrk −
2r
k n

1/3

g(DQ,j(P (A))

instead of g(P (A)).

Lemma 11. Set

µ =
1
qk

∑
H∈Pk

g(H) = E g(Yj).

Then the m-th (central) moment of g̃(P (A)) is given by

1
qn

∑
A∈Pn

(
g̃(P (A))−

(
nr

k
− 2

2r
k
n1/3

)
µ

)m
=

= E

 ∑
2r
k n

1/3≤j≤nrk −
2r
k n

1/3

(g(Yj)− µ)

m

+O
(
nme−cn

1/3
)
.

Proof. For notational convenience we just consider the second moment:

1
qn

∑
A∈Pn

(
g̃(P (A))−

(
nr

k
− 2r

k
n1/3

)
µ

)2

=

=
∑
j1,j2

∑
D1,D2

g(D1)g(D2)
1
qn

#{A ∈ Pn : DQ,j1(P (A)) = D1, DQ,j2(P (A)) = D2}

−
∑
j1

∑
D1

g(D1)
1
qn

#{A ∈ Pn : DQj1(P (A)) = D1} ·
∑
j2

µ

−
∑
j1

µ
∑
j2

∑
D2

g(D2)
1
qn

#{A ∈ Pn : DQ,j2(P (A)) = D2}+
∑
j1,j2

µ2

=
∑
j1,j2

∑
D1,D2

g(D1)g(D2)P[Yj1 = D1, Yj2 = D2] +O
(
n2e−cn

1/3
)

−
∑
j1

∑
D1

g(D1)P[Yj1 = D1]
∑
j2

µ

−
∑
j1

µ
∑
j2

∑
D2

g(D2)P[Yj2 = ε2] +
∑
j1

∑
j2

µ2

= E

∑
j

(g(Yj)− µ)

2

+O
(
n2e−cn

1/3
)
.



THE JOINT DISTRIBUTION OF Q-ADDITIVE FUNCTIONS ON POLYNOMIALS 13

The very same procedure works in general and completes the proof of the lemma.
�

Since the sum of independent identically distributed random variables converges
(after normalization) to the normal distribution it follows from Lemma 11

1
qn

#

A ∈ Pn :
g̃(P (A))− (nrk −

2r
k n

1/3)µ√
(nrk −

2r
k n

1/3)σ2
≤ x

 = Φ(x) + o(1)

Because of

|g̃(P (A))− g(P (A))| � n1/3

and n1/3/n1/2 = n−1/6 → 0 it also follows that

1
qn

#

{
A ∈ Pn :

g(P (A))− nr
k µ√

nr
k σ

2
≤ x

}
= Φ(x) + o(1).

This completes the proof of Theorem 2.

5. Proof of Theorem 3

5.1. Preliminaries. As usual, let ν
(
A
B

)
= deg(B) − deg(A) be the valuation on

Fq(T ).

Lemma 12. For a, b ∈ Fq(T ) we have

ν(a+ b) ≥ min{ν(a), ν(b)}. (5.1)

Moreover, if ν(a) 6= ν(b), then

ν(a+ b) = min{ν(a), ν(b)}. (5.2)

Furthermore, we will use the following easy property (see [10]) that is closely
related to Lemma 1.

Lemma 13. Suppose that ν
(
B
C

)
> 0 and that n ≥ ν

(
B
C

)
, then∑

A∈Pn

E

(
B

C
A

)
= 0. (5.3)

Another important tool is Mason’s theorem (see [16]).

Lemma 14. Let K be an arbitrary field and A,B,C ∈ K[T ] relatively prime poly-
nomials with A+B = C. If the derivatives A′, B′, C ′ are not all zero then the degree
degC is smaller than the number of different zeros of ABC (in a proper algebraic
closure of K).

We will use Mason’s theorem in order to prove the following property.

