THE JOINT DISTRIBUTION OF ¢-ADDITIVE FUNCTIONS

MICHAEL DRMOTA**

ABSTRACT. It is proved that the joint limiting distribution of g1-additive and
g2-additive functions for coprime g1, g2 is independently normal if the second
moments grow sufficiently fast. For the sum-of-digits function we also provide
a local limit theorem. The proofs use an extensions of methods by Bassily and
Katai [1] and by Kim [18] combined with Baker’s theorem on linear forms of
logarithms.

1. INTRODUCTION

Let ¢ > 1 be a given integer. A real-valued function f, defined on the non-
negative integers, is said to be g-additive if f(0) =0 and

f(n) = Z flagj(n)¢’) for n= Z aq,;(n)¢,
>0 >0
where a4 ;(n) € E; :={0,1,...,¢9 — 1}. A special g-additive function is the sum of
digits function
8q(n) = z aq,j(n).
j=>0

The statistical behaviour of the sum of digits fucntion and, more generally, for
g-additive function has been very well studied by several authors.

The most general result concerning the mean value of g-additive functions is due
to Manstavicius [21] (extending earlier work of Coquet [3]). Let

M=t Y S mb, = o S Fed)

cEE, c€E,
and
[log, ] [log, 2]
My(z) := Z Mk.q, Bﬁ(w)= Z mg;k,q'
k=0 k=0
Then
1
=3 (f(n) = My(@)* < B (a), (L)
n<ze

which implies

1
- Y f(n) = My(2) + O(By ().
n<x
For the sum-of-digits function s,(n) much more precise results are known, e.g.
Delange [5] proved (for integral z) that

1 qg—1
- Z sq(n) = 3 log, = + v(log, z),
n<e
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where 7 is a continuous, nowhere differentiable and periodic function with period 1.
(Higher moments of aq(n) were considered by Kirschenhofer [19] and by Kennedy
and Cooper [17] (for the variance) and by Grabner, Kirschenhofer, Prodinger and
Tichy [12].)

There also exist distributional results for g-additive functions. In 1972 Delange
[4] proved an analogue to the Erdés-Wintner theorem. There exists a distribution
function F(y) such that, as  — oo

%#{n<w|f(n) <y} - Fy) (1.2)

if and only if the two series } )~ Mk,q; Y k>0 m3., , converge. This theorem is
generalized by Kétai [16] who proved that there exists a a distribution function
F(y) such that, as z = oo

%#{n<w|f(n)—Mq($) <y} F(y)

if and only if the series ), ,m3,, , converges.
The most general theorem known concering a central limit theorem is again due
to Manstavicius [21]. Suppose that, as z — oo,

max |f(cq’)| = o(By(x))

cgi<z
and that D,(z) — oo, where
log, @ .
Dg(x) = Z a,ﬁ’q and a,%’q ::a Z F2(eq®) —mi,q.
k=0 cEE,
Then, as x — o0,
e ) o

where ® is the normal distribution function.

Similar distribution results for the sum of digits function of number systems
related to substitution automata were considered by Dumont and Thomas [8]. For
number systems whose bases satisfy linear recurrences we refer to [6].

Furthermore, Bassily and Kétai [1] studied the distribution of g-additive func-
tions on polynomial sequences.

Theorem 1. Let f be a q-additive function such that f(cg’) = O(1) as j = oo
and ¢ € E;. Assume that (ﬁ‘fg(f))" — 00 as & — oo for some 1 > 0 and let P(x) be a
polynomial with integer coefficients, degree r, and positive leading term. Then, as

T — 0,

f(P(n)) ~
D,(x

l#{n<av
x

M,(z")
n < y} - @(y)

and

%# {p <=z ‘ f(P(pl)))q(_xf\;’[(’(ﬂ) < y} - ®(y).

This result relies on the fact that suitably modified centralized moments converge,
compare with Lemma 4. Note also that this theorem was only stated (and proved)
for n = % However, a short inspection of the proof shows that n > 0 is sufficient.
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2. JOINT DISTRIBUTIONS

It is a natural question to ask, whether there are analogue results for the joint
distribution of gg-additive functions fy(n) (if ¢1,4q2,-.. ,q4 > 1 are pairwisely com-
prime integers). For example, Hildebrand [14] announced that one always has

S {n <zlfiln) <y 1 <L< A} Fily) - Faly)

if f, satisfies (1.2) for all £ = 1,2,...,d and that there is a joint central limit
theorem of the form

1 ¢(n) — My, (x)

—# {n<x <y, 1<L<dp = 2(y1)P(y2) -~ 2(ya)

T Dy, (z)
if Bg,(x) — oo and By, (2") ~ By, (z) for every n > 0 as # — oo. (Note that the
sum of digits function s,(n) is not covered by this result.)

In this paper we will first extend the above result of Bassily and Kétai to the joint
distibution of gg-additive functions f, (1 < £ < d) on specific polynomial sequences
if 1,42, -- . ,qq are pairwisely coprime.

