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Abstract

We prove that the number of vertices of given degree in random planar maps satisfies
a central limit theorem with mean and variance that are asymptotically linear in the
number of edges. The proof relies on an analytic version of the quadratic method and
singularity analysis of multivariate generating functions.

1 Introduction

In this paper we study planar maps, which are connected planar graphs, possibly with loops
and multiple edges, together with an embedding in the plane. A map is rooted if a vertex v
and an edge e incident with v are distinguished, and are called the root-vertex and root-edge,
respectively. The face to the right of e is called the root-face and is usually taken as the outer
(or infinite) face. In this paper we only consider rooted maps.

The enumeration of rooted maps is a classical subject, initiated by Tutte in the 1960’s,
see [15]. In particular he computed the number Mn of rooted maps with n edges, proving the
formula

Mn =
2(2n)!

(n + 2)!n!
3n.

Our main interest is the degree distribution of planar maps. Let dn,k be the probability
that the root-vertex has degree k in a map with n edges. Then it is known that the limit
dk = limn→∞ dn,k exists. Actually, the values dk are almost explicit. They are given by the
generating function

∑

k≥2

dku
k =

u
√

3
√

(2 + u)(6 − 5u)3
. (1.1)

For more details see Liskovets [13].
The problem is slightly different when we look at the degree of of random vertex in a

random map (with n edges). Let pn,k denote the probability that a randomly chosen vertex
in a random map with n edges has degree k. Then the limit pk = limn→∞ pn,k exists, too,
and we have

pk =
µ

k
dk
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for a certain constant µ > 0. By integration it is possible to obtain an explicit (but involved)
representation of the generating function for the sequence pk.

Note that pn,k (and consequently pk) is closely related to the average behavior of the

numbers X
(k)
n of vertices of degree k in a random planar map with n edges. We have E X

(k)
n =

pn,kn and, thus, as n → ∞
E X(k)

n ∼ pkn.

2 Results

The main goal of this paper is to study the random variable X
(k)
n in more detail. In particular

we will prove a central limit theorem and tail estimates.

Theorem 2.1. Let k ∈ N. The number X
(k)
n of vertices of degree k in a random planar map

with n edges satisfies a central limit law, i.e.,

X
(k)
n − E[X

(k)
n ]

(Var[X
(k)
n ])1/2

→ N(0, 1),

where E[X
(k)
n ] = µkn + O(1) and Var[X

(k)
n ] = σ2

kn + O(1), and µk, σk > 0 are computable

constants. Moreover, X
(k)
n has exponential tails, i.e., there is an ε0 > 0 and a ck > 0 such

that for any 0 < ε < ε0

Pr
[

|X(k)
n − E[X(k)

n ]| ≥ εE[X(k)
n ]
]

≤ e−ε2ckn.

Since the dual of a planar map is again a planar map and the degree of a vertex corresponds
to the valency of a face in the dual the same result holds for the number of faces of given
valency. Actually our combinatorial approach will make use of this correspondence.

Tail estimates for X
(k)
n have been also obtained by Gao and Wormald [11]. They are on the

one hand weaker but on the other hand uniform for k ≤ c log n (for a proper constant c > 0).
However, the central limit theorem was unknown.

Nevertheless, there are several classes of planar maps and graphs, where a central limit
theorem holds. For example, Gao and Wormald [12] showed such a result for certain classes of
triangulations. Moreover, for labelled outerplanar graphs and labelled series-parallel graphs
this was shown by Drmota, Gimenéz and Noy [6]. This result was extended to so-called
subcritical graph classes by Drmota, Fusy, Kang, Kraus and Rue [5], even in the unlabelled
case.

For random planar graphs the current picture is unfortunately incomplete. It was shown
by Drmota, Gimenez and Noy [7] and Panagiotou and Steger [14] that the limiting degree

distribution exists (and that there is at least a weak concentration result for X
(k)
n [14]) but –

at the moment – there is no central limit theorem although there is no doubt that a central
limit theorem should hold. Indeed, there is a strong relation between planar maps and planar
graphs. For example, by Whitney’s theorem 3-connected planar maps and 3-connected planar
graphs coincide. It is therefore very likely that several shape characteristics have (up to a
scaling constant) the same limiting behaviour. Hence our results supports the conjecture that
there is also a central limit theorem for planar graphs.
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Plan of the paper The paper is structured as follows. In the next section we present
the basic equations that are satisfied by the ordinary generating function enumerating planar
maps, where also the number of faces of a certain valency. Then, in Section 4 we present the
quadratic method and an extension thereof, which is is necessary for our purposes. Finally,
in the main result (Theorem 2.1) is shown in Section 5.

