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Discrete Quasi Birth and Death Processes

A discrete quasi birth and death process (QBD) is a discrete Markov
process Xn on the non-negative integers with transition matrix of the
form

P =


B A0 0 0 · · ·
A2 A1 A0 0 · · ·
0 A2 A1 A0 0 · · ·
0 0 A2 A1 A0 · · ·
... . . . . . . . . . . . .

 ,

where A0,A1,A2, and B are square matrices of order m.

Problem: distribution of Xn ? (encoded in powers of P)

Pn =
(
Pr(Xn = v |Xn = w)

)
v,w≥0



Random Walk on Non-negative Integers

m = 1:

P =


b a0 0 0 · · ·
a2 a1 a0 0 · · ·
0 a2 a1 a0 0 · · ·
0 0 a2 a1 a0 · · ·
... . . . . . . . . . . . .

 ,

Interpretation as random walk on non-negative integers:
PSfrag replacements

0 1 2 3

b
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Random Walk on Graphs

m > 1:

P =


B A0 0 0 · · ·
A2 A1 A0 0 · · ·
0 A2 A1 A0 0 · · ·
0 0 A2 A1 A0 · · ·
... . . . . . . . . . . . .



A0,A1,A2, and B transition probability matrices between graphs K0, K1, K2, . . .
PSfrag replacements
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Matrix Powers

With

pw,v = Pr{Xk+1 = v |Xk = w} (k ≥ 0)

we have

P = (pw,v)w,v≥0.

Consequently, for

p
(n)
w,v = Pr{Xn = v |X0 = w}

we have

Pn = (p(n)
w,v)w,v≥0



Combinatorial Interpretation

Let h denote a path

h = (e1(h), e2(h), . . . , en(h))

of length n on non-negative integers with edges

ej(h) = (xj−1(h), xj(h)).

Further, denote a weight (or probability) of h by

W (h) =
n∏

j=1

pxj−1(h),xj(h) =
n∏

j=1

Pr{Xj = xj(h) |Xj−1 = xj−1(h)}

Then

p
(n)
w,v = Pr{Xn = v |X0 = w} =

∑
h

W (h),

where the sum is taken over all paths h of length n with

x0(h) = w and xn(h) = v.



Generating Functions of Weigthed Paths

With

Mw,v(x) =
∑

h path from w to v

W (h)

=
∑
n≥0

pw,v
(n)xn

=
∑
n≥0

Pr{Xn = v |X0 = w}xn

we get

M(x) = (Mw,v(x))w,v≥0

= I + Px + P2x2 + · · · = (I− xP)−1.

The calculation of p
(n)
w,v = Pr{Xn = v |X0 = w} can be viewed as a

combinatorial enumeration problem of weighted paths of length n and

managed with help of generating function techniques.



A First Combinatorial Exercise

Lemma 1 Let N(x) denote the (analytic) solution with N(0) = 1 of

the equation

N(x) = 1 + xa1N(x) + x2a0N(x)a2N(x) ,

that is,

N(x) =
1− xa1 −

√
(1− xa1)

2 − 4x2a0a2

2x2a0a2
.

Then

M0,`(x) =
(
1− xb− x2a0 N(x)a2

)−1
(xa0N(x))` .

Recall: M0,`(x) =
∑

n≥0 Pr{Xn = ` |X0 = 0}xn



Proof.

Let Yn be the corresponding random walk on (all) integers:
PSfrag replacements

−1 0 1 2

a2a2
a2

a0a0a0

a1
a1a1a1

Consider the generating function for non-negative paths of Yn:

N(x) =
∑
n≥0

Pr{Y1 ≥ 0, Y2 ≥ 0, . . . , Yn−1 ≥ 0, Yn = 0 |Y0 = 0} · xn.



STEP 1

N(x) = 1 + xa1N(x) + x2a0N(x)a2N(x).

• 1 is related to the case n = 0.

• If the first step of the path is a loop (with probability a1) then

the remaining part is just a non-negative path from 0 to 0, the

corresponding contribution is a1x ·N(x).

• If the first step goes to the right (with probability a0) then we

decompose the path into four parts: into this first step from 0

to the right, into a part from 1 to 1 that is followed by the first

step back from 1 to 0, the third part is this step back, and finally

into the last part that is again a non-negative path from 0 to

0. Hence, in terms of generating functions this case contributed

a0x ·N(x) · a2x ·N(x).



