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Random Bisection Problem

V is a random variable on [0,1]
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etc.



Random Bisection Problem

Analytic Description:

• x initial length (it was 1 in our example)

• Pk(x, `) the probability that after k steps each of the 2k fragments

after is shorter (or equal) than `

• Pk(x, `) = Pk(x/`,1) = P k(x/`)

• P0(x) = 1 for 0 ≤ x < 1, P0(x) = 0 for x ≥ 1

P k+1(x) = E
(
P k(xV )P k(x(1− V ))

)



Random Bisection Problem

t-Beta-Distribution for V :

f(x) =
(2t + 1)!

(t!)2
xt(1− x)t

density of distribution of V (t ≥ 0 integer parameter)



Random Bisection Problem

Transfer Operator T:

(TF )(x) := E (F (xV )F (x(1− V )))

With this definition we have

P k+1 = TP k

with P0(x) = 1 for 0 ≤ x < 1 and P0(x) = 0 for x ≥ 1



Random Bisection Problem

Laplace Transform:

Set

LF (u) :=
∫ ∞

0
e−xuF (x) dx (u > 0)

Then

LTF (u)(2t+1) = −
(2t + 1)!

(t!)2

(
LF (u)(t)

)2



Random Bisection Problem

Laplace Transform:

Set

LF (u) :=
∫ ∞

0
e−xuF (x) dx (u > 0)

Then

LTF (u)(2t+1) = −
(2t + 1)!

(t!)2

(
LF (u)(t)

)2

and consequently

LP k+1
(u)(2t+1) = −

(2t + 1)!

(t!)2

(
LP k

(u)(t)
)2



Binary Search Trees

Storing Data:
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Median of 3 – Quicksort:
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Binary Search Trees

Probabilistic Model:

Every permutation of {1,2, . . . , n} is equally likely.

−→ probability distribution on binary trees of size n

−→ every parameter on trees is a random variable

Notation

Hn ... height of trees (of size n)



Binary Search Trees

Height of Medien of (2t + 1)-Quicksort:

(fringe balanced binary search trees)

Pr{Hn ≤ k + 1} =
∑

n1+n2=n−1

(
n1
t

)(
n2
t

)
(

n
2t+1

) Pr{Hn1 ≤ k} ·Pr{Hn2 ≤ k}



Binary Search Trees

Generating Functions:

yk(x) =
∑
n≥0

Pr{Hn ≤ k} · xn

yk+1(x)
(2t+1) =

(2t + 1)!

(t!)2

(
yk(x)

(t)
)2

with initial conditions y0(x) = 1, yk(0) = 1.



Random Bisection Problem versus
Binary Search Trees

Comparision:

Random bisection problem

LP k+1
(u)(2t+1) = −

(2t + 1)!

(t!)2

(
LP k

(u)(t)
)2

Height of (fringe balanced) binary search trees

yk+1(x)
(2t+1) =

(2t + 1)!

(t!)2

(
yk(x)

(t)
)2



Results

Theorem 1

Let xk be defined by P k(xk) = 1
2. Then there exists a continuous

function F (x) such that (uniformly for x ≥ 0 as k →∞)

P k(x) = F (x/xk) + o(1) .

More precisely, we have

xk = eρk+Θ(log k)

for some ρ > 0 (defined on the next slide) and F (x) is uniquely defined

by F (1) = 1
2 and by the relation

F (x/ρ) = (TF )(x) .



Results

Definition of ρ:

Let β > 0 be the solution of

t∑
j=0

log(β + t + 1 + j)− log(2t!) =
t∑

j=0

β

β + t + 1 + j
.

Then

ρ =
t∑

j=0

1

β + t + 1 + j
.



Results

Theorem 2

We have (uniformly for k ≥ 0 as n →∞)

Pr{Hn ≤ k} = F (n/ck) + o(1) ,

where ck satisfies ck ∼ cyk(1) (for some c > 0) and

ck = eρk+o(k)

Furthermore,

EHn = max{k ≥ 0 : ck ≤ n}+ O(1) ∼
1

log ρ
· logn

and

Pr{|Hn − EHn| > y} = O(e−ηy) .