3 Combinatorics

We use ordinary generating functions, where z marks edges and x non-root faces. The next
statement is classical in the area of map enumeration (and goes back to Tutte [15]). We
include a proof for completeness, as we shall use similar considerations in Lemma 3.2 to
determine a functional equation for the generating function that takes faces of degree k into
account, too. Note that it is sufficient to study the valency distribution of faces, it is the
same as the degree distribution.

Lemma 3.1. Let M(z, x, u) be the ordinary generating function enumerating general maps
with respect to edges and non-root faces, where additionally u marks the degree of the root
face. Then

M(z, x, u) = 1 + zu2M(z, x, u)2 +
zxu

1 − u
(M(z, x, 1) − uM(z, x, u)).

Proof. We replicate the argument by Tutte [15], tailored to our specific purpose. A general
map belongs to precisely one of the following three categories. First, it contains no edge,
so that the corresponding generating function is the constant 1. Second, the root edge is
a bridge, i.e., if removed, the map falls apart in two general maps. Clearly, the generating
function enumerating such maps is given by zu2M(z, x, u)2.

All maps that belong to none of the two categories above are obtained by taking a map
and adding an edge that preserves its root node and “cuts across” the root face in some
unambiguous fashion, i.e., so that the construction can be reverted. This operation results
in r + 1 new distinct maps with root-face degrees in {1, . . . , r + 1}, and one edge and one
non-root face more than the map we started with; see Figure 1 for an illustration.

By putting everything together we infer that this construction translates the monomial
ur to

zx(u + u2 + · · · + ur+1) =
zxu(1 − ur+1)

1 − u
.

Consequently, the maps in the last category are enumerated by zxu
1−u(M(z, x, 1)−uM(z, x, u)).

This completes the proof.

In a second step we also take into account the number of (non-root) faces of valency k. A
similar, though not so explicit, result was shown by Bender and Canfield [1] and Bousquet-
Mélou and Jehanne [2].

Lemma 3.2. Let k ≥ 2 be a fixed integer and let M(z, x,w, u) be the ordinary generating
function enumerating general maps with respect to edges and non-root faces, where additionally
u marks the degree of the root face and w the non-root faces of valency k. Then

M(z, x,w, u) = 1 + zu2M(z, x,w, u) +
zxu

1 − u
(M(z, x,w, 1) − uM(z, x,w, u)) (3.1)

+ zx(w − 1)ukM(z, x,w, 1) − zx(w − 1)uk[qk]
q2

1 − q
G(q),
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Figure 1: All maps that can be obtained by “cutting across” the root face of size five.

where G(q) is given by the quadratic equation

G(q) = 1 + zq2G(q)2 + zxM(z, x,w, 1)
q

1 − q
− zx

q2

1 − q
G(q). (3.2)

Proof. For the sake of brevity let us write M(u) for M(x, z, w, u) and Mℓ = Mℓ(x, z, w) for
the coefficient [uℓ]M(u). By using the same decomposition as in the proof of Lemma 3.1 we
get

M(u) = 1 + zu2M(u)2 +
zxu

1 − u
(M(1) − uM(u)) + zx(w − 1)uk

(

M(1) −
k−2
∑

ℓ=0

Mℓ

)

. (3.3)

The difference to the proof of Lemma 3.1 is that ur is replaced now by

zx(u + u2 + · · · + ur+1) + zx(w − 1)uk =
zxu(1 − ur+1)

1 − u
+ zx(w − 1)uk

if r ≥ k − 1 (and by zx(u + u2 + · · · + ur+1) if r < k − 1).
What we show next is that Mℓ = Mℓ(z, x,w) can be computed easily for ℓ ≤ k − 2. Of

course we have M0 = 1 and by differentiating (3.3) with respect to u and by setting u = 0 we
get M1 = zxM(1). Furthermore, for 2 ≤ ℓ ≤ k − 2 we obtain the recurrence

Mℓ = z

l−2
∑

j=0

MjMℓ−j + zxM(1) − zx

ℓ−2
∑

j=0

Mj. (3.4)

Hence, we can compute Mℓ recursively and observe also that Mℓ can be written as a polyno-
mial in z, x, and M(1).

