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Abstract

We derive asymptotic expansions for the numbers U(n) of isomorphism classes of
sensed maps on orientable surfaces with given number of edges n, where we do not specify
the genus and for the numbers A(n) of reflexible maps with n edges. As expected the ratio
A(n)/U(n) → 0 for n → ∞. This shows that almost all maps are chiral. Moreover, we
show logA(n) ∼ 1

2 logU(n) ∼ (n/2) log n. Due to a correspondence between sensed
maps with given number of edges and torsion-free subgroups of the group Γ = ⟨x, y|y2 =
1⟩ of given index, the obtained results give an information on asymptotic expansions for
the number of conjugacy classes of such subgroups of given index.
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1 Introduction
A map is a 2-cell decomposition of a compact connected surface. In this paper we prefer-
ably consider maps on orientable surfaces without boundary. A sensed (respectively un-
sensed) map is an equivalence class of maps on a closed orientable surface, where two maps
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are equivalent if one can be transformed into the other by a sense-preserving homeomor-
phism (respectively, by any homeomorphism either sense-preserving or sense-reversing)
of the underlying surface. N. C. Wormald [17],[18] and T. R. Walsh [16] have calculated
sensed and unsensed 1−, 2− and 3−connected planar maps. A formula for the number
of sensed planar maps with given number of edges was obtained by V. Liskovets [10]. In
[11] using a geometric approach sensed maps of a given genus are enumerated. Sensed
and unsensed maps of all genera were counted in a beautiful lecture by R. W. Robinson
[14]. Breda, Mednykh and Nedela in [4] employ a new geometric approach to enumerate
sensed and unsensed maps regardless of genus. This method further extends the one used
in [11] and [12] to count sensed unrooted maps and hypermaps on closed orientable surface
of given genus. It is worth to mention that the enumeration results on maps can be trans-
lated into results on enumeration of free subgroups and their conjugacy classes in certain
universal Fuchsian groups (see Subsection 5.5).

This paper is aimed at the asymptotic analysis of the enumeration formulas derived in
[4]. We show in two different ways that the number U(n) of sensed maps with n edges is
asymptotically given by

U(n) ∼
√
2 (2n)ne−n,

which is actually a result known between experts in map enumeration nevertheless to our
best knowledge it was not published.

A sensed map M is either isomorphic with its mirror image or not. In the first case M
is called reflexible, in the second case M is chiral. Chiral maps appear in pairs (a map and
its mirror image) which are sometimes called chiral twins. Furthermore we prove that the
number A(n) of reflexible maps with n edges is

A(n) ∼ e−
3
4

2
√
2πn

(2n)
n
2 e−

n
2 e2

√
2n.

It follows that the ratio A(n)/U(n) → 0 for n → 0 and logA(n) ∼ 1
2 logU(n) ∼ n

2 logn
which means that almost all maps are chiral.

The structure of the paper follows. In Section 2 we present and discuss our asymp-
totic results, in particular, we indicate why the the asymptotic formula for U(n) holds. In
Section 3 we collect formulas for the enumeration of several classes of maps employed in
the explicit formulas for U(n) and A(n). Section 4 provides an analytic tool to obtain the
asymptotic expansion of quickly increasing sequences. This tool is applied in Section 5
to derive the asymptotic behavior of certain classes of maps. Section 6 is devoted to the
proof of the asymptotic formula for A(n) which is our main finding. Finally, in Section 7
we present two proofs of the asymptotic formula for U(n). First one follows from an ele-
mentary estimation, the second one is based on the explicit formulas and provides precise
second order terms.

2 Results
Let U(n) denote the number of (unrooted) unbranched sensed maps with n edges and A(n)
denote the number of (unrooted) orientable reflexible maps with n edges. The main result
of this paper follows.

Theorem 2.1. The numbers U(n) and A(n) are asymptotically given by

U(n) =
√
2 (2n)ne−n

(
1− 13

24n
+O

(
1

n2

))
, (2.1)
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A(n) =
e−

3
4

2
√
2πn

(2n)
n
2 e−

n
2 e2

√
2n

(
1− 35

√
2

96
√
n
+O

(
1

n

))
. (2.2)

The asymptotic expansion for U(n) is much easier to obtain than that for A(n). Ac-
tually it is not very difficult to obtain the asymptotic leading term of U(n).1 Here we use
the fact that an n-edged map on an orientable surface can be also represented by a pair
of permutations (α, ρ) of degree 2n, where α is a fixed point free involution and the pair
(α, ρ) generate a transitive subgroup, see [8, 13, 19]. Furthermore, two maps are isomor-
phic if and only if their corresponding permutation pairs are jointly conjugate by some
permutation. By [2, Theorem 13] it follows that the probability that a pair (α, ρ) (of the
above type) that does not generate a transitive subgroup is O(1/n). Hence, the number of
transitive pairs is

(2n)!

2nn!
(2n)!

(
1 +O

(
1

n

))
.

It is an elementary fact that for almost all transition pairs, their automorphism group is
trivial, we shall investigate this in detail in Section 7. This means that asymptotically

U(n) ∼ (2n)!

2nn!

(2n)!