In particular we have, as n →∞, VarHn = O(1).



Travelling Wave

First Observation:

If F (x) satisfies

F (x/ρ) = (TF )(x).

(for some ρ > 0) then

Fk(x) := F (x/ρk)

satisfies the recurrence

Fk+1(x) = (TFk)(x) .

However, F0(x) = F (x) 6= P0(x) = 1[0,1](x)



Travelling Wave

Second Observation:

Set

Φ(u) =
∫ ∞

0
F (x)e−xu dx

and

ỹk(x) = eρkΦ(eρk(1− x)).

Then

ỹk+1(x)
(2t+1) =

(2t + 1)!

(t!)2

(
ỹk(x)

(t)
)2

.



Travelling Wave

Solution of F (x/ρ) = (TF )(x):

Set A1 = (eρV )β and A2 = (eρ(1 − V ))β and suppose that X ≥ 0

satisfies the stochastic fixed point equation:

Y =d A1Y1 + A2Y2

(where Y1 and Y2 have the same distribution as Y and Y1, Y2, (A1, A2)

are independent).

Then

F (x) = E e−xβY

satisfies

F (x/ρ) = (TF )(x).



Travelling Wave

Proposition (Biggins, Kyprianou, Durrett, Liggett, ...)

Set

v(α) = log

E

∑
i≥1

Aα
i


and suppose that v(0) > 0, that α = 1 is contained in the interior of
{α : v(α) < ∞}, and that

v(1) = v′(1) = 0.

Then the stochastic fixed point equation

Y =d
∑
i≥1

AiYi

has (up to scaling) a unique non-negative solution and the Laplace
transform Φ(x) = E exY satisfies

lim
x→0+

1−Φ(x)

−x logx
= c1

for some constant c1 > 0.



Travelling Wave

Remark 1.

The condition v(1) = v′(1) = 0 constitutes a critical case.

If v(1) = 0 and v′(1) < 0 then there is also a solution (that can be also

obtained quite easily by a contraction argument).

If v(1) = 0 and v′(1) > 0 then there is no solution.

Remark 2.

The condition for β is just a reformulation that we are in the critial

case.



Intersection Property

Point process:

Z =
N∑

j=1

δXj
,

Example: N = 2, X1 = log(1/V ), X2 = log(1/(1− V )).

Transform T (for distributions functions):

(TG)(x) = E

 N∏
j=1

G(x−Xj)

 .

Example: G(x) = F (e−x): F (x) = E(F (xV )F (x(1− V ))).



Intersection Property

Intersection property:

Suppose that F (x) and G(x) are continuous distribution func-

tions such that the difference F (x)−G(x) has exactly one zero.

Then the difference (TF )(x)− (TG)(x) has at most one zero.



Intersection Property

Lemma.

Suppose that V is t-beta distributed and T is defined by

(TF )(x) = E(F (xV )F (x(1− V ))).

Then the Laplace transforms Φ(u) =
∫ ∞

0
F (x)e−xu dx satisfy an inter-

section property.

This property is the key property for the proof of Theorems 1 and 2.

It is not clear whether this is also true on the level of distributions

functions?



Intersection Property

Theorem 3

Let G0(x) = 0 for x < 0 and G0(x) = 1 for x ≥ 0 and set Gk+1 = TGk,

that is,

Gk+1(x) = E

 N∏
j=1

Gk(x−Xj)

.

If T satisfies the intersection property then there exists w(x) such that

(uniformly for real x as k →∞)

Gk(x) = w(x−m(k)) + o(1) ,

where m(k) is defined by Gk(m(k)) = 1
2.



More precisely, we have

m(k) = kc + o(k) .

for some constant c > 0 and w(x) satisfies

w(x) = E

 N∏
j=1

w(x + c−Xj)

 .



Thank You!