Actually we can be more precise. By extending (3.4) formally to all ℓ ≥ 2 and by intro-
ducing (formally) the generating function G(q) =

∑

ℓ≥0 Mℓq
ℓ we obtain (3.2).

4 Analytic Quadratic Method

We first recall the principle of the quadradic method (that is due to Brown [3]). Suppose that
we fix x = x0 = 1 and w = w0 = 1 in the equation (3.1). Furthermore we use the abbreviations

4



M(z, u) = M(z, x0, w0, u) and y(z) = M(z, x0, w0, 1). By completing the square the equation
(3.1) can be rewritten as

[G1(z, u)M(z, u) + G2(z, u)]2 = H(z, y(z), u) (4.1)

where the Gi and H are polynomials (more generally it is sufficient to assume that Gi and H
are analytic function and it is also possible to assume that the Gi depend on y(z), too). For
example, if x = x0 = 1 and w = w0 = 1 then

H = 4(u − 1)u3z2y + u4z2 − 4u4z + 6u3z − 2u2z + u2 − 2u + 1. (4.2)

The quadratic method consists on binding variables z and u, assuming that there exists a
function u(z) such that H(z, y(z), u(z)) = 0 identically. Because of the square in the left-hand
side of (4.1), the derivative Hu(z, y(z), u(z)) with respect to u also vanishes. From the system
of equations

H(z, y(z), u(z)) = 0, Hu(z, y(z), u(z)) = 0. (4.3)

one eliminates y(z) to find u(z), and then find y(z) from H(z, y(z), u(z)) = 0. Once we know
y(z) = M(z, 1), from equation (3.1) we obtain M(z, u).

If we carry out this program in this particular case of maps (recall that we set x = x0 = 1
and w = w0 = 1), we find that u(z) = (5 −

√
1 − 12z)/(2(z + 2)) and

y(z) =
18z − 1 + (1 − 12z)3/2

54z2
= 1 + 2z + 9z2 + 54z3 + · · · ,

from which we can deduce the explicit form for the numbers Mn. An explicit expression
is obtained also for M(z, u), which encodes completely the distribution of the degree of the
root-face. Since planar maps are closed under duality, this is the same distribution as the
degree of the root-vertex. It is an easy exercise to derive the limiting distribution encoded in
the generating function (1.1).

The system (4.3) can be also used to detect the singularity z0 = 1/12 of y(z). We have
to look at critical points (z0, y0, u0) of the system (4.3). Its Jacobian

∣

∣

∣

∣

Hy Hu

Huy Huu

∣

∣

∣

∣

=

∣

∣

∣

∣

Hy 0
Huy Huu

∣

∣

∣

∣

= HyHuu

must vanish, that is, HyHuu = 0 at (z0, y0, u0). It turns out that Huu = 0 and Hy 6= 0 is the
correct choice for map counting problems. The critical condition is then

Huu(z0, y0, u0) = 0.

This condition is easy to check, since we always work in the realm of algebraic functions and
algebraic numbers. Actually the system H = Hu = Huu = 0 has (usually) only finitely many
solutions. For the running example we are using, we have (z0, y0, u0) = (1/12, 6/5, 4/3) and
A simple check gives Huu(1/12, 6/5, 4/3) = 0.