(2n)!
=

(2n)!

2nn!
.

Of course, this provides the asymptotic leading term for U(n).
It is definitely more difficult to get asymptotics for A(n) by using a combinatorial-

algebraic approach. A basic observation is that the mirror image of a map that is represented
by a pair (α, ρ) corresponds to the pair (α, ρ−1). Hence, reflexible maps can be modelled
by permutation pairs (α, ρ), (α, ρ−1) that are conjugate, that is, there is a permutation π
with π−1απ = α and π−1ρπ = ρ−1. However, in contrast to the case of (general) sensed
maps it seems that it is not that direct to translate this observation into a counting problem
that can be easily handled.

3 Explicit formulas for map enumeration
Although our primary object is to investigate isomorphism classes of maps on compact
orientable connected surfaces without boundary, in order to express the enumeration for-
mulas we need to consider a broader family of maps. Namely, we allow our maps to
have semiedges, the underlying surface can be non-orientable, or may have a non-empty
boundary. This happens because map automorphisms play a key role in enumeration of
iso-classes of maps, but maps on compact orientable connected surfaces without boundary
are not closed under taking quotients by actions of discrete groups of automorphisms. This
can be easily demonstrated even on the sphere. All this topological notions can be formal-
ized in terms of the permutational description of topological maps, see [4]. In particular,
a dart is an edge endowed with an orientation. Two darts underlying the same edge are
transposed by the dart-reversing involution α. Then the semiedges correspond to the fixed
points of the involution α and the cycles of length two gives correspond to complete edges
of M .

1We are grateful to one of the referees for this hint.
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Let R+(m, q) denote the number of rooted orientable maps with m darts and q com-
plete edges and R(m, q) denote the number of rooted boundary-free maps with m darts
and q complete edges. In [4] the following identities for generating functions were derived:

∑
m≥1

∑
q≥1

R+(m, q)

m
xmyq = log

∑
m≥0

∑
q≥0

m!

(m− 2q)!2qq!
xmyq

 (3.1)

∑
m≥1

∑
q≥1

R(m, q)

2m
x2myq = log

∑
m≥0

∑
q≥0

(2m)!

22mm!(m− 2q)!q!
x2myq

 . (3.2)

Flags of a map M correspond to topological triangles of the first barycentric subdivision
of M. The side of a flag (v, e, f) joining the center of the face f to the vertex v is called
diagonal. An internal diagonal is a diagonal incident with two flags. Let R(m, q, s) de-
note the number of rooted compact maps with 2m flags, q complete edges and s internal
diagonals. A diagonal which is not internal lies on the boundary. Similarly to the above
there is the following identity for generating functions (see [4]):∑

m≥1

∑
q,s≥0

R(m, q, s)

2m
w2mxqys (3.3)

= log

∑
m≥0

∑
q,s≥0

(2m)!

22q+s(m− 2q)!(2m− 2s)!q!s!
w2mxqys

 .

Finally, let

φp(ℓ) =
∑
d|ℓ

µ

(
ℓ

d

)
dp

denote the Jordan function,

φeven
p (ℓ) =

∑
d|ℓ, d even

µ

(
ℓ

d

)
dp =

{
0 if ℓ ≡ 1 mod 2,

2pφp(ℓ
′) if ℓ ≡ 0 mod 2.

the even Jordan function, and

φodd
p (ℓ) =

∑
d|ℓ, ℓ/d odd

µ

(
ℓ

d

)
dp =

{
φp(ℓ) if ℓ ≡ 1 mod 2,

2prφp(ℓ
′) if ℓ = 2rℓ′, ℓ′ ≡ 1 mod 2

the odd Jordan function.
With the help of these notations one can express U(n) and A(n) explicitly (see [4]).

Lemma 3.1. The numbers U(n) and A(n) are explicitly given by

U(n) =
1

2n

∑
ℓ|2n

 ∑
0≤q<n

ℓ

R+

(
2n

ℓ
, q

)
φeven
q+1 (ℓ) +R+

(
2n

ℓ
,
n

ℓ

)
φn/ℓ+1(ℓ)


=

1

n

∑
ℓ′|n

∑
0≤q≤ n

2ℓ′

R+
(n
ℓ′
, q
)
2qφq+1(ℓ

′) +
1

2n

∑
ℓ|2n

R+

(
2n

ℓ
,
n

ℓ

)
φn/ℓ+1(ℓ) (3.4)
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and

A(n) =
1

2n

∑
ℓ|n

E
(
ℓ,
n

ℓ

)
, (3.5)

where

E(ℓ,m) =



[m2 ]∑
q=0

m∑
s=0

R(m, q, s)φodd
−m+q+s+1(ℓ)

−R+
(
m, m

2

)
φodd

m
2 +1(ℓ) if ℓ is odd,

[m2 ]∑
q=0

(
R(m, q)−R+(m, q)

)
φodd
q+1(ℓ) if ℓ is even;

(3.6)

and we set R+
(
m, m

2

)
= 0 if m is odd.

4 Asymptotic properties of quickly increasing sequences
In this section we provide preliminary results on asymptotics of certain superexponentially
increasing sequences that are defined with the help of (formal) generating functions.