Theorem 2. Let q1,q2,... ,9a > 1 be pairwisely coprime integers and Let f;, 1 <
¢ < d be qp-additive function such that fe(cq)) = O(1) as j — oo and ¢ € Ey.

(11)0‘2-’3(:)33, — 00 asx — 00, 1 < £ < d, for some n > 0 and let Pi(x)
be polynomials with integer coefficients of different degrees ry and positive leading

term, 1 < £ <d. Then, as x — 00,

Assume that

s {n <o PO Z0ET) 1 cecaf o waw) -+ a0
and
ﬁ# {p <z fZ(PZ(IgL(;y)“ (=) <y,,1<L< d} = O(y1)®(y2) - - - P(ya)-

This theorem contains an unnatural condition, namely that one has to consider
polynomials P;(z) with different degrees ry. It seems that this condition is not
necessary. However, this is the crux of the matter. By using a variation of Bassily
and Kétai’s proof (combined with Baker’s theorem on linear forms of logarithms)
we could handle the case d = 2 with linear polynomals P;(z) = Az + By.

Theorem 3. Let q1,q9> > 1 be coprime integers and Let f, be q,-additive function
such that fe(cq)) = O (1) as j = 0o and c € Ey, £ =1,2. Assume that W — 00
as x — 00, £ =1,2, for somen > 0. Let Py(x) = Az + By, £ = 1,2, be arbitrary
linear polynomials with integer coefficients and positive leading terms Ay coprime

to q;. Then, as x — 00,

%# {n <z fZ(PE(Tgi(_ijqu (z)

For the sum-of-digits functions we can also prove a local version of Theorem 3.

< yg,ﬁ = 1,2} — ‘I’(y1)‘1’(y2)

Theorem 4. Let q1,q2 > 1 be coprime integers and set d = ged(qn — 1,¢2 — 1).
Then, as x — o

1
E# {n <z |SQ1 (’I’L) = klyqu (n) = kz}
2
(ke - %logql m)

2
= H —exp - prm + o0 ((logz) ™)
=1\ y/2r% " log,, @ 2755 log,, @

uniformly for all integers kl, ko > 0 with ky = ks mod d.
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Note that s, (n) = n mod (g — 1). Thus we always have sg, (n) = s¢,(n) mod d
and consequently

#{TL < :c|sq1(n) = k17S!I2(n) = k2} =0

if k1 # k2 mod d.
There are some other results indicating that the gs-ary digital expansions are

asymptotically independent for different bases ¢, e.g. Kim! [18] showed that for all

integers ¢1,... ,¢q

1

1
“Yn<z:sp.(n)=cimodm;, 1<j<d)}=—" +0@x°
Hn <o 5, () = ¢ mod m; (1< <)} =~ + O@™")
with
1
0= ————,
120d2¢2m?
where q1,... ,q¢ > 1 are pairwisely coprime integers and m;,... ,mgq are positive

integers such that

ged(g; —1,m;) =1 (1 <j <d);
g = max{q1,... ,q4}, m = max{my,... ,mgq} and the O-constant depends only on
d and q. (This results shapens a result by Bésineau [2] and solves a conjecture of
Gelfond [11].)

Drmota and Larcher [7] used a variation of Kim’s method to prove that
d-dimensional sequence (aiSg, (n),28¢,(n),... ,@a8¢,(n))n>0 is uniformly dis-
tributed modulo 1 if and only if a1, qs,... ,aq are irrational. (Grabner, Liardet
and Tichy [13] could prove a similar theorem by ergodic means.)

Another problem has been considered by Senge and Straus [27]. They proved
that if ¢; and ¢ are coprime and ¢ is any given positive constant then there are
only finitely many n > 0 such that

$q:(n) < cand sg,(n) <ec.

This result was later generalized and sharpended by Stewart [28], Schlickewei [23, 24]
and by Pethé and Tichy [22]. The proofs use Baker’s method on linear forms of
logarithms and the p-adic version of Schmidt’s subspace theorem by Schlickewei
applied to S-unit equations.

One would get a much deeper insight into all these results if one could prove a
local version of Theorem 2, e.g. asymptotic expansions or general estimates for the
numbers

%# {n<z|sq(n®) =k}

of for
1

W#{p <z|sq(p) =k}
(and of course multivariate versions.) It seems that problems of this kind are ex-
tremely difficult, e.g. it is an open question whether there are infinitely primes p
with even sum-of-digits function s2(p). The best known results concering these

questions are due to Fouvry and Mauduit [9, 10] who proved that
1
E#{n <z|lnePVn=ni-n2Ani,ns €P),se(n)=0mod 2} >¢>0

for some constant ¢ > 0. (P denotes the set of primes.)
Theses questions are also related to two other conjectures of Gelfond [11], namely
that sq(P(n)) and s,(p) are uniformly distributed modulo m.