The most interesting observation in this context is that y(z) has a singularity of the kind
(1 − z/z0)

3/2. This behavior is typical in the context of planar map enumeration, and it
turns out that it there is also a universal analytic reason for this behavior. Recently this
was observed by Drmota and Noy [8]. They proved the following lemma. For the reader’s
convenience we include a proof, since we have to generalize it.1

1The proof is not included in the final version of the proceedings paper [8].
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Lemma 4.1. Suppose that y0, z0, u0 are complex numbers and that H(z, y, u) is a function
that is analytic at (z0, y0, u0) and satisfies the properties

H(y0, z0, u0) = 0, Hu(y0, z0, u0) = 0, Huu(y0, z0, u0) = 0

and
Hy 6= 0, Huy 6= 0, Huuu 6= 0, HzHuy 6= HyHuz

for (y, z, u) = (y0, z0, u0). Then the system of functional equations

H(y(z), z, u(z)) = 0, Hu(y(z), z, u(z)) = 0 (4.4)

has precisely two (local) solutions u(z) and y(z) with u(z0) = u0 and y(z0) = y0 which are
given by

u(z) = g1(z) ± g2(z)

√

1 − z

z0
, y(z) = h1(z) ± h2(z)

(

1 − z

z0

)3/2

(4.5)

in a neighbourhood of z0 (except in the part, where 1− z/z0 ∈ R
−), where g1(z), g2(z), h1(z),

and h2(z) are analytic functions at z0 and satisfy

g1(z0) = u0,

g2(z0) =

√

2z0(HyHuz − HzHuy)

HyHuuu
6= 0,

h1(z0) = y0,

h2(z0) = g2(z0)
2z0(HyHuz − HzHuy)(HuuuH2

uy − HyHuyHuuuu + 3HyHuuyHuuu)

3HuuuH2
uyH

2
y

(and all derivatives of H have to be evaluated at (y, z, u) = (y0, z0, u0), respectively).

Proof. We solve the system (4.4) by first considering the equation Hu(y, z, u) = 0, where z
and u are considered as independent variables and y = Y (z, u) is the unknown function. In a
second step we solve the equation H(Y (z, u), z, u) = 0, where z is the independent variable.
Then the solution u = u(z) is the function that we are looking for and y(z) = Y (z, u(z)).

Since we assume that Huy(y0, z0, u0) 6= 0 it follows from the implicit function theorem
that there exists an function Y (z, u) with Y (z0, u0) = y0 that is analytic at (y0, u0) and solves
(locally) the equation Hu(Y (z, u), z, u) = 0. Observe that

Yu(z0, u0) = −Huu

Huy
= 0, Yuu(z0, u0) = −Huuu

Huy
6= 0, Yuu(z0, u0) =

3HuuyHuuu − HuyHuuuu

H2
uy

,

Yz(z0, u0) = −Huz

Huy
, Yuz(z0, u0) =

HuuyHuz − HuuzHuy

H2
uy

evaluated at (y, z, u) = (y0, z0, u0). Next we set F (z, u) = H(Y (z, u), z, u) and solve the
equation F (z, u) = 0 for u = u(z). By assumption we have

F (z0, u0) = H(y0, z0, u0) = 0,

Fu(z0, u0) = Hy(y0, z0, u0)yu(z0, u0) + Hu(y0, z0, u0) = 0,

Fuu(z0, u0) = Hy(y0, z0, u0)Yuu(z0, u0) 6= 0,

Fz(z0, u0) = Hy(y0, z0, u0)Yz(z0, u0) + Hz(y0, z0, u0) =
(HzHuy − HyHuz)(y0, z0, u0)

Huy(y0, z0, u0)
6= 0.
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Hence the equation F (z, u) = 0 satisfies the assumptions of a classical lemma on the singular
structure of the solution of a single equation (for example, it can be found in [4]). Thus, the
only two solutions u(z) have local expansions of the form

u(z) = g1(z) ± g2(z)

√

1 − z

z0
,

where g1(z) and g2(z) are analytic and satisfy g1(z0) = u0 and

g2(z0) =

√

2z0Fz(u0, z0)

Fuu(u0, z0)
=

√

2z0(HyHuz − HzHuy)

HyHuuu
.

A simple calculation (by using Taylor’s theorem and by comparing coefficients) we also obtain
an expression for

g′1(z0) =
FzFuuu − 3FuzFuu

F 2
uu

=
1

3H2
yH2

uuu

(

−3H2
yHuuuHuuz + 2HuuuHuyHyHuz − 2HuuuH2

uyHz

+ 3HyHuuyHuuuHz + H2
yHuuuuHuz − HyHuyHuuuuHz

)

.