In particular let (am)m≥1 be a sequence of positive real numbers and let

a(x) =
∑
m≥1

amxm

denote its formal generating function.2

Suppose that (bm)m≥0 is linked to (am)m≥0 by the following relation of their generat-
ing functions: ∑

m≥1

bmxm = log

1 +
∑
m≥1

amxm

 . (4.1)

Alternatively we can express bm explicitly by

bm = am +
m∑

k=2

1

k
(−1)k−1Am,k,

where
Am,k =

∑
r1+···+rk=m, rj≥1

ar1ar2 · · · ark (4.2)

denotes the k-fold convolutions of the sequence am. This also shows that bm is close to am
if the convolutions Am,k are sufficiently small (compared to am).

Note that the relation (4.1) is equivalent to

1 +
∑
m≥1

amxm = exp

∑
m≥1

bmxm

 .

2If a(x) =
∑

m≥0 amxm is a generating function (a formal power series) for the sequence am then we will
denote by [xm] a(x) = am the m-th coefficient of a(x).
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Hence, if one knows, that am and bm are non-negative then we have

bm ≤ am. (4.3)

However, it is easy to construct examples, where am and bm are not asymptotically equiv-
alent. For example, if am = 1 then bm = 1/m. Nevertheless, if am is growing sufficiently
fast then we actually have am ∼ bm.

Theorem 4.1. Suppose that (am)m≥1 is a sequence of positive numbers that satisfies the
asymptotic relation

log am = αm logm+ βm+ γ
√
m+ δ logm+O(1) (4.4)

for given real numbers α, β, γ, δ with α > 0.
If the sequence (bm)m≥1 is linked to (am)m≥1 by the generating function relation (4.1)

then we have
bm = am − a1am−1 +O

( am
m2α

)
. (4.5)

This result can be derived from a theorem of Bender [3], see also [15, Theorem 7.2].
However, since we will need a bivariate extension of the used methods (Propositions 5.2
and 5.4) we decided to include a short direct proof of Theorem 4.1.

Note that am−1 = Θ(am/mα). Hence, (4.5) contains the first two terms of an asymp-
totic expansion. Actually it is possible to derive an asymptotic expansion of arbitrary
length. But this is not needed for our purposes.

It is also worth mentioning that the radius of convergence of the generating function
a(x) =

∑
m amxm equals zero if am grows like (4.4) with α > 0. Therefore one cannot

use complex analysis in order to derive asymptotics for the coefficients.
We start with an easy lemma.

Lemma 4.2. Suppose that a sequence (am)m≥1 of positive real numbers satisfies

Am,2 =

m−1∑
r=1

aram−r ≤ C am−1 (4.6)

for some constant C > 0 and for all m ≥ 2. Then for all 2 ≤ k ≤ m we have

Am,k ≤ Ck−1am−k+1. (4.7)

Proof. We proceed by induction. Of course, (4.7) is satisfied for k = 2 by assumption
(4.6).

Now assume that (4.7) holds for some 2 ≤ k < m. Then the recursion

Am,k+1 =
m−k∑
ℓ=1

aℓAm−ℓ,k

implies

Am,k+1 ≤ Ck−1
m−k∑
ℓ=1

aℓam−k−ℓ+1

≤ Ckam−k

which completes the proof of the induction.
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With help of Lemma 4.2 we can easily estimate Ak,m if the sequence am grows suffi-
ciently fast.

Lemma 4.3. Suppose that (am)m≥1 satisfies an asymptotic relation of the form (4.4) for
given real numbers α, β, γ, δ with α > 0.

Then there exits C > 0 such that (4.6) holds for all m ≥ 2. Furthermore, we have the
upper bound

m∑
k=3

Am,k = O(am−2) = O
( am
m2α

)
(4.8)

as m → ∞ and the asymptotic expansion

Am,2 = 2a1am−1 +O
( am
m2α

)
. (4.9)

Proof. First observe that (4.4) implies

log ar+1 − log ar = α log r +O(1)

and consequently
ar+1am−r−1

aram−r
= eα log r

m−r+O(1).

Hence there exists µ > 0 such that for r
m−r ≤ µ

ar+1am−r−1

aram−r
≤ 1

2
.

This direcly implies ∑
1≤r≤ µ

1+µm

aram−r ≤ 2a1am−1

and similarly ∑
1

1+µm≤r≤m−1

aram−r ≤ 2a1am−1.

Next suppose that µ
1+µm < r < 1

1+µm. Then with (4.4) we get the upper bound

log ar + log am−r ≤ αm logm+ βm+ |γ|
√
2m+ 2|δ| logm+O(1)

− α

(
µ

1 + µ
log

1 + µ

µ
+

1

1 + µ
log(1 + µ)

)
m.

which implies that∑
µ

1+µm<r< 1
1+µ

aram−r ≤ am−1me−ηm+α logm+|γ|(
√
2+1)

√
m+3|δ| logm+O(1)

= o(am−1),

where η = α
(

µ
1+µ log 1+µ

µ + 1
1+µ log(1 + µ)

)
> 0. Hence, (4.6) holds for some constant

C > 4.
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Finally, observe that (4.4) implies

Ckam−k

Ck−1am−k+1
= Ce−α(m−k)+O(1) ≤ 1

2

if m− k ≥ k0 (for some k0). Hence,∑
3≤k≤m−k0

Ck−1am−k+1 ≤ 2Cam−2 = O
( am
m2α

)
.