STEP 2

M0,0(x) = 1 + bxM0,0(x) + a0xN(x)a2xM0,0(x)

The same reasoning as in STEP 1. =⇒M0,0(x) =
(
1− xb− x2a0 N(x)a2

)−1

STEP 3

M0,`+1(x) = M0,`(x)a0xN(x)

All paths from 0 to `+1 can be divided into three parts. The first part

consists of all paths from 0 to ` that is followed by the last step from `

to `+1 (which is the second part). And the third part is a non-negative

path from ` + 1 to ` + 1. =⇒M0,`(x) = M0,0(x)(a0xN(x))`



The General Case

Consider the m×m submatrices Mk,`(x) = (Mv,w(x))v∈Kk,w∈K`
).

Lemma 2 Let N(x) denote the (analytic) solution with N(0) = I of

the matrix equation

N(x) = I + xA1 N(x) + x2A0 N(x)A2 N(x).

Then

M0,`(x) =
(
I− xB− x2A0 M(x)A2

)−1
(xA0 N(x))` .

The Proof is completely the same as in the case m = 1.



Continuous Quasi Birth and Death Processes

A continuous quasi birth and death process is a continuous time Markov

process X(t) on the non-negative integers with generator

Q =


B A0 0 0 · · ·
A2 A1 A0 0 · · ·
0 A2 A1 A0 0 · · ·
0 0 A2 A1 A0 · · ·
... . . . . . . . . . . . .

 .

A0, A2: non-negative entries

B, A1: non-negative off-diagonal elements, the diagonal elements are

stricly negative, and the row sums in Q are all equal to zero:

(B + A0)1 = 0 and (A0 + A1 + A2)1 = 0.



With

q
(t)
w,v = Pr{X(t) = v |X(0) = w}.

we have

exp(Qt) = (q(t)w,v)w,v≥0

By use of the Laplace transform (instead of generating functions)

M̂w,v(s) =
∫ ∞
0

Pr{X(t) = v |X(0) = w} e−st dt

we get

M̂(s) = (M̂w,v(s))w,v≥0

= (sI−Q)−1



M̂(s) has almost the same representation as M(x) in the discrete case.

This is reflected by the following property for the submatrices

M̂k,`(s) =
(
M̂w,v(s)

)
w∈Kk,v∈K`

.

Lemma 3 Let N̂(s) by characterized by lim
s→∞ sN̂(s) = I and by the

matrix equation

sN̂(s) = I + A1 N̂(s) + A0 N̂(s)A2 N̂(s)

Then

M̂0,`(s) =
(
sI−B−A0 N̂(s)A2

)−1 (
A0 N̂(s)

)`
.

Remark. Note that (formally) N̂(s) := 1
sN

(
1
s

)
.



One-Dimensional Discrete QBD’s

Theorem 1 Suppose that a0, a1, a2 and b are positive numbers with

a0 + a1 + a2 = b + a0 = 1

and let Xn be the discrete QBD on the non-negative integers with
transition matrix

P =


b a0 0 0 · · ·
a2 a1 a0 0 · · ·
0 a2 a1 a0 0 · · ·
0 0 a2 a1 a0 · · ·
... . . . . . . . . . . . .

 .

1. If a0 < a2 then we have

lim
n→∞Pr{Xn = ` |X0 = 0} =

a2 − a0

a2

(
a0

a2

)`

(` ≥ 0).

that is, Xn is positive recurrent and converges to the (geometric)
stationary distribution.



2. If a0 = a2 then Xn is null recurrent and Xn/
√

2a0n converges weakly

to the absolute normal distribution:

Pr{Xn = ` |X0 = 0} =
1

√
na0π

exp

(
−

`2

4a0n

)
+O

(
1

n

)
,

uniformly for all `≤ C
√

n as n →∞.

3. If a0 > a2 then Xn is non recurrent and

Xn − (a0 − a2)n√
(a0 + a2 − (a0 − a2)

2)n
→ N(0,1).

More precisely

Pr{Xn = ` |X0 = 0}

=
1√

2π(a0 + a2 − (a0 − a2)
2)n

exp

(
−

(`− (a0 − a2)n)2

2(a0 + a2 − (a0 − a2)2)n

)
+O

(
1

n

)

uniformly for all ` ≥ 0 with |`− (a0 − a2)n| ≤ C
√

n as n →∞.