Finally we use the expansion of u(z) to derive the local behaviour of

y(z) = Y (z, u(z))

= y0 + Yz(z0, u0)(z − z0) +
1

2
Yuu(z0, u0)(u(z) − u0)

2

+ Yuz(z0, u0)(z − z0)(u(z) − u0) +
1

6
Yuuu(z0, u0)(u(z) − u0)

3 + O((z − z0)
2).

Note that the property Yu(z0, u0) = 0 implies that y(z) has no
√

1 − z/z0 term in its expan-
sion. Precise expressions for the coefficients (like h2(z0)) can be determined easily.

For completeness, we check all the condition in the statement for H(z, y, u) as in (4.2),
evaluated at the critical point (z0, y0, u0) = (1/12, 4/3, 6/5). In addition to H, we need
G1 = 2(1 − u)u2z. Then

G1 = − 6

125
, Hy =

6

625
, Huy =

9

125
, Huuu = −50

9
, HzHuy − HyHzu =

288

15625
,

HuuuH2
uy − HyHuyHuuuu + 3HyHuuyHuuu =

43

625
.

Hence we can apply Lemma 4.1 to obtain the singular behaviour of y(z) = M(z, 1) which is
of the form (1 − z/z0)

3/2.
In general it is not immmediately clear which critical point (z0, y0, u0) is responsible for

the dominating singularity on the radius of convergence of y(z) = M(z, 1) (when there are
several ones). Nevertheless in the case of planar maps there is no doubt that we have chosen
the correct critical point. Moreover, we can vary the variables x and w (at least) in a (small)
neighbourhood of x0 = 1 and w0 = 1 without changing the kind of the dominating singularity.
For this purpose we rewrite (3.1) in the form

(G1(z, u)M(z, x,w, u) + G2(z, u))2 = H(z, x,w, y(z, x,w), u),
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where y(z, x,w) abbreviates M(z, x,w, 1). As above we will consider the system of equations

H = Hu = Huu = 0, (4.6)

and consider (if possible the solutions) y0(x,w), z0(x,w), u0(x,w).

Lemma 4.2. There exist complex neighbourhoods X and W of x0 = 1 and w0 = 1 such
that the system of equations (4.6) has a unique solution y0(x,w), z0(x,w), u0(x,w) with
y0(x0, w0) = y0, z0(x0, w0) = z0, u0(x0, w0) = u0. Furthermore, the function y(z, x,w) =
M(z, x,w, 1) has a local representation of the form

y(z, x,w) = h1(z, x,w) + h2(z, x,w)

(

1 − z

z0(x,w)

)3/2

, (4.7)

where h1(z, x,w) and h2(z, x,w) are non-zero analytic functions, and there exists an analytic
continuation to

∆ = {z : |z| < |z0(x,w)| + η, |arg(z/z0(x,w) − 1)| > δ},

for some real numbers η > 0 and 0 < δ < π/2.

Proof. The first step is to show that the system of equation (4.6) has a proper solution in a
neighbourhood of x0 = 1 and w0 = 1. Actually we know that it has a solution for x = 1 and
w = 1. Furthermore the Jacobian

∣

∣

∣

∣

∣

∣

Hy Hz Hu

Huy Huz Huu

Huuy Huuz Huuu

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

Hy Hz 0

Huy Huz 0

Huuy Huuz Huuu

∣

∣

∣

∣

∣

∣

= Huuu

(

HyHuz − HzHuy

)

6= 0

for x = x0 = 1 and w = w0 = 1. Hence, by the implicit function theorem there exists a
neighbourhood X of x0 = 1 and neighbourhood W of w0 = 1 such that the system (4.6)
has an analytic solution y0(x,w), z0(x,w), u0(x,w) with y0(x0, w0) = y0, z0(x0, w0) = z0,
u0(x0, w0) = u0. By continuity we can choose X and W also in a way that the non-zero
conditions (Hy 6= 0 etc.) of Lemma 4.1 are satisfied in X and W .