Further we have∑
m−k0<k≤m

Ck−1am−k+1 ≤ k0C
m max

1≤r≤k0

ar = O(Cm) = o(am−2).

This proves (4.8).
Finally, it is now easy to derive that

m−2∑
r=2

aram−r = O(am−2) = O
( am
m2α

)
which implies (4.9) and completes the proof of Lemma 4.3.

It is now easy to complete the proof of Theorem 4.1.

Proof of Theorem 4.1. By definition we have

bm = am +

m∑
k=2

1

k
(−1)k−1Am,k

= am − 1

2
Am−2 +

m∑
k=3

1

k
(−1)k−1Am,k

¿From Lemma 4.3 it directly follows that∣∣∣∣∣
m∑

k=3

1

k
(−1)k−1Am,k

∣∣∣∣∣ ≤
m∑

k=3

Am,k = O
( am
m2α

)
.

By combining this with (4.9) we obtain (4.5).

We finish this section by providing several examples of sequences that satisfy asymp-
totic relations of the form (4.4) and appear in the sequel of the paper.

Lemma 4.4. We have the following asymptotic relations:

(2m)!

m!
=

√
2 22mmme−m

(
1− 1

24m
+O

(
1

m2

))
,

(4m)!

(2m)!m!
=

1√
π
26mmm− 1

2 e−m

(
1− 5

48m
+O

(
1

m2

))
.



Ars Math. Contemp. x (xxxx) 1–x 9

Proof. We just have to apply Stirling’s formula

n! = nne−n
√
2πn

(
1 +

1

12n
+O

(
1

n2

))
. (4.10)

Lemma 4.5. Let Am(y) be defined by

Am(y) =
∑
q≥0

m!

(m− 2q)!q!
yq. (4.11)

Then for every positive y we have asymptotically

Am(y) =
e−1/(8y)

√
2

(2ym)
m
2 e−

m
2 +

√
m
2y

(
1 +

C1(y)√
m

+O

(
1

m

))
(4.12)

with

C1(y) =
5
√
2

192y3/2
+

√
2

8y1/2

and the uniform upper bound

Am(y) ≤ 3
√
m (2ym)

m
2 e−

m
2 +

√
m
2y . (4.13)

Proof. Let f(z, y) be defined by

f(z, y) = 1 +
∑
m≥1

Am(y)

m!
zm.

Then we get

f(z, y) = 1 +
∑
m≥1

Am(y)

m!
zm

=
∑
m≥0

∑
0≤q≤2m

zmyq

(m− 2q)!q!

=
∑
q≥0

yqz2q

q!

∑
m≥2q

zm−2q

(m− 2q)!

= eyz
2+z.

For every fixed y > 0 this function is admissible in the sense of Hayman (see [7]). Thus
(for every fixed y > 0) we have the asymptotic expansion3

Am(y) = m!
f(rm(y), y)rm(y)−m√

2πb(rm(y))

(
1 +O

(
d(rm)

b(rm)2

))
(m → ∞) (4.14)

3In Hayman’s paper [7] only the asymptotic leading term is given. The full asymptotic series expansion (that
applies to f(z) = eyz

2+z) is given in [6].
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where rm(y) is determined by the equation a(rm(y)) = m and where a(r) = rf ′(r, y)/f(r, y) =
r + 2yr2, b(r) = ra′(r) = r + 4yr2, and d(r) = r(rb′(r))′ = r + 16yr2. Asympotically
we have

rm(y) =

√
m

2y
− 1

4y
+

1

32y2

√
2y

m
+O

(
1

m

)
and consequently the leading term (4.11) and the second order term C1(y)/

√
m follows.

Finally, since d(rm)/b(rm)2 ∼ 2/m, the error term in (4.14) is given by O(1/m) and does
not change the second order term.

In order to prove the upper bound we again use f(z, y). If y is positive then Am(y) is
positive, too. Hence, for every r > 0 we get the trivial upper bound

Am(y)

m!
rm ≤ er+yr2 .

In particular, if we set r =
√
m/(2y) we get

Am(y) ≤ m!e−
m
2 log m

2y+m
2 +

√
m
2y .

Since
m! ≤ 3mm+ 1

2 e−m

we also get (4.13).

With help of this lemma we directly derive the following asymptotic relations.

Lemma 4.6. We have the following asymptotic relations:∑
q≥0

m!

(m− 2q)!q!
=

e−
1
8

√
2
(2m)

m
2 e−

m
2 +

√
m
2

(
1 +

5
√
2

192
√
m

+O

(
1

m

))
,

∑
q≥0

2q(2m)!

22mm!(m− 2q)!q!
=

e−
1
16

√
2πm

2mm
m
2 e−

m
2 +

√
m
4

(
1 +

53

384
√
m

+O

(
1

m

))
and ∑

q,s≥0

(2m)!