Remark. With a little bit more effort it can be shown that in the case

a0 = a2 the normalized discrete processes(
Xbtnc√
2a0n

, t ≥ 0

)
n≥1

converges weakly to a reflected Brownian motion as n → ∞; and for

a0 < a2 the processes Xbtnc − t(a0 − a2)n√
(a0 + a2 − (a0 − a2)

2)n
, t ≥ 0


n≥1

converges weakly to the standard Brownian motion.



General Discrete QBD’s

Theorem 2 Let A0,A1,A2 and B be square matrices of order m with

non-negative elements with such that (B + A0)1 = 1 and (A0 + A1 +

A2)1 = 1, and let

P =


B A0 0 0 · · ·
A2 A1 A0 0 · · ·
0 A2 A1 A0 0 · · ·
0 0 A2 A1 A0 · · ·
... . . . . . . . . . . . .


denote the is a transition matrix of a discerte QBD Xn. Furthermore

suppose that the matrices B is primitive irreducible, that no row of A0

is zero, and that A2 is non-zero.

Let x0 denote the radius of convergence of the entries of N(x) and

let x1 denote the radius of convergence of the entries of M0,0(x).



1. If x0 > 1 and x1 = 1 then Xn is positive recurrent and for all v ≥ 0

and w0 ∈ K0 we have

lim
n→∞Pr{Xn = v |X0 = w0} = pv,

where (pv)v≥0 is the (unique) stationary distribution of Xn.

Set

R = A0 ·N(1).

Then all eigenvalues of R have moduli < 1 and we have

p`+1 = p`R,

in which p` = (pv)v∈K`
.



2. If x0 = x1 = 1 then Xn is null recurrent and there exist ρv′ > 0

(v′ ∈ V (K)) and η > 0 such that

Pr{Xn = v |X0 = w0} = ρṽ

√
1

nπ
exp

(
−

`2

4ηn

)
+O

(
1

n

)
(v ∈ V (K`)).

uniformly for all ` ≤ C
√

n) as n → ∞. (ṽ′ denotes the node in K

that corresponds to v from K`)).

3. If x1 > 1 then Xn is non recurrent and there exist τv′ > 0 (v′ ∈
V (K)), µ > 0 and σ > 0 such that

Pr{Xn = v |X0 = w0} =
τṽ√
n

exp

(
−

(`− µn)2

2σ2n

)
+O

(
1

n

)
(v ∈ V (K`)).

uniformly for all ` ≥ 0 with |`− µn| ≤ C
√

n as n →∞.



One-Dimensional Continuous QBD’s

Theorem 3 Suppose that q0 and q2 are positive numbers, q1 = −q0−q2
and b0 = −q0; and let X(t) be the continuous QBD on the non-negative

integers with generator matrix

P =


b0 q0 0 0 · · ·
q2 q1 q0 0 · · ·
0 q2 q1 q0 0 · · ·
0 0 q2 q1 q0 · · ·
... . . . . . . . . . . . .

 .

1. If q0 < q2 then we have

lim
t→∞

Pr{X(t) = ` |X(0) = 0} =
q2 − q0

q2

(
q0
q2

)`

(` ≥ 0),

this is, X(t) is positive recurrent. The distribution of X(t) con-

verges to the stationary distribution.



2. If q0 = q2 then X(t) is null recurrent and X(t)/
√

2q0t converges

weakly to the absolute normal distribution:

Pr{X(t) = ` |X(0) = 0} =
1

√
tq0π

exp

(
−

t2

4q0t

)
+O

(
1

t

)
.

uniformly for all ` ≤ C
√

t as t →∞.

3. If q0 > q2 then X(t) is non recurrent and

X(t)− (q0 − q2)t√
(q0 + q2)(q0 − q2)

−2t
→ N(0,1).

More precisely

Pr{X(t) = ` |X(0) = 0}

=
1√

2π(q0 + q2)(q0 − q2)
−2t

exp

(
−

(`− (q0 − q2)t)
2

2(q0 + q2)(q0 − q2)−2t

)
+O

(
1

t

)

uniformly for all ` ≥ 0 with |`− (q0 − q2)t| ≤ C
√

t as t →∞.