By checking the proof of Lemma 4.1 it follows that it generalizes to x ∈ X and w ∈ W
so that all appearing functions are analytic in x and w. In particular we use that fact that
this is true for equations of the form F (z, x,w, u) = 0, where we observe that the solution
u = u(z, x,w) can be locally represented as

u(z, x,w) = g1(z, x,w) − g2(z, x,w)

√

1 − z

z(x,w)

with analytic functions g1(z, x,w) and g2(z, x,w) (for details see [4]). This leads to (4.7).
Finally we have to check that y(z, x,w) has a proper analytic continatation to the region

∆. For this purpose we have to study y(z) not only around z = z0. Since we know y(z) and
u(z) explicitly it is easy to check that Huu(z, y(z), u(z)) 6= 0 if z 6= z0 and Hy(z, y(z), u(z)) 6= 0
if z 6= z0. Hence the Jacobian

∣

∣

∣

∣

Hy Hu

Huy Huu

∣

∣

∣

∣

=

∣

∣

∣

∣

Hy 0
Huy Huu

∣

∣

∣

∣

= HyHuu
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is non-zero for |z| = z0 but z 6= z0.
Now suppose that x and w vary in properly chosen neighbourhoods of x0 = 1 and w0 = 1.

If |z− z0(x,w)| < ε we use the local representation (4.7) and obtain an analytic continuation.
If |z| is close to |z0(x,w)| but |z − z0(x,w)| ≥ ε we obtain by continuity that the Jacobian
HuuHy stays non-zero (if x and w are sufficiently close to x0 = 1 and w0 = 1). Hence,
by the implicit function theorem y(z, x,w) and u(z, x,w) can be analytically continued. By
compactness it is sufficient to continue y(z, x,w) (and u(z, x,w) only at finitely many points.
Hence, there exist δ > 0 and η > 0 such that y(z, x,w) continues analytically to ∆.

5 The Central Limit Theorem

It is now easy to complete the proof of Theorem 2.1. For this purpose we use the following
transfer principle by Flajolet and Odlyzko [9] (see also the book of Flajolet and Sedgewick [10]
and many references therein).

Lemma 5.1. Let W be a compact set and assume that there exist functions C(w), z0(w),
α(w), β(w) such that β(w) > R(α(w)), α(w) ∈ C \ N0 and z0(w) > 0 for all w ∈ W with the
following property. Suppose that f(z;w) is a power series in z and a parameter w ∈ W such
that there is an expansion of the form

f(z;w) = C(w)

(

1 − z

z0(w)

)α(w)

+ O

(

(

1 − z

z0(w)

)β(w)
)

that is uniform for w ∈ W and z ∈ ∆, where

∆ = {z : |z| < |z0(w)| + η, |arg(z/z0(w) − 1)| > δ},

for some real numbers η > 0 and 0 < δ < π/2. Then, uniformly for w ∈ W

[zn]f(z;w) = (1 + o(1)) · C(w)
n−α(w)−1

Γ(−α(w))
z0(w)−n.

With the help of this lemma we can prove the following property.

Lemma 5.2. Let k ≥ 2 and X
(k)
n as in Theorem 2.1. Then there exists a neighbourhood W

of w0 = 1 such that

E

(

wX
(k)
n

)

= (1 + o(1))C(w)

(

z0

z0(x0, w)

)n

uniformly for w ∈ W , where C(w) is a non-zero analytic function.

Proof. We apply this Lemma 5.1 for f(z;w) = y(z, x0, w)−h1(z, x0, w), which can be rewritten
as

f(z;w) = h2(z0(x0, w), x0, w)

(

1 − z

z0(x0, w)

)3/2

+ O

(

(

1 − z

z0(x0, w)

)5/2
)

.

The additive term h1(z, x0, w) is analytic in a larger region and, thus, provides a negligible
contribution. Consequently we obtain

[zn]y(z, x0, w) = (1 + o(1))h2(z0(x0, w), x0, w)
n−5/2

Γ(−3/2)
z0(x0, w)−n.

9



and also

E

(

wX
(k)
n

)

=
[zn]y(z, x0, w)

[zn]y(z0, x0, w0)
= (1 + o(1))

h2(z0(x0, w), x0, w)

h2(z0, x0, w0)

(

z0

z0(x0, w)

)n

.

By Hwang’s Quasi-Power-Theorem (see [10] or [4]) the central limit theorem (and also the
exponential tail estimates) follow immediately.
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