22q+s(m− 2q)!(2m− 2s)!q!s!
=

e−
3
4

2
√
2πm

(2m)
m
2 e−

m
2 e2

√
2m

×

(
1 +

61
√
2

96
√
m

+O

(
1

m

))
.

Proof. We just have to apply Lemma 4.5 and Stirling’s formula since∑
q≥0

m!

(m− 2q)!q!
= Am(1),

∑
q≥0

2q(2m)!

22mm!(m− 2q)!q!
=

(2m)!

22m(m!)2
Am(2)

and ∑
q,s≥0

(2m)!

22q+s(m− 2q)!(2m− 2s)!q!s!
=

1

m!
Am

(
1

4

)
A2m

(
1

2

)
.
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5 Asymptotics for Rooted Maps
5.1 Rooted Unbranched Sensed Maps

Recall that a dart of a map is an edge endowed with an orientation and that the edges
composed from two darts are complete. Furthermore, an edge with just one underlying
dart is called a semiedge. A semiedge joins a vertex to a branch point of index two. A
sensed map without semiedges is called unbranched. A sensed map is called rooted if one
of the darts is distiguished as a root.

Let R+(m) denote the number of rooted unbranched sensed maps with m edges. In [4]
the following identity for generating functions was derived:

∑
m≥1

R+(m)

m
2m−1um = log

∑
m≥0

(2m)!

m!
um

 . (5.1)

Note that another formula for R+(m) was determined earlier by D. M. Jackson and T. I.
Visentin [9] and by Arques and J.-F. Beraud [1].

It is now easy to obtain the following asymptotic expansion.

Proposition 5.1. The numbers R+(m) are asymptotically given by

R+(m) =
(2m)!

2m−1(m− 1)!

(
1− 1

2m
+O

(
1

m2

))
= 2m+ 3

2mm+1e−m

(
1− 13

24m
+O

(
1

m2

))
. (5.2)

Furthermore we have the upper bound

R+(m) ≤ (2m)!

2m−1(m− 1)!
. (5.3)

Proof. By Lemma 4.4, the sequence am = (2m)!/m! satisfies an asymptotic relation of
the form (4.4) with α = 1. Hence, by Theorem 4.1 we obtain

R+(m)

m
2m−1 = am − a1am−1 +O

(am
m2

)
=

(2m)!

m!

(
1− 1

2m
+O

(
1

m2

))
.

Thus, (5.2) follows from Lemma 4.4.
The upper bound (5.3) follows from (4.3) since we know a-priori that R+(m) ≥ 0.

5.2 Rooted orientable maps

Recall that R+(m, q) denotes the number of rooted orientable maps with m darts and q
complete edges. Clearly 0 ≤ 2q ≤ m, and we have

R+(2m,m) = R+(m)

which is asymptotically given by (5.2). With the help of the relation (3.1) and the methods
of Section 4 we derive the following asymptotic relations for general m and q, however the
error term is not optimal in the whole range.
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Proposition 5.2. The numbers R+(m, q) are asymptotically given by

R+(m, q) = m
m!

(m− 2q)!2qq!
+O

(
m

m
2 + 1

2 e−
m
2 +

√
m
)

(5.4)

and we have the upper bound

R+(m, q) ≤ m
m!

(m− 2q)!2qq!
. (5.5)

Furthermore, for every positive real y we have∑
q≥0

R+(m, q) yq = m
∑
q≥0

m!

(m− 2q)!2qq!
yq ·

(
1 +O

(
1√
m

))

=
e−

1
4y m√
2

(ym)
m
2 e−

m
2 +

√
m
y ·
(
1 +O

(
1√
m

))
. (5.6)

Remark 5.3. Note that the asymptotic relation (5.4) is only significant if∣∣∣∣q − m

2
+

√
m

2

∣∣∣∣ = O
(
m

1
4

)
.

If q is in that range then the order of magnitude of R+(m, q) is

m
m
2 + 3

4 e−
m
2 +

√
m.

This is certainly a range of interest since it covers all large numbers R+(m, q). The sum of
the remaining R+(m, q) can be made arbitrarily small compared to the whole sum choosing
the O-constant in the term O(m

1
4 ) to be sufficiently large. Nevertheless it is expected that

the upper bound (5.5) is actually the asymptotic leading term in a wider range. For example,
it matches for q = m

2 , see Proposition 5.1.

Proof. The inequality (5.5) follows from the general principle (4.3) since we know that
R+(m, q) ≥ 0. Further, the asymptotic relation (5.6) follows from Theorem 4.1 and
Lemma 4.5.

From (3.1) it follows that

1

m
R+(m, q) =

m!

(m− 2q)!2qq!

+ [yq]

m∑
k=2

1

k
(−1)k−1

∑
r1+···+rk=m, rj≥1

Ar1

(y
2

)
· · ·Ark

(y
2

)
.