Remark Schmidt [26] and Schmid [25] discussed the joint distribution of sa(k¢n)
for different odd integers k¢, 1 < £ < d. (The distribution modulo m was inves-
tigated by Solinas [29].) It is surely possible to extend their result to the joint

IFor the sake of shortness we restrict to the sum-of-digits function sq(n)
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distribution of fy(P;(n)), 1 < £ < d, where f; are gp-additive functions, P, are (cer-
tain) integer polynomials, and gy > 1 arbitrary integers (e.g. all of them are equal).
However, we will not discuss this question here.

3. PROOF OF THE THEOREM 2

As already mentioned, Theorem 2 is a direct generalization of Bassily and Katai’s
result of [1]. Therefore we can proceed as in [1].

The first two Lemmata on exponential sums are stated in [1], a proof can be also
found in [15].

Lemma 1. Let f(y) be a polynomial of degree k of the form

a —
F) =y +oy 4ty

with ged(a, b) = 1. Let T be a positive number satisfying
T Z 23(k72)
and
(logz)™ < b < z*(logz) .
Then, as x — 00
1 —T
LS elrm) = 0 ((10g2) 7).
n<x

Lemma 2. Let f(y) be an in Lemma 1 and 19,7 arbitrary positive numbers satis-
fying
> 255,
and
(logz)™ < b < z*(logz) .

Then, as x — o0
1

()

The third lemma is proved in [1] with help of Lemmata 1 and 2 and the inequality
of Erd6s-Turén.

Lemma 3. Let 0 < A <1 and

> elf(p) = O ((logz)™™).

<z

q—1
b
Ubq,a :=[0,A]U U [E —A,g-l-A] ull—A,1].

b=1
Then for every € > 0 and aribitray A > 0 we have uniformly for N®* < j <rN — N°¢
and 0 < A <1/(29), as ¢ — o0

1 P(n _
E# {n < m‘{ qj(+1)} € Ub,q,A} < A+ (logz)™

and

ﬁ# {p <z {f;(fl)} € Ub,q,A} < A + (logz) ™.

We will also make use of the following limiting relations for centralized moments
for g-additive functions, see [1].

Lemma 4. Let f be a q-additive function such that f(cq’) = O(1) as j — o0
and ¢ € E; and let P(x) be a polynomial with integer coefficients, degree r,
and positive leading term. Furthermore, suppose that for some n > 0 we have.
D,(z")/(logz)" — 0 as x — co. Define fi forn < x" by

fi(n) = > f(aq,;(n)q’)

(log, z)7<j<rlog, z—(log, z)"
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and set
Mya(a") = > Mg,
(log, z)"<k<rlog, z—(log, z)"
2 T\ . 2
Dy, (z") = E Tkq

(log, z)"<k<rlog, z—(log, :c;’

Then, ax x — o©

Lo (B

n<zx —00
" (p) = Mya (") \"
1 (AP i  kd(s
w<>#,§;( ) o [

In [1] this property is only proved for n = % However, as already mentioned, it
is also true for any n > 0.

Proposition 1. Let N, = [log,, z], 1 < £ < d, let X > 0 be an arbitrary constant
and hy, 1 < £ < d, positive integers. Furthermore, let Py(z), 1 < £ < d, be integer
polynomials with non-negative leading terms and different degrees r¢ > 1. Then for
integers

Ny <KD <k < kD <rNe—= N7 (1<£<d) (3.1)

(with some n > 0) we have, as T — o0

1 .
~#{n<ala, o Pm) =4",0<j <h,1< < d)
1

=————++0 ((log a:)_)‘) (3.2)
q{ll qg2 PR qg’d

and

%#{p<w|a (z)(P[(p))—b(e)0<]<h1<€<d}

1
=————— +0((logz)™") (3.3)
qf’quQ - qg’d

uniformly for b;e) € E,, and k](-e) in the given range, where the implicit constant of
the error term may depend on qg, on the polynomials Py, on hy and on A.

Proof. We follow [1]. Let fp 4. (z) be defined by
A/2
., = / b x+z
A A AJ2 q, { })
where 14 denotes the characteristic function of the set A and {z} = z — [z] the

fractional part of . The Fourier coefficients of the Fourier series fpqa(z) =
Y- mez dm.b,q,a€(mz) are given by

1
dopg.A = =
! q

and for m # 0 by

dm7b’q’A -

o) - (-25) e(m2)-e(-m2)

2mim 2mimA
Note that dp 5,9, = 0 if m # 0 and m = 0 mod ¢ and that

|d | < mi —1 —1
m min , .
baal = 7r|m| Arm?
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By definition we have 0 < f ; a(z) <1 and

1 ifaze[ A, ”+—1—A],

Jo,qa(z) =
q 0 ifxE[O,l]\[g_ ,bTTl-l-A].
So if we set
d he Ye
t(yla--- ,yd H Hfb(l),(u, PAQNE]
£=1j=1 !

