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Random Bisection Problem
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Random Bisection Problem

V is a random variable on [0, 1]
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Random Bisection Problem

etc.



Random Bisection Problem

Analytic Description:

e x initial length (it was 1 in our example)

e P.(x,0) the probability that after k steps each of the 2k fragments
after is shorter (or equal) than ¢

o Pu(e,0) = Py(z/t,1) = Pp(a/0)

o Po(z) =1for0<z <1, Pop(x) =0 forz>1

Ppya1(z) = E(PyaV)Pr(z(1 - V)))




Random Bisection Problem

t-Beta-Distribution for V:

(2t + 1)!
(t1)2

z'(1 — )t

flz) =

density of distribution of V (¢ > 0 integer parameter)



Random Bisection Problem

Transfer Operator T:

(TF)(x) :=E(F(2V)F(x(1-V)))

With this definition we have

Pry1=TPy

with Po(z) =1 for 0<z <1 and Pg(x) =0 for z > 1



Random Bisection Problem

Laplace Transform:

Set

Lr(u) = /OOO e ""F(x)dx

Then

(u > 0)

2t + 1)!
Ly () D) = (2t+1)




Random Bisection Problem

Laplace Transform:

Set

Lr(u) = /OOO e ""F(x)dx (u > 0)

Then

Lpp()@HD = ~ 2L (L) ®)

and consequently

(2t 4+ 1)! 2
Lﬁk+1(u)(2t+l) @) (15, (0")




Binary Search Trees

Storing Data:



Binary Search Trees

Storing Data:

6,3.51.8 27



Binary Search Trees

Storing Data:

3.5.1.8. 27 e
O



Binary Search Trees

Storing Data:

51.827 e
2 ©



Binary Search Trees

Storing Data:

1.8.2.7



Binary Search Trees

Storing Data:

8 27



Binary Search Trees

Storing Data:

2,7



Binary Search Trees

Storing Data:



Binary Search Trees

Storing Data:



Binary Search Trees

Quicksort:



Binary Search Trees

Quicksort:

312 6.58 7
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Quicksort:
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Binary Search Trees

Median of 3 — Quicksort:
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Median of 3 — Quicksort:



Binary Search Trees

Median of 3 — Quicksort:

4

4.6.3.5.1.8.27

312 6.5 8 7



Binary Search Trees

Median of 3 — Quicksort:
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Median of 3 — Quicksort:



Binary Search Trees

Median of 3 — Quicksort:



Binary Search Trees

Probabilistic Model.

Every permutation of {1,2,...,n} is equally likely.
— probability distribution on binary trees of size n
—— every parameter on trees is a random variable
Notation

H, ... height of trees (of size n)



Binary Search Trees

Height of Medien of (2t + 1)-Quicksort:
(fringe balanced binary search trees)

Pr{H, <k+ 1} = > @1)”@2)&{11”1 <k} -Pr{Hp, <k}
ni1+no=n—1 (Qt-l-l)

/O\




Binary Search Trees

Generating Functions:

yp(z) = Y Pr{Hp <k} 2"
n>0

Y1 (2) P = (21Et—!l—)21)! (yk(ﬂf)(t))Q

with initial conditions yg(x) = 1, y(0) = 1.



Random Bisection Problem versus
Binary Search Trees

Comparision:

Random bisection problem

(2t 4+ 1)! 2
LFk+1(u)(2t+1) @) (L?k(u)(t))

Height of (fringe balanced) binary search trees

()@ = B DL, (y0)?




Results

T heorem 1

Let z; be defined by Pr(zr) = % Then there exists a continuous

function F'(x) such that (uniformly for x > 0 as k — o)

Py(z) = F(z/xp) +o(1) |

More precisely, we have

7, = ePktO(I0gh)

for some p > 0 (defined on the next slide) and F'(x) is uniquely defined
by F(1) =5 and by the relation

F(x/p) = (TF)(x) |




Results

Definition of p:

Let B3 > 0 be the solution of

t t
. g
| 1 — log(2t!) = .
jZEOOQ(ﬁ—er— +j) —log(2th) = > S

=0

T hen
1

t
=L ity




Results

T heorem 2

We have (uniformly for k> 0 as n — o)

Pr{H, <k} = F(n/c) + o(1)

~

where ¢ satisfies ¢ ~ cy,(1) (for some ¢ > 0) and

¢ = oPk+o(k)

Furthermore,
1
EH,=max{k>0:¢c, <n}+0O(1) NE-Iogn
P

and

Pr{|H, — EHy| >y} =0( )|

In particular we have, as n — oo, Var H, = O(1).