First observe that∣∣∣∣∣∣[yq]
m∑

k=2

1

k
(−1)k−1

∑
r1+···+rk=m, rj≥1

Ar1

(y
2

)
· · ·Ark

(y
2

)∣∣∣∣∣∣ ≤
[yq]

m∑
k=2

∑
r1+···+rk=m, rj≥1

Ar1

(y
2

)
· · ·Ark

(y
2

)
,
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where the right hand side has only non-negative coefficients. We now again use the prin-
ciple that the n-th coefficient an of a power series a(x) =

∑
n≥0 anx

n can be estimated
by

an ≤ r−na(r) for every r > 0.

In particular, if we choose r = y = 1 then we get the estimate

[yq]

m∑
k=2

∑
r1+···+rk=m, rj≥1

Ar1

(y
2

)
· · ·Ark

(y
2

)
≤

m∑
k=2

∑
r1+···+rk=m, rj≥1

Ar1

(
1

2

)
· · ·Ark

(
1

2

)
.

However, it follows from Lemma 4.3 and Lemma 4.5 that

m∑
k=2

∑
r1+···+rk=m, rj≥1

Ar1

(
1

2

)
· · ·Ark

(
1

2

)
= O

(
Am

(
1
2

)
√
m

)

= O
(
m

m
2 − 1

2 e−
m
2 +

√
m
)
.

This implies

1

m
R+(m, q) =

m!

(m− 2q)!2qq!
+O

(
m

m
2 − 1

2 e−
m
2 +

√
m
)

and completes the proof of (5.4).

5.3 Rooted boundary-free maps

Next we consider the numbers R(m, q) of rooted boundary-free maps with m darts and q
complete edges. Here we have:

Proposition 5.4. The numbers R(m, q) are asymptotically given by

R(m, q) =
(2m)!

22m−1(m− 1)!(m− 2q)!q!
+O

(
2

m
2 m

m
2 e−

m
2 +

√
m
2

)
(5.7)

and we have the upper bound

R(m, q) ≤ (2m)!

22m−1(m− 1)!(m− 2q)!q!
. (5.8)

Furthermore, for every positive real y we have∑
q≥0

R(m, q) yq =
∑
q≥0

(2m)!

22m−1(m− 1)!(m− 2q)!q!
yq ·

(
1 +O

(
1√
m

))

=
e−

1
8y
√
2m√

π
(2ym)

m
2 e−

m
2 +

√
m
2y ·

(
1 +O

(
1√
m

))
(5.9)

Proof. The proof is exactly the same as that of Proposition 5.2.
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5.4 Rooted compact maps

Finally we consider the numbers R(m, q, s) of rooted compact maps with 2m flags, q
complete edges and s internal diagonals. A diagonal which is not internal lies on the
boundary.

Proposition 5.5. The numbers R(m, q, s) are bounded by

R(m, q, s) ≤ 2m(2m)!

22q+s(m− 2q)!(2m− 2s)!q!s!
(5.10)

Furthermore, the sum
∑

q,s R(m, q, s) is asymptotically given by∑
q,s≥0

R(m, q, s) =
∑
q,s≥0

2m(2m)!

22q+s(m− 2q)!(2m− 2s)!q!s!

·
(
1− 2√

2m
+O

(
1√
m

))
=

e−
3
4
√
m√

2π
(2m)

m
2 e−

m
2 e2

√
2m (5.11)

·

(
1− 35

√
2

96
√
m

+O

(
1

m

))
.

Proof. We just apply Theorem 4.1 and Lemma 4.6 with

am =
∑
q,s≥0

(2m)!

22q+s(m− 2q)!(2m− 2s)!q!s!
.

Note that a1 = 2 and

am−1 =
am√
2m

(
1 +O

(
1√
m

))
.

5.5 Subgroup counting

As already noted map enumeration is closely related with counting (free) subgroups of
given index and their conjugacy classes in the universal triangle group ∆+ = ⟨x, y| y2 = 1⟩
and in the extended triangle group ∆ = ⟨x, y, z| x2 = y2 = z2 = (xy)2 = 1⟩. In
particular, R+(m) is the number of free subgroups of rank m + 1 in ∆+ and U(m) is the
number of conjugacy classes of such subgroups in ∆+.

Next we define R(m) as the number of rooted closed maps (orientable or not) with m
edges.4 Then R(m) is the number of free subgroups rank m+ 1 in ∆.

In [4] the following identity for generating functions was derived:

∑
m≥1

R(m)

m
42m−1um = log

∑
m≥0

(4m)!

(2m)!m!
um

 . (5.12)

Similarly to Proposition 5.1 we obtain the following asymptotic result:
4A map on a compact connected surface without boundary is called closed.
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Proposition 5.6. The numbers R(m) are asymptotically given by

R(m) =
(4m)!

42m−1(2m)!(m− 1)!

(
1 +O

(
1

m

))
=

1√
π
22m+1mm+ 1

2 e−m

(
1 +O

(
1

m

))
(5.13)

Furthermore we have the upper bound

R(m) ≤ (4m)!

