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Abstract. We consider planar maps adjusted with a (regular critical) Boltz-

mann distribution and show that the expected number of pattern occurrences

of a given map is asymptotically linear when the number n of edges goes to
infinity. The main ingredient for the proof is an extension of a formula by

Liskovets (1999).

1. Introduction

A planar map m is a connected planar graph, possibly with loops and multiple
edges, together with an embedding into the plane. Usually one edge is directed
and distinguished as the root edge. There are several ways of introducing a proba-
bility distribution on planar maps (see [3, Ch. 5]). In this paper we will focus on
Boltzmann weights

Wq(m) =
∏

f∈Fm

qdeg(f),

where q = (qn)n≥1 is a sequence of non-negative weights, Fm denotes the set of
faces of m, and deg(f) the degree of a face f . Now for every n these weights induce
a probability distribution on planar maps with n edges. For example, if qn = 1 for
all n then we obtain uniform random maps, whereas if q4 = 1 and qn = 0 for n 6= 4
then we are just considering uniform quadrangulations. In what follows we will
always assume that q is regular critical (see [15, Sec. 2.1] for a precise definition).
This encompasses the case of uniform planar maps and uniform p-angulations for
all p ≥ 3 [15, Sec. 6.1].

We denote by mn a random planar map (with n edges) in this sense. Let
m̂ denote a plane representation of some planar map. We say that m̂ occurs in
m as a pattern, if m̂ may be embedded in a face-preserving way into the plane
representation of m. For example, if m̂ is a cycle of length d then these embeddings
correspond to the inner faces of m that are cycles and have degree d.

The main purpose of this paper is to get some knowledge of the random number
s(m̂,mn) of occurrences of m̂ as a pattern in mn.

Theorem 1.1. Let m̂ denote a plane representation of some planar map. Then

E [s(m̂,mn)] ∼ γ(m̂)n

for some constant γ(m̂) > 0.

The main ingredient of the proof is an extension of a formula by Liskovets [13,
Eq. (2.3.1)] that we obtain using a local limit result by Stephenson [15]. We will
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discuss this extension and prove Theorem 1.1 in Section 2. Furthermore, we collect
some open problems in Section 3.

Notation and Terminology. Rooting a planar map at a corner is equivalent to
specifying and orienting an edge. We say the origin of this edge is the root vertex
of the map. We use the convention that the face to the “right” of the oriented
root edge is the outer face and is drawn as the unique unbounded face in plane
representations. The radius of the map is the maximal distance of a vertex from
the root vertex. Let m denote a corner-rooted planar map. We let v(m) and e(m)
denote its number of vertices and edges, and d(m) the degree of its root vertex.
For any integer r ≥ 1 we let U c

r (m) denote the corner-rooted submap induced by
all vertices with distance at most r from the vertex incident to the root-corner.
We let mv denote the vertex-rooted version of m, where we forget about the root-
corner and only mark the root-vertex. In particular, Uv

r (m) := (U c
r (m))v is the

vertex-rooted version of the neighbourhood U c
r (m). Maps may be re-rooted. Given

a vertex v and a corner c of m, we let (m, v) and (m, c) represent the result of
re-rooting m at this vertex or corner and forgetting about the original root.

2. The vicinity of uniformly selected vertices in random maps

Liskovets [13, Eq. (2.3.1)] observed that for certain general models of random
rooted maps with n edges, the limiting distributions (dk)k≥1 for the degree of
the root vertex is related to the limiting distribution (pk)k≥1 for the degree of a
uniformly selected vertex via the formula

pk =
2

kµ
dk(1)

for a certain constant µ > 0. In the special case of uniform planar maps, the
constant equals µ = 1/2 [13, Prop. 2.6]. See also further studies of the vertex
degrees in models of random planar maps [9, 5, 6, 13].

The regular critical Boltzmann planar map mn is known to admit a local limit
m∞ by a result of Stephenson [15, Thm. 6.1] (see also [1, 11, 2, 7, 14]). The
random infinite map m∞ describes the asymptotic behaviour near the root-edge
of mn as n tends to infinity. Using this probabilistic limit, we extend Liskovets’
result by constructing a limit m∗∞ that follows a different distribution than m∞
and describes the asymptotic vicinity of a typical vertex.

Theorem 2.1. The random map mn rerooted at a uniformly selected vertex admits
a distributional limit m∗∞ in the local topology. The convergence preserves the
embedding in the plane. For any vertex-rooted planar map m̂ and any integer r ≥ 1
it holds that

P(Uv
r (m∗∞) = m̂) =

2

d(m)µv
P(Uv

r (m∞) = m̂)(2)

for the constant µv = limn→∞ E[v(mn)]/n.

Equation (2) may be interpreted as an extension of Formula (1). A similar
result for the special case of random triangulations and quadrangulations may be
obtained by adapting arguments from [1, 11].1 Having the limit m∗∞ for random
quadrangulations at hand, it is possible to use the Tutte bijection to transfer this

1We thank Omer Angel for bringing this to our attention.
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convergence to the special case of uniform planar maps. However, this case is also
encompassed by Theorem 2.1 and the approach taken in the present work appears
to be simpler and more universal.