General Continuous QBD’s

Theorem 4 Let A0,A1,A2 and B be square matrices of order m such

that A0 and A2 are non-negative and the matrices B and A1 have

non-negative off-diagonal elements whereas the diagonal elements are

stricly negative so that the row sums are all equal to zero:

(B + A0)1 = 0 and (A0 + A1 + A2)1 = 0

and let

Q =


B A0 0 0 · · ·
A2 A1 A0 0 · · ·
0 A2 A1 A0 0 · · ·
0 0 A2 A1 A0 · · ·
... . . . . . . . . . . . .


denote the generator matrix of of a homogeneous continuous QBD

process X(t). Furthermore suppose that the matrix B is primitive

irreducible, that no row of A0 is zero, that A2 is non-zero, and that

the system of equations for N̂(x) has the same radius of convergence

for all entries and the dominant singularity is of squareroot type.



Let σ0 denote the abscissa of convergence of N̂(s) and

let σ1denote the abscissa of convergence of M̂0,0(s).

1. If σ0 < 0 and σ1 = 0 then X(t) is positive recurrent and for all

v ≥ 0 we have

lim
t→∞

Pr{X(t) = v |X(0) = w0} = pv ,

where (pv)v≥0 is the (unique) stationary distribution of X(t). Set

R = A0 · N̂(0)

Then all eigenvalues of R have moduli < 1 and we have

p`+1 = p`R,

in which p` = (pv)v∈K`
.



2. If σ0 = σ1 = 0 then X(t) is null recurrent and there exist ρv′ > 0

(v′ ∈ V (K)) and η > 0 such that, as t →∞,

Pr{X(t) = v |X(0) = w0} = ρṽ

√
1

tπ
exp

(
−

`2

4ηt

)
+O

(
1

t

)
(v ∈ V (K`)).

uniformly for all ` ≤ C
√

t as t →∞.

3. If σ1 > 0 then X(t) is non recurrent and there exist τv′ > 0 (v′ ∈
V (K)), µ > 0 and σ > 0 such that

Pr{X(t) = v |X(0) = w0} =
τṽ√

t
exp

(
−

(`− µt)2

2σ2t

)
+O

(
1

t

)
(v ∈ V (K`))

uniformly for all ` ≥ 0 with |`− µt| ≤ C
√

t as t →∞.
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Generating Functions

• y(x) =
∑
n≥0

yn xn: generating function of sequence yn

• R =
(
lim sup

n→∞
|yn|1/n

)−1
: radius of convergence

• yn ≥ 0 =⇒ y(x) is singular at x0 = R

• yn ≤ C1 R−n(1 + ε)n for all n ≥ 0

• yn ≥ C2 R−n(1− ε)n for infinitely many n ≥ 0



Cauchy’s formula

yn =
1

2πi

∫
|x|=r

y(x)x−n−1 dx

Notation. [xn] y(x) = yn

Remark.

yn≥ 0 =⇒ yn ≤ min
0<r<R

y(r)r−n



Algebraic Singularities

Lemma 4 Suppose that

y(x) = (1− x)−α .

Then

yn = (−1)n
(−α

n

)
=

nα−1

Γ(α)
+O

(
nα−2

)
.



Proof.

Cauchy’s formula:

(−1)n
(−α

n

)
=

1

2πi

∫
γ
(1− x)−α x−n−1 dx.

γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4:

γ1 =
{

x = 1 +
t

n

∣∣∣∣ |t| = 1,<t ≤ 0
}

γ2 =
{

x = 1 +
t

n

∣∣∣∣ 0 < <t ≤ log2 n,=t = 1
}

γ3 = γ2

γ4 =

{
x

∣∣∣∣∣ |x| =
∣∣∣∣∣1 +

log2 n + i

n

∣∣∣∣∣ , arg(1 +
log2 n + i

n
) ≤ |arg(x)| ≤ π

}
.



Substitution for x ∈ γ1 ∪ γ2 ∪ γ3:

x = 1 +
t

n
=⇒ x−n−1 = e−t

(
1 +O

(
t2

n

))

With Hankel’s integral representation for 1/Γ(α)

1

2πi

∫
γ1∪γ2∪γ3

(1− x)−αx−n−1 dx =
nα−1

2πi

∫
γ′
(−t)−αe−t dt

+
nα−2

2πi

∫
γ′
(−t)−αe−t · O

(
t2
)

dt

= nα−1 1

Γ(α)
+O

(
nα−2

)
.

(γ′ = {t | |t| = 1,<t ≤ 0} ∪ {t |0 < <t ≤ log2 n,=t = ±1})



Lemma 5 (Flajolet and Odlyzko) Let

y(x) =
∑
n≥0

yn xn

be analytic in a region

∆ = {x : |x| < x0 + η, | arg(x− x0)| > δ},

x0 > 0, η > 0, 0 < δ < π/2.