4,
then we get for A < 1/(2q)

‘# {n<ala, oPm)=620<j<h1<<d) =3 UPM), ... ,Pd<n))‘

n<lr

4 he Py(n)
-2
Z Z o (€ Ubge),%A < Az + z(log z)
=1 j=1 qe:
and

‘#{p <zla, o) =b,0<j<hp1 << a} =S UP®), -, Palp))

p<z

d hyg

Py(p _
< Z Z #in<z kfz()-i-)l € Ubge)’%A < An(z) + 7(z)(logz) ™,

=1 j=1

9
is given in Lemma 3.

( (&) (l))

ml,..

where U,
bgl) N TIYAN

For convenience, let m, = denote hy-dimensional integer vectors

OIS .
and vy = | g, T, e , 1 < £ < d. Furthermore set

d he

Tonsyooma = | [ [] 4, 9 40 g,

(=1 j=1
Then t(Py(n),...,Pi(n)) has Fourier series expansion
tWrssya) = D Ty mg€ (M1 Vigy + -+ + Ma - Vaya) -
my,...,mgqg

Thus, we are led to consider the exponential sums

S = Z Tr,,... my Z e(my-viPi(n)+---+mg-vyPyn))
..,my

n<ze (3.4)
and
Sy = Z Ty, ;mq Z e(my-viPi(p)+---+mg-vyPyp)).
my,..., Mg p<lz (3‘5)
Let us consider for a moment just the first sum S;. If my,... ,my are all zero
then
z+ O(1
Tm,,...,mq Z e(m;-viPi(n)+---+mg-vgPy(n)) = e )
n<z 91 " 44

which provids the leading term. Furthermore, if there exists £ and j with mg-l) #0
and my) = 0 mod g then Tm,,....m; = 0. So it remains to consider the case where

there exists £ and j with m;e) # 0 mod ¢;. Here the exponent is of the form

ﬂP1(n) +- 4 %Pd(n)

my -viPi(n) +---+mg-vePi(n) =
b bq
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in which we assume that gcd(ag,bp) = 1, 1 < £ < d. The first observation is that
for any £ for which there exists j with my) # 0 mod ¢, there exists 7, > 0 (only
depending on gy) such that

(£)
b >q7lzk

if mg) # 0, mg) # 0 mod ¢, and mg?rl = mgﬁzl == m,(f) = 0, compare with

[1]. For the reader’s convenience we repeat the argument. Suppose that the prime
factorisation of g¢ is given by g, = pi* -- - pi*. If mg) # 0 mod g, then there exists
t such that mg[) Z 0 mod p;*. Now we have

KO kD, ©_ 0 ®
bl(m(e)Jr m®, ... g K Y’)—aq’“ +

e, e, nek®
>q tFs
= 1y

( (
Hence by = 0 mod pf ¢ “" and consequently b, > pf’-‘ . Note that we also

(£)
the

have by < g,
Now let D denote the set of £ € {1,2,...,d} such that there exists j with

m;-e) # 0 mod g,. Since all degrees ry are different there exists a unique £y with
re, = max{r,| ¢ € D}. We now want to apply Lemma 1 with k£ = ry, and b = by, .
If k](-l) are contained in the range (3.1) then for every 7 > 0 there exists xo(7) such
that for z > zo(7)

(logz)” < by, < z™0(logz)™".
Consequently, we can apply Lemma 1 and obtain

1 .
E# {n <z aql,k(g)(P(n)) = by),O <j<hyl1<e< d}

1 - p—
- 0 | (log2)™ ) |Tony,.mal | +O (A + (logz)™*),
ql q2 qd -0
where m = (my,... ,my). Since
3" [Ty, mal < (2 + 21og(1/A))h++ha
m#0

it is possible to choose A = (logz)~*! for a sufficiently large constant A; such that
(3.2) holds.
The proof of (3.3) runs along the same lines. O

Corollary 1. Let N, = [log,, ], 1 <€ < d, and A\,n > 0. Then for integers kj(.l)
satisfying
Ny <BY <rNy=N] (1<j<h, 1<0<d)

and b;e) € E,,, we uniformly have, as  — oo

1 .
“#{n<ala, o@m) =b0<j <1< <)

d

-11 (é# {n<ala, o@m) =0 < he}) +0 ((logz) )

and

1 .
$# {P <z aql,kgm(Pz(p)) ={0,0<j<h,1<£< d}

d

H (—# {p<ala, yo @) =4,0<i < hz}) + 0 ((logz) ™).
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Proof. If there exists £ and j1,j2 with kj(-f) = kg-ﬁ) but bgf) #* bg? then both sides are
Zero.