Lemma 15. Let Q1, Q2 ∈ Fq[T ] be coprime polynomials with degrees deg(Qi) =
ki ≥ 1 such that at least one of the derivatives Q′1, Q

′
2 is non-zero. Then there

exists a constant c such that for all polynomials H1 ∈ Pk1 and H2 ∈ Pk2 with
(H1,H2) 6= (0, 0) and for all integers m1,m2 ≥ 1 we have

deg(H1Q
m2
2 +H2Q

m1
1 ) ≥ max{deg(H1Q

m2
2 ),deg(H2Q

m1
1 )} − c.

Proof. Set A = H1Q
m2
2 , B = H2Q

m1
1 , and C = A+ B. If A and B are coprime

by Mason’s theorem we have deg(A) ≤ n0(ABC)− 1 and deg(B) ≤ n0(ABC)− 1,
where n0(F ) is defined to be the number of distinct zeroes of F . Hence

max{deg(A),deg(B)} ≤ n0(ABC)− 1
= n0(H1H2Q1Q2C)− 1
≤ deg(H1H2Q1Q2) + deg(C)− 1
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and consequently

deg(C) ≥ max{deg(A),deg(B)} − deg(H1H2Q1Q2) + 1. (5.4)

This shows that (in the present case) c = 2k1 + 2k2 is surely a proper choice.
If A and B are not coprime then by assumption the common factor D is surely

a divisor of H1H2. Furthermore, there exists m′ ≥ 0 such that D2 is a divisor of
H1H2(Q1Q2)m

′
. Consequently we have

(A/D)(B/D) = (H1H2(Q1Q2)m
′
/D2)Qm1−m′

1 Qm2−m′
2

and by a reasoning as above we get

deg(C/D) ≥ max{deg(A/D),deg(B/D)} − deg((H1H2(Q1Q2)m
′
/D2)Q1Q2) + 1.

or

deg(C) ≥ max{deg(A),deg(B)} − deg((H1H2(Q1Q2)m
′
/D2)Q1Q2) + 1.

Since there are only finitely possibilities for H1,H2, and D the lemma follows. �

5.2. Convergence of Moments. The idea of the proof of Theorem 3 is completely
the same as that of Theorem 2. We prove weak convergence by considering moments.
The first step is to provide a generalization of Lemma 10.

Lemma 16. Let m1,m2 be fixed integers. Then there exists a constant c′ > 0 such
that for all 0 ≤ i1 < i2 < · · · < im1 ≤ n

k1
− c′ and 0 ≤ j1 < j2 < · · · < jm2 ≤ n

k2
− c′

we have
1
qn

#
{
A ∈ Pn : DQ1,i1(A) = D1, . . . , DQ1,im1

(A) = Dm1 ,

DQ2,j1(A) = E1, . . . , DQ2,jm2
(A) = Em2

}
=

1
qk1m1
1 qk2m2

2

.

Instead of giving a complete proof of this lemma we will concentrate on the cases
m1 = m2 = 1 and m1 = m2 = 2. The general case runs along the same lines (but
the notation will be terrible).

First let m1 = m2 = 1. Here we have
1
qn

#
{
A ∈ Pn : DQ1,i(A) = D,DQ2,j(A) = E

}
=

1
qn

∑
A∈Pn

∑
H1∈Pk1

cH1,Q1,DE

(
AH1

Qi+1
1

) ∑
H2∈Pk2

cH2,Q2,EE

(
AH2

Qj+1
2

)

=
1

qk1+k2
+

∑
(H1,H2) 6=(0,0)

cH1,Q1,DcH2,Q2,E
1
qn

∑
A∈Pn

E

(
A

(
H1

Qi+1
1

+
H2

Qj+1
2

))
.

Now we can apply Lemma 15 and obtain

ν

(
H1

Qi+1
1

+
H2

Qj+1
2

)
= ν

(
H1Q

j+1
2 +H2Q

i+1
1

Qi+1
1 Qj+1

2

)
≤ k1(i+ 1) + k2(j + 1)
−max{deg(H1) + k2(j + 1),deg(H1) + k1(i+ 1)}+ c

≤ min{k1(i+ 1), k2(j + 1)}+ c.