Suppose that for some real α

y(x) = O
(
(1− x/x0)

−α
)

(x ∈ ∆).

Then

yn = O
(
x−n
0 nα−1

)
.



Proof

Cauchy’s formula:

yn =
1

2πi

∫
γ

y(x)x−n−1 dx,

γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4:

γ1 =
{
x = x0 +

z

n
: |z| = 1, δ ≤ |arg(z)| ≤ π

}
,

γ2 =
{
x = x0 + teiδ :

1

n
≤ t ≤ η

}
,

γ3 =
{
x = x0 + te−iδ :

1

n
≤ t ≤ η

}
,

γ4 =
{
x : |x| =

∣∣∣x0 + eiδη
∣∣∣ , arg

(
x0 + eiδη

)
≤ |argx| ≤ π

}
.



Asymptotic Transfer

Suppose that a function y(x) is analytic in a region of the form ∆ and

that it has an expansion of the form

y(x) = C

(
1−

x

x0

)−α

+O

(1− x

x0

)−β
 (x ∈ ∆),

where β < α. Then we have (as n →∞)

yn = [xn]y(x) = C
nα−1

Γ(α)
x−n
0 +O

(
x−n
0 nmax{α−2,β−1}

)
.



Polar Singularities

Lemma 6 Suppose that y(x) is a meromorphic function that is ana-

lytic at x = 0 and has polar singularities at the points q1, . . . , qr in the

circle |x| < R:

y(x) =
r∑

j=1

λj∑
k=1

Bjk

(1− x/qj)k
+ T (x),

and T (x) is analytic in the region |x| < R.

Then for every ε > 0

[xn] y(x) =
r∑

j=1

λj∑
k=1

Bjk

(n

+

)
k − 1k − 1nqj

−n +O
(
R−n(1 + ε)n

)
.



Systems of Functional Equations

y1 = y1(x), y2 = y2(x), . . . yN = yN(x) satisfy a system of functional

equations:

y1 = F1(x, y1, y2, . . . , yN),

y2 = F2(x, y1, y2, . . . , yN),
...

yN = FN(x, y1, y2, . . . , yN).

Problem: What is the singular behaviour of yj = yj(x) ?

Notation: y = (y1, y2, . . . , yN)), F(x,y) = (F1(x,y), . . . , FN(x,y))



Depencency Graph

GF = (V, E)

Vertices: V = {y1, y2, . . . , yN}

Edges: (yi, yj) ∈ E ⇐⇒ Fi(x,y) really depends on yj.

GF = (V, E) is strongly connected if and only if no subsystem of

y = F (x,y) can be solved before solving the whole system.



Squareroot Singularities

Lemma 7 Let F(x,y) = (F1(x,y), . . . , FN(x,y)) be analytic functions

around x = 0 and y = 0 such that all Taylor coefficients are non-

negative, that F(0,y) ≡ 0, that F(x, 0) 6≡ 0, and that there exists j with

Fyjyj(x,y) 6≡ 0. Furthermore assume that the region of convergence of

F is large enough such that there exists a non-negative solution

x = x0, y = y0

of the system of equations

y = F(x,y),

0 = det(I− Fy(x,y)),

inside it and that the dependency graph GF = (V, E) is strongly con-

nected.



Then x0 is the common radius of convergence of the solutions y1(x), . . . ,

yN(x) of the system of functional equations y = F (x,y) and we have

a representation of the form

yj(x) = gj(x)− hj(x)

√
1−

x

x0

locally around x = x0, where gj(x) and hj(x) are analytic around x = x0

and satisfy

(g1(x0), . . . , gN(x0)) = y0 and (h1(x0), . . . , hN(x0))
′ = b

with the unique solution b = (b1, . . . , bN) > 0 of

(I− Fy(x0,y0))b = 0,

b′Fyy(x0,y0)b = −2Fx(x0,y0).



If we further assume that [xn] yi(x) > 0 for n ≥ n0 and 1 ≤ j ≤ N then

x = x0 is the only singularity of yj(x) on the circle |x| = x0 and we

obtain an asymptotic expansion for [xn] yj(x) of the form

[xn] yj(x) =
bj

2
√

π
x−n
0 n−3/2

(
1 +O

(
n−1

))
.



Idea of the Proof.

N = 1 equation: y = y(x) with

y = F (x, y).