So it remains to consider the case, where for every £ the integers k](-f), 1<j5<hy,
are different, and without loss of generality we can assume that they are increasing.
Hence we can directly apply Proposition 1. O

Corollary 2. For any choice of integers k¢, 1 < £ < d, we have, as x — 00

Z H (fe 1 (Pe(n ) l(xrl?,l(ﬂ?”)>m

n<w€ 1
4 (1 Z 1(P, — Mg, 1 (2™ he
-1 (E (f& ( K(gze),l(x”) . )> > o

{=1 n<xT

and

)

p<z (=1
_ 1 fea(Pu(p)) = My, 1 (@) \ ™
l:r{(w(x);( Dy, (@) ) )”‘

Proof. In order to demonstrate, how this property can be derived we consider the
case d = 2 and k1 = k2 = 2. Set Ay = [(log,, #)"] and B, = [log,, = — (log,, )"]
and observe that

Jea(Pe(n)) — My, 1 Z Z (fg bqZ (ag,,i(Pi(n)),b) — M) 7

j=A1 bEE,, e

where d(z,y) denotes the Kronecker delta. Hence we have

o )

n<lw

23030 3 S ID VD i) i S—

J1=A1 jo=A1 ja=Az ja=A2 b1 E€Ey; ba€E,; b3€Eq, bacEy, th,

x %2 (fl(b1q{1)5(aq1,jl (Pr(n)), br) = %) *

n<z

* (fl(bzq{2)6(al11,j2 (Pl(n))ab2) - M) X

q

(a6 (Pa() ) = 22 )

g2

X (fz(b4qg4)5(“qa:1'4 (Po(n));ba) = M)

q2
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By Corollary 1 it follows that

% Z (fl(blq{l)(s(aqhh (Pi(n)),br) — M) X

n<z o

X (f1(b2(]{2)(5(0/q1,j2 (Pl(n))’ b2) B %> *

X <f2(b3qg3)5(aq2:j3 (P2(n)), bs) — %) )

x (fz(b4qé“)5(aq2,j4 (Py(n)), bs) — mq—)
= f1(b1gd") f1(b20{?) f2(b3¢3®) f2(bag®) x
1
x {1 < lag, i (PL(n) = b1, agy o (PL(n)) = b,
Gy, o (Po(1)) = b, g 1o (Pa(n)) = b |
— fi(br @) f1(bag??) fo(bsgd®) x
1 Mjy,q0
X 5#{” < xlalh,jl (Pl(n)) = blaam,h(Pl(n)) = b2=aq2,ja(P2(n)) = b3}7
+ Mji,q1 Mja,q1 Mjz,q2 Mjs g2
q1 q1 g2 gz
. 1
= (fl(blfJ{l)fl(bﬂI{Q)E#{” < zlag, j, (Pi(n)) = b1, ay, j,(Pi(n)) = bz}) X

:F...

 (Faloaa)Pa0aaf) 1 {0 < 05 (Pa0) = b5 (Po0) = 01}
- (fl(bqul)fl(b2ﬂ2)%# {n < =lag, ;, (P1(n)) = b1, aq, 5, (P1(n)) = bz}) X

x (fQ(b3q%.3)§#{n < z|ag, js (P2(n)) = bs}) M2

Q2
S J1,q1 Jz,q1> ( 73,92 J4,q2) + 0O ((log z)~*
- ( s R ((logz) )
1 . Mj1,qa
= (5 Z (fl(bIQ{l)(S(afh,h(Pl(n))’bl) - ;1(1 ) x
n<w

(fl(bzq{f)a(aql s (PL),b2) - mq—)) x

X (% Z (fz(b3qg3)6(aq27j3(PQ(n)Lb3) _ M) y

n<x q2
Ja Mj4,q2
(fZ(b4qz )8(ags s (P2(n)), ba) — q—2>>
+ 0 ((logz)™)
So we directly obtain the proposed result with an error term of the form

O((log z)~A+4—4m), O

By combining Lemma 4, Corollary 2, and the Frechet-Shohat theorem it follows
that, as £ — o0

fea(Pi(n)) — Mg, 1(z™)
Dy, 1(z™)

l#{n<az
x

<ypl<L< d} = O(y1)®(y2) - -- ®(ya)
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and
ﬁ {p<m fe,1(Pe(£()Iil(ai\r/-:q)z,1(:c ) <ynl<l< d} S By1)B(ys) - - - B(ya)-
Since
Mg, (z™) — Mg, 1 (2™) = O((log z)")
and

Dy, (z™) — Dg,1(z™) = O((log z)")
it also follows that

ax | L) = My, (&™) fea(Pe(n)) — Mg, 1 (27)
n<w qu (IL'”) qu ,1 (_q;Tz)

as x — oo. Consequently we finally obtain the limiting relations stated in Theo-
rem 2.

—0

4. PROOF OF THE THEOREM 3

The proof of Theorem 3 is similar to the proof of Theorem 2, i.e., we will prove an
analogue to Proposition 1. However, the proof requires an additional ingredience,
namely a proper version of Baker’s theorem on linear forms. More precisely, we will
use the following version due to Waldschmidt [30].

Lemma 5. Let ay,as,... ,a, be non-zero algebraic numbers and by, by, ... b, in-
tegers such that

o' alr #1
and let Ay, As, ..., A, > e real numbers with log A; > h(ca;), where h(-) denotes
the absolute logarithmic height. Set d = [Q(a1 ... ,ay) : Q). Then
abtooialbr — 1| > exp (=U),
where
U = 20n+32p3n+6gn+2(1 4 1og d)(log B + logd) log A; - - -log A,,
and

B = max{2, |by], |b2],- .. , |bal}.