Travelling Wave

First Observation:

If F(x) satisfies

F(z/p) = (TF)(x).
(for some p > 0) then

Fi(z) := F(x/p")

satisfies the recurrence

Fpy1(x) = (TF,) ()|

However, Fy(x) = F(x) # Po(xz) = 1[0’1](x)



Travelling Wave

Second Observation:

Set

and

Then

d(u) = /OO F(x)e ""dx

0

Jp(x) = ePPd (PR (1 — ).

§k+1(f’3)(2t+1) =

(2t 4+ 1)!

(t1)2

(ﬂk(ﬂ?)(t))Q -




Travelling Wave

Solution of F(x/p) = (TF)(x):

Set A7 = (ePV)P and As = (eP(1 — V))P and suppose that X > O
satisfies the stochastic fixed point equation:

Y £ A1 Y7 + AoYs

(where Y7 and Y5 have the same distribution as Y and Y7, Y5, (A1, A5)
are independent).

T hen
F(z) =Ee Y
satisfies

F(x/p) = (TF)(x).



Travelling Wave

Proposition (Biggins, Kyprianou, Durrett, Liggett, ...)

v(a) = log (E (Z Af‘))

and suppose that v(0) > 0, that « = 1 is contained in the interior of
{a :v(a) < oo}, and that
v(1) ='(1) = 0.

Then the stochastic fixed point equation

Yy £ 3 A

i>1

has (up to scaling) a unique non-negative solution and the Laplace
transform ®(z) = E ¥ satisfies

1—&

lim () _
xr—0+ —xlogx

for some constant c¢; > 0.

Set

C1



Travelling Wave

Remark 1.
The condition v(1) = /(1) = 0 constitutes a critical case.

If (1) = 0 and v/(1) < O then there is also a solution (that can be also
obtained quite easily by a contraction argument).

If v(1) = 0 and /(1) > 0 then there is no solution.
Remark 2.

The condition for g is just a reformulation that we are in the critial
case.



Intersection Property

Point process:

Example: N =2, X1 =1log(1/V), Xo =log(1/(1—V)).

Transform T (for distributions functions):

J

N
(TG)(z) =E ( G(:c—Xj)) .
=1

Example: G(z) = F(e~?): F(z) = E(F(zV)F(z(1 —V))).



Intersection Property

Intersection property:

Suppose that F(x) and G(x) are continuous distribution func-
tions such that the difference F'(x) — G(x) has exactly one zero.
Then the difference (T F)(x) — (T G)(x) has at most one zero.



Intersection Property

Lemma.

Suppose that V is t-beta distributed and T is defined by
(TF)(x) =E(F(zV)F(x(1 -V))).

@)
Then the Laplace transforms ®(u) :/o F(x)e "™ dz satisfy an inter-
section property.

This property is the key property for the proof of Theorems 1 and 2.

It is not clear whether this is also true on the level of distributions
functions?



Intersection Property

Theorem 3

Let Go(x) = 0 for x < 0 and Ggo(x) = 1 for x > 0 and set Gy = T Gy,
that is,

N
=1

Gry1(z) = E (
J

If T satisfies the intersection property then there exists w(xz) such that
(uniformly for real x as k — o)

G(z) = w(z —m(k)) + o(1)

~

where m(k) is defined by Gp(m(k)) = 3.



More precisely, we have

m(k) = ke + o(k) |

for some constant ¢ > 0 and w(xz) satisfies

N
w(m)=E<H w(a:—l—ch)) :

=1




T hank You!