If Fy(x, y(x)) 6= 1 then by the implicit function theorem y(x) is not

singular. Hence, all singulartities x0 of y(x) have to satisfy

Fy(x0, y0) = 1.

and also

F (x0, y0) = y.

with y0 = y(x0).



By the Weierstrass preparation theorem there exist functions H(x, y),

p(x), q(x) which are analytic around x = x0 and y = y0 and satisfy

H(x0, y0) 6= 1, p(x0) = q(x0) = 0 and

y − F (x, y) = H(x, y)((y − y0)
2 + p(x)(y − y0) + q(x))

locally around x = x0 and y = y0. Consequently

y(x) = y0 −
p(x)

2
±

√
p(x)2

4
− q(x)

= g(x)− h(x)

√
1−

x

x0

Finally we just have to apply the asymptotic transfer property.



Small Powers of Functions

Lemma 8 Let y(x) =
∑

n≥0
yn xn be a power series with non-negative

coefficents such that there is only one singularity on the circle of con-
vergence |x| = x0 > 0 and that y(x) can be locally represented as

y(x) = g(x)− h(x)

√
1−

x

x0
,

where g(x) and h(x) are analytic functions around x0 with g(x0) > 0 and
h(x0) > 0, and that y(x) can be continued analytically to |x| < x0 + δ,
x 6∈ [x0, x0 + δ) (for some δ > 0). Furthermore, let ρ(x) be another
power series with non-negative coefficients with radius of convergence
x1 > x0.

Then we have

[xn]ρ(x)y(x)k =
kρ(x0)g(x0)

k−1h(x0)

2n
3
2
√

πxn
0

exp

−k2

4n

(
h(x0)

g(x0)

)2
+O

(
k

n

)
uniformly for k ≤ C

√
n as n →∞.



Proof.

W.l.o.g. x0 = 1

Cauchy’s formula:

[xn] ρ(x)y(x)k =
1

2πi

∫
γ

ρ(x)y(x)kx−n−1 dx

γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4:

γ1 =
{

x = 1 +
t

n

∣∣∣∣ |t| = 1,<t ≤ 0
}

γ2 =
{

x = 1 +
t

n

∣∣∣∣ 0 < <t ≤ log2 n,=t = 1
}

γ3 = γ2

γ4 =

{
x

∣∣∣∣∣ |x| =
∣∣∣∣∣1 +

log2 n + i

n

∣∣∣∣∣ , arg(1 +
log2 n + i

n
) ≤ |arg(x)| ≤ π

}
.



Substitution for x ∈ γ1 ∪ γ2 ∪ γ3:

x = 1 +
t

n
=⇒ x−n−1 = e−t

(
1 +O

(
t2

n

))

Furthermore

ρ(x)y(x)kx−(n+1) = ρ(x)g(x)k

(
1−

h(x)

g(x)

√
1− x

)k

x−(n+1)

= ρ(1)g(1)k exp

(
−

k
√

n

h(1)

g(1)
(−t)

1
2 − t

)
·

·

1 +O
(
|t|2

n

)
+O

(
k|t|
n

)
+O

k
|t|

3
2

n
3
2

 .



By using the formula

1

2πi

∫
γ′

e−λ
√
−t−t dt =

λ

2
√

π
e−

λ2
4 +O

(
e− log2 n

)
.

with

λ =
k
√

n

h(1)

g(1)

the lemma follows.

(γ′ = {t | |t| = 1,<t ≤ 0} ∪ {t |0 < <t ≤ log2 n,=t = ±1})



Lemma 9 Let y(x) =
∑

n≥0
yn xn be as above and ρ(x) another power

series that has the same radius of convergence x0. Assume further

that it can be continued analytically to the same region as y(x), and

that it has a local (singular) represenation as

ρ(x) =
g(x)√
1− x

x0

+ h(x) ,

where g(x) and h(x) are analytic functions around x0 with g(x0) > 0.

Then we have

[xn]ρ(x)y(x)k =
g(x0)g(x0)

k

√
nπxn

0

exp

−k2

4n

(
h(x0)

g(x0)

)2
+O

(
k

n

)
uniformly for k ≤ C

√
n, where C > 0 is an arbitrary constant.



The Proof is almost the same as in the previous lemma. The only

difference is that one has to use the formula

1

2πi

∫
γ′

e−λ
√
−t−t

√
−t

dt =
1
√

π
e−λ2/4 +O

(
e−(logn)2

)
.