42m−1(2m)!(m− 1)!
. (5.14)

6 Reflexible Maps
The purpose of this section is to prove the asymptotic expansion (2.2) for A(n).

Proof. We use the explicit representation (3.5) (where E(ℓ,m) is given in (3.6)). The
crucial observation is that the term with ℓ = 1 in the explicit representation (3.5) dominates
the whole sum, that is, the term

1

2n

∑
q,s≥0

R (n, q, s)

is dominating. By Proposition 5.5 this term is asymptotically given by

e−
3
4

2
√
2πn

(2n)
n
2 e−

n
2 e2

√
2n

(
1− 35

√
2

96
√
n
+O

(
1

n

))
Thus, we just have to deal with the terms ℓ ̸= 1. Recall that we have the trivial bounds

R(m, q, s) ≤ 2m
(2m)!

22q+s(m− 2q)!(2m− 2s)!q!s!
,

R+(m,m/2) ≤ m
m!

2m/2(m/2)!
if m ≡ 0 mod 2,

R+(m, q) ≤ m
m!

(m− 2q)!2qq!
,

R(m, q) ≤ 2m
(2m)!

22mm!(m− 2q)!q!
,

φodd
p (ℓ) ≤ max{1, ℓp}.

Hence, by using the upper bound (4.13) we get∑
q,s≥0

R(m, q, s)φodd
−m+q+s+1(ℓ)

≤ m
∑
q,s≥0

(2m)!

22q+s(m− 2q)!(2m− 2s)!q!s!

(
ℓ−m+q+s+1 + 1

)
=

ℓ−m+1

(m− 1)!
Am

(
ℓ

4

)
A2m

(
ℓ

2

)
+

1

(m− 1)!
Am

(
1

4

)
A2m

(
1

2

)
≤ 3

√
2m

3
2 e

m
2 log(2mℓ)−m

2 +2
√

2m
ℓ + 3m

3
2 e

m
2 log(2m)−m

2 +2
√
2m.
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This implies that

1

2n

∑
ℓ|n, ℓ≥3 odd

∑
q,s≥0

R
(n
ℓ
, q, s

)
φodd
−n

ℓ +q+s+1(ℓ)

≤ 3
√
2

2n

∑
ℓ|n, ℓ≥3 odd

(n
ℓ

) 3
2

e
n
2ℓ log(2n)− n

2ℓ+2
√

2n
ℓ2

+
3

2n

∑
ℓ|n, ℓ≥3 odd

(n
ℓ

) 3
2

e
n
2ℓ log 2n

ℓ − n
2ℓ+2

√
2n
ℓ

= O
(√

n e
n
6 log(2n)−n

6 +2
√

2n
9

)
+O

(√
n e

n
6 log 2n

3 −n
6 +2

√
2n
3

)
Similarly we get an upper bound for

1

2n

∑
ℓ|n, ℓ odd

R+
(n
ℓ
,
n

2ℓ

)
φodd

n
2ℓ+1(ℓ) ≤ 2

√
2
∑

ℓ|n, ℓ odd

ℓ

n
e

n
2ℓ log n

2 − n
2ℓ

= O

(
1

n
e

n
2 log n

2 −n
2

)
Finally, for even ℓ we have∑

q≥0

(
R(m, q)−R+(m, q)

)
φodd
q+1(ℓ) ≤

∑
q≥0

R(m, q)φodd
q+1(ℓ)

≤ 2m
∑
q≥0

(2m)!

22mm!(m− 2q)!q!
ℓq+1

= 2mℓ
(2m)!

22m(m!)2
Am(ℓ)

≤ 6mℓe
m
2 log(mℓ)+

√
m
2ℓ

which implies that

1

2n

∑
ℓ|n, ℓ≥2 even

∑
q≥0

(
R
(n
ℓ
, q
)
−R+

(n
ℓ
, q
))

φodd
q+1(ℓ)

≤ 3
∑

ℓ|n, ℓ≥2 even

e
n
ℓ log(2n)+

√
n
ℓ2 = O

(
e

n
4 log n+

√
n
8

)
Of course, this proves (2.2) since the order of magnitude of theses three terms is much
smaller than that of the leading term.

7 Unrooted Maps
In this final section we provide two proofs for the asymptotic expansion of U(n).

7.1 Permutation counting

In Section 2 it was already indicated that the asymptotic formula for U(n) follows from
the fact that for almost all pairs (α, ρ) the automorphism group is trivial. For the reader’s
convenience we present as short proof of the following upper bound.
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Lemma 1. Let Tn denote the set of pairs α, ρ ∈ S2n such that α is fixed point free involu-
tion and that the group generated by α, ρ is transitive. Then

#{(α, ρ) ∈ Tn : ∃π ∈ S2n, π ̸= 1, πα = απ, πρ = ρπ}
(2n)!
2nn! (2n)!

= O
(
(1.05)nn−n/3

)
Proof. We recall that the automorphism group of transitive pairs (α, ρ) is given by

{π ∈ S2n : πα = απ, πρ = ρπ}.

Hence, the proposed bound estimates the probability that the automorphism group of a
(random) transitive pair is non-trivial.