Corollary 3. Let q1,q2 > 1 be coprime integers and my, mq integers such that
my Z 0 mod ¢; and my #Z 0mod g». Then there exists a constant C > 0 such that
for all integers ki, ks > 1

ﬂ + @ > max |m1| |m2| i e—C’logql log g2 log(max(k1,kg))-log(max(\ml|,|m2|)).
kl k2 - kl ) k2
il D) G 92

Proof. Since ¢q1,q2 > 1 are coprime integers and m; Z 0 mod ¢, me Z 0 mod ¢,
we surely have mlql_'“1 + mng_’c2 # 0. So can apply Lemma 5 for n = 3, oy = q1,

Qg = (@2, O3 = —m2/m1, b1 = k17 b2 = —kz, b3 =1 and directly obtain
my | M2 k k1 —ko 1102
k1 Fa | |m1| 'qll : _q11q2 2 -1
il a2 my
> |m1|qfle—0108 q1 log g2 log(max(ky,k2))-log max(|m1|,|ma|)

Since the problem is symmetric it is no loss of generality to assume that |m; |g; ** >
|malay . O

Finally we will use the following (trivial) lemma on exponential sums.
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Lemma 6. Let o is a real number with 0 < |a| < 3. Then, as z — oo
1
Z e(an) € —
n<ze |a|

Proposition 2. Let Py(z) = Ayx + By, £ = 1,2, be linear polynomials with integer
coefficients and non-negative leading terms A, which are coprime to q;. Set Ny =
[log,, z], £ = 1,2, let A > 0,m > 0 be an arbitrary constant and let hy, ha be positive
integers. Then for integers

Ny <k <k < kY <N -NP (£=1,2) (4.1)
we have, as * — 00

1 /) .
5# {TL < m|aqhk§z)(Aln+Bg) = bg.),() <j< hytl= 1,2}

1 .
=~y T O ((log2)™) (4.2)
AP

uniformly for b;_e) € E,, and ky) in the given range, where the implicit constant of
the error term may depend on qg, on hy and on A.

Proof. The proof runs along the same lines as the proof of Proposition 1. The only
problem is to estimate the sum

Z |Tm1,m2| ’

(m1,m;)#0

?

1
E Z e ((A1m1 -vy + Asmsy - v2)n)

n<z

_p@_ —k¥ 1
where my, = (my),... ,mgfl)) and v, = (qf ki 1,... 14y he ),E = 1,2, such that

the integer k](-l) are in the given range (4.1).

Firstly we fix A = (logz)~?° with an arbitrary (but fixed) constant Ao > 0.
Furthermore, since

) [ Tonsms | < (l0g )~
3¢3j:/m | > (log z)>*0

we can restrict on those m # 0, for which |m§-£)| < (logx)?* for all £,j and for
which my) # 0 mod gy if my) #0.

We also note that it is also sufficient to consider just the case where mg_e) # 0 for
all j and £ = 1,2. (Otherwisely we just reduce h; resp. ho to a smaller value and
use the same arguments.)

Set § =n/(h1 + ha — 1). Then there exists an integer k with 0 < k < hy + hy —2
such that for all j and £ =1,2

K — KO ¢ [(log )™, (log ) ++17)

So fix k with this property. Before discussing the general case, let us consider two
extremal ones.
Firstly suppose that

k§21 - k;e) < (log z)*°
for all j and £ =1,2. Set
O

hy
kh
me=Ag > miq," (t=1,2).
=1

Then we have i, Z 0 mod g¢ and
log [m| < (log z)**
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Hence, we can apply Corollary 3 to

m1 mo
A1m1 -vy + A2m2 -Vgo = I8} @

ki +1 Ky +1

4 D)
and obtain
(1) (1)
—k, =1  —k; -1 B kS
|Aimy - v + Aomy - vo| > max (ql togy 7 ) ¢ Cloglogz (log z)

for some constant C' > 0. Since |Ajm; - vi + Asmy - va| < 1 we get from Lemma 6

1
E Z e ((A1m1 V1 =+ A2m2 . VQ)’I"L)

n<z

& %qlogq z—(log x)(P1th2—1)8 eClog log = (log z)*®

— ef(log z)(P1+h2=1)8 /160 44 Cloglog z (log z)*°

< (logz)™*
for any given A > 0.
Next suppose that
k3(21 - ky) > (log ) (k+1)?
for all j and £ =1,2. Here we set

me = Am?  (£=1,2)

and obtain
- - () he ()
Aimy - vy + Aomy - vo| > + — E | _ E J2
| |2 kM 1 kP 1 = k41 = kD41
1 D) =2 q 72=2 g,
W g4
> max (ql Fr 14 s > ¢~ Clloglog 2)*