Large Powers of Functions

Lemma 10 Let y(x) =
∑

n≥0 ynxn be a power series with non-negative

coefficents, moreoever, assume that there exists n0 with yn > 0 for n ≥
n0. Furthermore, let ρ(x) be another power series with non-negative

coefficients and suppose that, both, y(x) and ρ(x) have positive radius

of convergence R1, R2. Set

µ(r) =
ry′(r)

y(r)

and

σ2(r) := rµ′(r) =
ry′(r)

y(r)
+

r2y′′(r)

y(r)
−

r2y′(r)2

y(r)2

and let h(y) denote the inverse function of µ(r).



Fix a, b with 0 < a < b < min{R1, R2}, then we have

[xn] ρ(x)y(x)k =
1√
2πk

ρ
(
h
(

n
k

))
σ
(
h
(

n
k

))y
(
h
(

n
k

))k
h
(

n
k

)n ·
(
1 +O

(
1

k

))

uniformly for n, k with µ(a) ≤ n/k ≤ µ(b).



Proof.

Cauchy’s formula:

[xn] ρ(x)y(x)k =
1

2πi

∫
|x|=r

ρ(x)y(x)kx−n−1 dx

=
1

2πi

∫
|x|=r

ek log y(x)−n logx x−1 dx.

r = h
(

n
k

)
, that is

ry′(r)

y(r)
=

n

k
,

is given by the saddle point of the function

x 7→ k log y(x)− n logx.



We use the substituion x = reit (for small |t| ≤ k−
1
2+η):

ρ(x)y(x)kx−n = ρ(r)y(r)kr−ne−kt2σ2(r)+O
(
|t|+k|t|3

)
.

Consequently

1

2πi

∫
|t|≤k

−1
2+η

ρ(x)y(x)kx−n−1 dx =
ρ(r)y(r)kr−n√

2πkσ2(r)
·
(
1 +O

(
1

k

))
.



An Extension

Lemma 11 Let y(x) and ρ(x) be as above. Then for every 0 < r <

min{R1, R2} we have

[xn] ρ(x)y(x)k =
1√
2πk

ρ (r)

σ (r)

y (r)k

rn
·
(
exp

(
−

(k − n/µ(r))2

2kσ2(r)

)
+O

(
1
√

n

))

uniformly for n, k with |k − n/µ(r)| ≤ C
√

k.



Contents (3)

1. Quasi Birth and Death Processes

Combinatorial description of discrete and continuous QBD’s

2. Analytic Methods for Generating Functions

Asymptotics for coefficents of powers of generating functions

3. Applications to QBD’s

Precise description of the distribution (3 cases: positive recurrent,

null recurrent, non recurrent)



One-Dimensional Discrete QBD’s

Lemma 12 Let N(x) be given by N(x) = 1+xa1N(x)+x2a0N(x)a2N(x).

Then we explicitly have

N(x) =
1− a1x−

√
(1− a1x)2 − 4a0a2x2

2a0a2x2
.

The radius of convergence x0 is given by

x0 =
1

a1 + 2
√

a0a2
=

1

1− (
√

a0 −
√

a2)2
.

Furthermore, N(x) has a local expansion of the form

N(x) =
a1 + 2

√
a0a2√

a0a2
−
(

a1 + 2
√

a0a2√
a0a2

)3/2

·
√

1− (a1 + 2
√

a0a2)x

+ O
(
1− (a1 + 2

√
a0a2)x

)
around its singularity x = x0.



Case 1: a0 < a2

Lemma 13 Suppose that a0 < a2. Then x0 > 1 but the radius of

convergence of M0,`(x) (` ≥ 0) is x1 = 1. Furthermore

lim
n→∞Pr{Xn = ` |X0 = 0} =

a2 − a0

a2

(
a0

a2

)`

(` ≥ 0).



Proof.

a0 < a2 implies N(1) = 1/a2 and N ′(1) = (1 − a2 + a0)/(a2(a2 − a0)).

Thus,

1− bx− a0a2z2N(x) =
a2

a2 − a0
(1− x) +O

(
(1− x)2

)
and consequently

M0,`(x) =
(
1− xb− x2a0 N(x)a2

)−1
(xa0N(x))`

=
a2 − a0

a2

(
a0

a2

)` 1

1− x
+ T`(x)

for |x| < 1/(a1 + 2
√

a0a2).

This directly proves the lemma.

(T`(x) is an analytic function that has radius of convergence larger

than 1).