Actually, we can be more precise on non-trivial permutations π in such automorphism
groups. Since we are only considering transitive pairs, it follows that all such π ̸= 1
consist of independent cycles of an equal length ℓ > 1. Let S2n[ℓ] denote the set of such
permutations (if ℓ|2n) and S◦

2n the set of fixed point free involutions.
By double counting we obtain the estimate

#{(α, ρ) ∈ Tn : ∃π ∈ S2n, π ̸= 1 πα = απ, πρ = ρπ}

≤
∑

ℓ≥2, ℓ|2n

∑
π∈S2n[ℓ]

#{α ∈ S◦
2n : πα = απ} ·#{ρ ∈ S2n : πρ = ρπ}

First it is easy to show that (for π ∈ S2n[ℓ] and ρ ∈ S2n)

#{ρ ∈ S2n : πρ = ρπ} = ℓ2n/ℓ(2n/ℓ)!. (7.1)

This follows from the fact that the ρ-image of each cycle of π is again a cycle of π (in
corresponding order). Hence, by constructing such ρ there are (2n/ℓ)! possible ways of
grouping the cycles (of lengths ℓ) in pairs, and for each pair there are ℓ possibilities to glue
them together.

The number of α ∈ S◦
2n that commute with π are more difficult to describe. However,

if ℓ ≥ 3 we will use the trivial estimate

#{α ∈ S◦
2n : πα = απ} ≤ ℓ2n/ℓ(2n/ℓ)!.

Thus, we just have to look at the special case ℓ = 2. Here we have

#{α ∈ S◦
2n : πα = απ} =

∑
k≥0

n!

(n− 2k)!2kk!
2k = An (1) . (7.2)

This follows from the observation that α maps a 2-cycle from π either identically to itself or
two different 2-cycles from π are mapped to each other. Since An(1) = O

(
(2n)n/2e

√
n/2
)

we thus obtain

#{(α, ρ) ∈ Tn : ∃π ∈ S2n, π ̸= 1, πα = απ, πρ = ρπ}

≤ (2n)!

2nn!
2nn!An(1) +

∑
ℓ≥3, ℓ|2n

(2n)!

ℓ2n/ℓ(2n/ℓ)!

(
ℓ2n/ℓ(2n/ℓ)!)

)2
= O

(
(2n)!32n/3Γ(2n/3 + 1)

)
= O

(
(2n)!

2nn!
(2n)!(1.05)nn−n/3

)
.

This proves the lemma.
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Summing up, Lemma 1 assures that for almost all transitive pairs the isomorphy classes
of transitive pairs consist of (2n)! elements. This implies the asymptotic formula for U(n)
as explained in Section 2.

7.2 Map counting

Finally we present a second proof for the asymptotic formula for U(n) that is based on
the explicit representation (3.4). Note that this proof can be extended to a full asymptotic
series expansion and is, thus, more precise than the first one.

Proof. Set

S1 :=
1

n

∑
ℓ′|n

∑
0≤q< n

2ℓ′

R+
(n
ℓ′
, q
)
2qφq+1(ℓ

′)

and

S2 :=
1

2n

∑
ℓ|2n,ℓ>1

R+

(
2n

ℓ
,
n

ℓ

)
φn/ℓ+1(ℓ)

Then

U(n) = S1 + S2 +
R+(2n, n)

2n
.

The crucial observation is that the last term R+(2n, n)/(2n) = R+(n)/(2n) dominates
the whole sum. Note that by Proposition 5.1

R+(n)

2n
=

√
2 (2n)ne−n

(
1− 13

24n
+O

(
1

n2

))
.

Using the trivial bound φp(ℓ) ≤ ℓp and

R+(m) ≤ (2m)!/(2m−1(m− 1)!)

we can directly estimate the second sum

S2 ≤ 1

2n

∑
ℓ|2n,ℓ>1

(
2n
ℓ

)
!(

n
ℓ − 1

)
!2

n
ℓ −1

ℓ
n
ℓ +1

=
∑

ℓ|2n,ℓ>1

(
2n
ℓ

)
!(

n
ℓ

)
!2

n
ℓ

ℓ
n
ℓ +1

≤ 2
∑

ℓ|2n,ℓ>1

2
n
ℓ

(n
ℓ

)n
ℓ

e−
n
ℓ ℓ

n
ℓ

= 2
∑

ℓ|2n,ℓ>1

(
2n

e

)n
ℓ

= O
(
n

n
2

)
.

For the first sum we again use the trivial estimates φp(ℓ) ≤ ℓp and

R+(m, q) ≤ mm!

(m− 2q)!2qq!
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to get

S1 ≤ 1

n

∑
ℓ|n

∑
0≤q< n

2ℓ

n
ℓ

(
n
ℓ

)
!(

n
ℓ − 2q

)
!2qq!

2qℓq+1

=
∑
ℓ|n

An
ℓ
(2ℓ),

with Am(y) defined in (4.11). By applying the upper bound (4.13) we thus get

S1 ≤ 3
√
n
∑
ℓ|n

(2n)
n
2ℓ e−

n
2ℓ+

√
n/(2ℓ2

≤ 3
√
n e

√
n/2
∑
ℓ|n

(
2n

e

) n
2ℓ

= O
(√

n e
√

n/2 (2n)
n
2

)
.

Of course, these bounds for S1 and S2 are of much smaller order of magnitude than the
leading term R+(n)/(2n).
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on a more direct proof for the asymptotics of U(n).
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