(1) (1)
-0 ((log $)2>\0 max (qlkhl 71, q;k’m 1) o—(log z)(k+1)z;>

> max (ql_ kgl)_l, @ k%)_l) ¢—Clloglog)®
Thus, we again have
1
- Z e((Aim; - v + Aomy - vo)n)| < (logz) ™ (4.3)
n<e

for any given A > 0.
In general, we assume that for some s; (¢ = 1,2)

K — kY < (logn)* (5 < s0)
and ,
KO — kO > (logz) k10
Here we set

B(O _ &)
s J

sy
me=Ag Y m{g,” (t=1,2).
7j=1

Then we have (as in the first case) m, Z 0 mod ¢, and
log [, < (logz)*°.
Furthermore, we can estimate the sums

by m(.l) oxg —(log z)k+13
Z —J:O((logx) 0q, 8 )

£)
_ k941
j=s¢+1 qu
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Thus we get
_ __ h1 (1) ha (2)
m ma § : M, M,
|A1m1 -vi + Aomy 'V2| > @ + @) - (1) - (2)
k)41 £ 41 e L S L kL
qq qs Ji=s1+ Q J2=s2+ qs

kM1 M1\ _ ks
ZmaX(ql 1 s 2 e Cloglog z (log z)

-0 ((108; ZL’)D\O max (qlkgll)lj q2kg12)1> o—(log m)(k+1)¢s>

kM1 gD c ks
s s —C'loglog z (log =
>>max(q1 o,gy 7 e gloga (log )™

which again implies (4.3).
Hence, we finally get

1
Z Ty, m.| - ‘E 2 e((Aim;g - vi + Aamy - v2)n)

(my,m;)#0 n<w
=0 ((logz) ) + O ((log z)***~*),
which completes the proof of Proposition 2 O

5. PROOF OF THE THEOREM 4

The proof of Theorem 4 relies on a direct application of proper saddle point
approximations.
Set

QAky ke = #{’I’L <z | Sq1 (n) =k, Sqa (n) = kz}
Then the empirical characteristic function is given by

1 . )
Pz (ti,t2) = 7 Z eit18q1 (n)+itasgy (n)

n<z

1 . .
— § t1ko+itok
= - aklkzell 2tz 25

k1,k2>0

which implies that the numbers ag,, can be determined by

1 ™ ™ » »
Aki ke = —(271')2 LW /_ﬂ- gow(tl,tg)e itrka—itaka dtl dtz.

We first use Theorem 2 to extract the asymptotic leading term of ag, ,. In fact, we
need a little bit more general property.

Lemma 7. Set
1 2_1
log,, # and Dy(z) = q£12

and let P(x) denote the linear polynomial P(x) =lcm(qs — 1,92 — 1)x + B for some
integer B with 0 < B < lem(qs — 1,2 — 1). Then, for every € > 0 there exist
xog = zo(€) such that

My(z) == l]e; log,, z

% 3 eitrsan (Pm)Fitasaey (P() _ it Moy (2)+H2Max (2) =5 (1D, (24803, ) | <
n<w

for all x > z¢ and for all t1,t2, real.
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Proof. First we want to notice that Theorem 2 cannot be directly applied. It may
occur that the leading term A = lem(g; — 1,¢2 — 1) of P(x) is not coprime to ¢;
resp. to g. However, if A = qflzg (for some K, > 0 and A, coprime to ¢;) and if
By has g-ary expansion By = By + Biqg + - -+ + B,;quZ then

$q,(An + B) = s,,(q;*Am + Bo + Big¢ + - -- + Br,q,")

= 5q,(qp* A + By + Bagr + -+ + Br,q;* ') + Bo
Lg—2

:sql(qf‘_2Zn+B2 +B3q + -+ Br,q,*" ") + Bo + B

= Sq(Zgn + E{) + 5{

for some integers By, Cy. Thus, the joint (normalized) limiting distribution of
(84:(An + B), s4,(An + B)) is the same as that of (s, (A1n + B1), 84, (A2n + Ba)),
and A, is coprime to gy, £ = 1,2. Hence, we can always apply Theorem 2 for
properly chosen linear polynomials Pp(z), £ = 1, 2.

By Levi’s theorem it now follows from Theorem 2 (and the above remark) that
for every fixed t1,ts we have, as £ — o0

% 3 eiltisar (P +taou (P())/log e (5.1)
n<z

_ (it My (2)+t2 Moy (2)) //log o~ £ (83 D3 (2)+3D3 (2)) /(log 2) _y

Moreover, we can show that this convergence is uniform for all all ¢;,¢5. Since
®(y1)P2(y) is continuous we know that the normalized empirical distribution func-
tion

Fo(yr,92) = %#{” < z|8g,(n) < Me(n) +yeDe(z), £=1,2}

converges uniformly to ®(y;)®2(y). Furthermore, the variances

1 ¢ (8q,(n) = My(n))*
T Z D3(zx)

n<z

are bounded (compare with (1.1)). Hence we get

1
sz(yla y2) < 5437
/max{|ylla|y2}ZA A4

Thus it follows by elementary means (and by using the definition of the characteristic
function) that the convergence in (5.1) ist uniform. O

The proof of Theorem 2 will also make use of the following estimate on exponen-
tial sums.