Thus, there exists a constant c′ > 0 such that

min{k1(i+ 1), k2(j + 1)}+ c ≤ n
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for all i, j with 0 ≤ i ≤ n
k1
− c′ and 0 ≤ j ≤ n

k2
− c′. Hence, by Lemma 13

∑
A∈Pn

E

(
A

(
H1

Qi+1
1

+
H2

Qj+1
2

))
= 0.

This completes the proof for the case m1 = m2 = 1.

Next suppose that m1 = m2 = 2. Here we have

1
qn

#
{
A ∈ Pn : DQ1,i1(A) = D1, DQ1,i2(A) = D2, DQ2,j1(A) = E1, DQ2,j2(A) = E2

}
=

1
qn

∑
A∈Pn

 ∑
H11∈Pk1

cQ1,H11,D1E

(
H11

Qi1+1
1

A

) ∑
H12∈Pk1

cQ1,H12,D2E

(
H12

Qi2+1
1

A

)×
×

 ∑
H21∈Pk2

cQ2,H21,E1E

(
H21

Qj1+1
2

A

) ∑
H22∈Pk2

cQ2,H22,E2E

(
H22

Qj2+1
2

A

)
=

∑
H11,H12∈Pk1 ,H21,H22∈Pk2

cQ1,H11,D1 cQ1,H12,D2 cQ2,H21,E1 cQ2,H22,E2

× 1
qn

∑
A∈Pn

E

(
A

(
H11

Qi1+1
1

+
H12

Qi2+1
1

+
H21

Qj1+1
2

+
H22

Qj2+1
2

))

Of course, if H11 = H12 = H21 = H22 = 0 then we obtain the main term

1
q2k1
1 q2k2

2

.

For the remaining cases we will distinguish between four cases. Note that we only
consider the case where all polynomials H11,H12,H21,H22 are non-zero. If some
(but not all) of them are zero the considerations are still easier.

Case 1. i2 − i1 ≤ c1, j2 − j1 ≤ c2 for properly chosen constants c1, c2 > 0.

In this case we proceed as in the case m1 = m2 = 1 and obtain

ν

(
H11

Qi1+1
1

+
H12

Qi2+1
1

+
H21

Qj1+1
2

+
H22

Qj2+1
2

)

= ν

(
(H11Q

i2−i1
1 +H12)Qj2+1

2 + (H21Q
j2−j1
2 +H22)Qi2+1

1

Qi2+1
1 Qj2+1

2

)
≤ k1(i2 + 1) + k2(j2 + 1)

−max{deg(H11Q
i2−i1
1 +H12) + k2(j2 + 1),

deg(H21Q
j2−j1
2 +H22) + k1(i2 + 1)}+ c(c1, c2)

≤ min{k1(i1 + 1), k2(j1 + 1)}+ c̃(c1, c2)

for some suitable constants c(c1, c2) and c̃(c1, c2).

Case 2. i2 − i1 > c1, j2 − j1 > c2 for properly chosen constants c1, c2 > 0

First we recall that

ν

(
H11

Qi1+1
1

+
H21

Qj1+1
2

)
≤ min{k1(i1 + 1), k2(j1 + 1)}+ c.
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Furthermore

ν

(
H12

Qi2+1
1

)
≥ k1(i2 + 1)− degH12

≥ k1(i2 − i1) + k1i1 > k1(i1 + c1)

ν

(
H22

Qj2+1
2

)
> k2(j1 + c2)

Thus, if c1 and c2 are chosen that (c1 − 1)k1 > c and (c2 − 1)k2 > c then

ν

(
H11

Qi1+1
1

+
H21

Qj1+1
2

)
< min

{
ν

(
H12

Qi2+1
1

)
, ν

(
H22

Qj2+1
2

)}
and consequently by Lemma 12

ν

(
H11

Qi1+1
1

+
H12

Qi2+1
1

+
H21

Qj1+1
2

+
H22

Qj2+1
2

)
= ν

(
H11

Qi1+1
1

+
H21

Qj1+1
2

)
≤ min(k1(i1 + 1), k2(j1 + 1)) + c

Case 3. i2 − i1 ≤ c1, j2 − j1 > c2 for properly chosen constants c1, c2 > 0

First we have

ν

(
H11

Qi1+1
1

+
H12

Qi2+1
1

+
H21

Qj1+1
2

)