Case 2: a0 = a2

Lemma 14 Suppose that a0 = a2. Then, both, x0 = 1 and the radius

of convergence of M`(x) (` ≥ 0) is x1 = 1.

Furthermore

Pr{Xn = ` |X0 = 0} =
1

√
na0π

exp

(
−

`2

4a0n

)
+O

(
`

n3/2

)
.

uniformly for all ` ≤ C
√

n as n →∞.



Proof.

N(x) is not regular at x = 1:

1− bx− a0a2x2N(x) =
√

a0
√

1− x +O (|1− x|) .

and

a0xN(x) = 1−
1
√

a0

√
1− x +O (|1− x|) .

Hence,

M0,`(x) ∼
1

√
a0
√

1− x

(
1−

1
√

a0

√
1− x

)`

and Lemma 9 applies.



Case 3: a0 > a2

Lemma 15 Suppose that a0 > a2. Then Xn satisfies a central limit

theorem with mean value

EXn ∼ (a0 − a2)n

and variance

VarXn ∼ (a0 + a2 − (a0 − a2)
2)n.

In particular we have Furthermore

Pr{Xn = ` |X0 = 0}

=
1√

2π(a0 + a2 − (a0 − a2)
2)n

exp

(
−

(`− (a0 − a2)n)2

2(a0 + a2 − (a0 − a2)2)n

)
+O

(
1

n

)
.

uniformly for all ` ≥ 0 with |`− (a0 − a2)n| ≤ C
√

n as n →∞



Proof.

Both, x0 > 1 and x1 > 1.

We have N(1) = 1/a0 and N ′(1) = (1 − a0 + a2)/(a0(a0 − a2)) which

implies that the saddle point r = 1.

Hence, Lemma 11 applies for M0,`(x) = M0,0(x)(a0xN(x))`.

Note that µ(1) = 1/(a0−a2) and σ2(1) = (a0+a2−(a0−a2)
2)/(a0−a2).



General Homogeneous Discrete QBD’s

Lemma 16 Suppose that B is a primitive irreducible matrix and let

N(x) denote the solution (with N(0) = I) of the matrix equation

N(x) = I + xA1 N(x) + x2A0 N(x)A2 N(x).

Then all entries of N(x) have a common radius of convergence x0 ≥ 1.

Furthermore, there is a local expansion of the form

N(x) = Ñ1 − Ñ2

√
1−

x

x0
+O

(
1−

x

x0

)

around its singularity x = x0, where Ñ1 and Ñ2 are matrices with

positive elements.



Proof.

The equation for N(x) is a system of m2 algebraic equation for entries

of N(x).

B is irreducible (and non-negative). Thus, the so-called dependency

graph is strongly connected. Consequently, by Lemma 7 all entries of

N(x) have the same finite radius of convergence a squareroot singu-

larity at x = x0 of the above form.

The coefficents of N(x) are probabilities. Hence x0 ≥ 1.



Case 1: x0 > 1 and x1 = 1

x = 1 is a regular point of N(x). B+A0 N(1)A2 is primitive irreducible.

Thus,

f(x) = det
(
I− xB− x2A0 N(x)A2

)
has a simple zero at x = 1.

Consequently, all entries of(
I− xB− x2A0 N(x)A2

)−1

have a simple pole at x = 1.

Therefore, the limit

lim
n→∞[xn]

(
I− xB− x2A0 M(x)A2

)−1
(xA0 N(x))`

exists.



Case 2: x0 = x1 = 1

N(x) is singular at x = 1 and

f(x) = det
(
I− xB− x2A0 N(x)A2

)
= c1

√
1− x +O (|1− x|) ,

where c1 6= 0.

Next the largest eigenvalue λ(x) of xA0 N(x) is given by

λ(x) = 1− c2
√

1− x +O (|1− x|) .

and we have (for some matrix Q1)

(xA0 N(x))` = λ(x)`Q1 +O
(
λ(x)(1−η)`

)
.

Hence,

(
I− xB− x2A0 M(x)A2

)−1
(xA0 N(x))` ∼

(
1− c2

√
1− x

)`
c1
√

1− x
Q2

and Lemma 9 applies.



Case 3: x1 > 1

Both, x0 > 1 and x1 > 1.

Hence, λ(x) is regular at x = 1.

Consequently(
I− xB− x2A0 N(x)A2

)−1
(xA0 N(x))` ∼ λ(x)`Q3

and Lemma 11 applies.



Thank You!