Proposition 3. Let q1,q2,...,9¢ > 1 be pairwisely coprime integers. Then there
ezists a constant ¢ > 0 such that for all all real numbers t1,ta,... ,tq
d
1 —cloga Y [l(ae—1)tell
=Y eltisg(n) +tasga(n) + -+ +tasg, ()| e i ,
n<x

where ||t|| = inel%l |t — k| denotes the distance to the integers.

A proof of Proposition 3 can be found in [7]. It is more or less a slight general-
ization of a corresponding estimate of exponential sums presented by Kim [18].
Now we can start with the proof of (Theorem 4).
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Proof. For any K > 0 and integers sy, S set

27sy K
te — mod 27| < £=1,2%.
T 1T Vg }

q1—2q2—2

Ag = [-m,7]*\ U U Ck (s1,82).

81 =0 52:0

CK(Sl,Sg) = {(tl,tz) S [—7‘(’,7T]2 :

Furthermore set

By Proposition 3 for every & > 0 there exists K = K () such that

1 €
— t1,t2)| dt1 dta <
(27)? /AK |z (t1,t2)| dtr dts < los 2

Furthermore, we can choose K < ¢'(—loge)? (for some constant ¢ > 0). So it
remains to consider the integrals

1 1 . .
Ik(s1,82) := 2n)? / (E Z eft1(sa1 (n)=k1)+ita(sq (")k2)> dt dts

Ck (s1,82) n<e
q111+k2 4231) 1 X
(2m)?

1 ot ‘gt (=222 \p
X / (E Z e’tl(sﬂ (n)—k1)+its(sqy (n)—k2)> eQTr (q1—1+q2—1) dtll dt'2

n<w

_ e—27|'i(k1

C'K(0,0)

By Lemma 7 it is easy to evaluate Ik (0,0) asymptotically. For sufficiently large
x > zo(e) we have

i(t1 My (2)+t2 M2 (2)) — 5 (t1 D (2)+t5 D3 ()

Ya(ti,t2) —e <e

for all ¢, 12, real, and consequently

11 (0,0) = 1 / eit1 (M (@) —k1)+ita(Ma(x)—k2)— 5 (17D} () +5 D3 (x)) dty dts
’ (2m)% Jok (0,0)

eK?
+0 (10g:c>
1 oo o0 : . 12912 212
= —/ / eztl(M1(w)fk1)+zt2(M2(w)fk2)7§(t1D1 (z)+t3D3(z)) dt, dty
(27m)% ) ) o
L0 (5(—log5))
log x

2 2
1 ke— M -1
1 o (- Ma V")) g (2=l
i1 \V2mDy, (z) 2Dz, () log (5.2)
In order to treat the remaining integrals Ik (s1, s2) we recall that d and A denote
d=gcd(gr —1,¢2 — 1) and A =lem(q; — 1,¢2 — 1). We represent s, s by

_ -1
Smegqed + 7 (0§m5<d,0§7‘1<q€d ,€=1,2)
and observe that
51, 8 _ mitmy oo _mitmy r2rl 4oy L
ga—1 ¢-1 d g—-1 ¢-1 d A
Thus,

C = e27m.(‘118—i1+‘12531)
is always an A-th root of unity and ¢ =1 if and only if
my+me =d, r1 =0, and ro = 0. (5.3)
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Thus, if (5.3) is satisfied, i.e., s = ml% and sy = (d — m;) 22, we have (recall
that k; = k2 mod d)

d

I (51, 89) = e 2@ =k [ (0,0) = I (0,0)

Hence

d—1 _1 _1
> Ik <m1q1d ,(d—ml)q2d ) = dIx(0,0)
m1=0

which fits (by (5.2) the asymptotic leading term of ag, k, -

Finally we have to consider the case, where

sy s2
(= ezm(q1—1+q2—1

) #1.

Here we have

IK(Sl,SQ) =e€

X

—27ri(k1 qls—il-‘rkg q;—il) x

A-1
¢ / LS o Gn e )byt oo (' + ) k) | it i)
= Cx(0,0) \ ¥ n’'<(z—B)/A

As above, it follows by Lemma 7 that for sufficiently large > x1(¢) (and of course
uniformly for all B=0,1,...,4 —1)

/ i Z €11 (801 (An'+B) k1) ity (sqy (An'+B)—k2) | gyt gyt
Cx(0,0) W <(e—B)/4

2 2

1 1 (ke — My, (z)) (slog(—5)>

=— ——exp | ———— +0|——

A H V21D, (z) 2D§£ (z) log x

Thus
e(—loge
IK(81,82) = O (%) .
ogx

This completes the proof of Theorem 4 O
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