= ν

(
(H11Q

i2−i1
1 +H12)Qj1+1

2 +H21Q
i2+1
1

Qi2+1
1 Qj1+1

2

)
≤ k1(i2 + 1) + k2(j1 + 1)
−max{k1(i2 − i1) + k2(j1 + 1), k1(i2 + 1)}+ c(c1)

= min{k1(i1 + 1), k2(j1 + 1)}+ c(c1).

Furthermore,

ν

(
H22

Qj2+1
2

)
≥ k2(j2 + 1)− deg(H22)

≥ k2(j2 − j1) + k2j1 > k2(j1 + c2).

Hence, if c2 is sufficiently large then

ν

(
H11

Qi1+1
1

+
H12

Qi2+1
1

+
H21

Qj1+1
2

+
H22

Qj2+1
2

)
= ν

(
H11

Qi1+1
1

+
H12

Qi2+1
1

+
H21

Qj1+1
2

)
< min(k1(i1 + 1), k2(j1 + 1)) + c(c1)

Case 4. i2 − i1 > c1, j2 − j1 ≤ c2 for properly chosen constants c1, c2 > 0

This case is completely symmetric to case 3.

Putting these four cases together they show that (with suitably chosen constants
c1, c2) there exists a constant c̃ such that for all polynomials (H11,H12,H21,H22) 6=
(0, 0, 0, 0) we have

ν

(
H11

Qi1+1
1

+
H12

Qi2+1
1

+
H21

Qj1+1
2

+
H22

Qj2+1
2

)
≤ min(k1(i1 + 1), k2(j1 + 1)) + c̃.

Thus, there exists a constant c′ > 0 such that

min{k1(i1 + 1), k2(j1 + 1)}+ c̃ ≤ n
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for all i1, j1 with 0 ≤ i1 ≤ n
k1
− c′ and 0 ≤ j1 ≤ n

k2
− c′. Hence, by Lemma 13∑

A∈Pn

E

(
A

(
H11

Qi1+1
1

+
H12

Qi2+1
1

+
H21

Qj1+1
2

+
H22

Qj2+1
2

))
= 0.

This completes the proof for the case m1 = m2 = 2.

As in the proof of Theorem 2 we can rewrite Lemma 16 as
1
qn

#
{
A ∈ Pn : DQ1,i1(A) = D1, . . . , DQ1,im1

(A) = Dm1 ,

DQ2,j1(A) = E1, . . . , DQ2,jm2
(A) = Em2

}
= P[Yi1 = D1, . . . , Yim1

= Dm1 , Z1 = Ej1 , . . . , Zjm2
= Em2 ],

where Yi and Zj are independent random variables that are uniformly distributed
on Pk1 resp. on Pk2 .

If we define

g̃1(A) :=
∑

j1≤ n
k1
−c′

g1(DQ1,j1(A)),

g̃2(A) :=
∑

j2≤ n
k2
−c′

g2(DQ2,j2(A))

then Lemma 16 immediately translates to

Lemma 17. For all positive integers m1,m2 we have for sufficiently large n

1
qn

∑
A∈Pn

(
g̃1(A)− n

k1
µg1

)m1
(
g̃2(A)− n

k2
µg2

)m2

= E

 ∑
j1≤ n

k1
−c′

(g1(Yj1)− µg1)

m1

E

 ∑
j2≤ n

k2
−c′

(g2(Zj2)− µg2)

m2

.

Of course this implies that the joint distribution of g̃1 and g̃2 is asymptotically
Gaussian (after normalization). Since the differences g1(A) − g̃1(A) and g2(A) −
g̃2(A) are bounded the same is true for the joint distribution of g1 and g2. This
completes the proof of Theorem 3.

References
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