The proof of Theorem 2.1 requires us to verify the following stochastic re-rooting
invariance first. Details on the enumerative background of planar maps may be
found in [12].

Lemma 2.2. The map mn is stochastically invariant under re-rooting at a uni-
formly selected corner.

Proof. Let M̃ be an arbitrary unrooted map with n edges. We have to show that
any corner-rooted version of M̃ corresponds to the same number of choices among
the 2n corners of M̃ . If this holds, then re-rooting mn at a uniformly selected
corner is identically distributed to mn.

To this end, let us label the corners of M̃ with numbers from 1 to 2n to form
a corner-labelled unrooted map M . There are many ways to do this, and we pick
an arbitrary one. A permutation σ of {1, . . . , 2n} is termed an automorphism of
M if the result of relabelling M according to σ is identical to M . The collection of
automorphisms of M is its automorphism group.

If rooting the map M at 1 ≤ i ≤ 2n or 1 ≤ j ≤ 2n and forgetting about
the labels yields two identical unlabelled corner-rooted maps, then there must be
an automorphism σ of M such that σ(i) = σ(j). Conversely, if there exists an
automorphism σ with σ(i) = j, then clearly rooting M at i or j yields identical
unlabelled corner-rooted maps. Moreover, if σ and ν are automorphisms of M that
both satisfy σ(i) = j and ν(i) = j, then σν−1 is an automorphism that fixes the
label i. Hence σν−1 is an automorphism of a corner-rooted labelled planar map.
Corner-rooted maps are asymmetric, so σν−1 must be the identity permutation,
that is, σ = ν. Thus, the cardinality of the automorphism group of M is equal to
the number of corners (among the n choices) such that rooting M at this corner
yields the same unlabelled corner-rooted map as rooting M at the corner i. This
number does not depend on i, so to any corner-rooted version of m corresponds to
the same number of choices for root-corners. �

Proof of Theorem 2.1. We let vn denote a uniformly at random selected vertex of
the Boltzmann map mn. Let m be a fixed corner-rooted planar map. Let κ(m)
denote the number of corners c incident to the root-vertex of m with the property
that m is invariant under re-rooting at c. For any integer r ≥ 1 we may write

P(Uv
r (mn, vn) = mv) = E[Xn/v(mn)],

with Xn denoting the number of vertices v in mn such that Uv
r (mn, v) = mv. To

each such vertex correspond precisely κ(m) corners c with U c
r (mn, c) = m. Thus the

total number Yn of corners whose corner-rooted r-neighbourhood equals m satisfies

Yn = κ(m)Xn.

Hence

P(Uv
r (mn, vn) = mv) = E

[
Yn

v(mn)κ(m)

]
.(3)
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The map mn is stochastically invariant under re-rooting at a uniformly select corner
cn. Thus

E[Yn/(2n)] = P(U c
r (mn, cn) = m)

= P(U c
r (mn) = m)

→ P(U c
r (m∞) = m).

The large deviation bounds [15, Lem. 6.6] imply that there is a constant µv > 0
and a sequence tn with tn → 0 such that

|v(mn)/n− µv| ≤ tn(4)

holds with probability tending to 1 as n tends to infinity. (In the case of uniform
maps the fluctuation may even be precisely quantified by the normal distribution,
see Lemma 4.1. For our purposes the concentration result (4) in a more general
setting suffices.) Using Yn/(v(mn)κ(m)) ≤ 1 it follows that

E
[

Yn
v(mn)κ(m)

]
= o(1) + E

[
Yn

v(mn)κ(m)
, |v(mn)/n− µv| ≤ tn

]
≤ o(1) + E

[
Yn

n(µv − tn)κ(m)

]
= o(1) +

2

κ(m)µv
P(U c

r (m∞) = m).

Similarly, we obtain a lower bound, as Yn ≤ 2n implies that

E
[

Yn
v(mn)κ(m)

]
≥ o(1) + E

[
Yn

n(µv + tn)κ(m)
, |v(mn)/n− µv| ≤ tn

]
= o(1) + E

[
Yn

n(µv + tn)κ(m)

]
.

By Equation (3) this implies

P(Uv
r (mn, vn) = mv)→ 2

κ(m)µv
P(U c

r (m∞) = m)

=
2

α(m)κ(m)µv
P(Uv

r (m∞) = mv)

with α(m) denoting the number of different corner-rooted maps that may be ob-
tained by re-rooting m at a corner incident to the root-vertex. By standard prop-
erties of group operations it holds that

α(m)κ(m) = d(m).

Thus

lim
n→∞

P(Uv
r (mn, vn) = mv) =

2

d(m)µv
P(Uv

r (m∞) = mv)(5)

We are now going to show that this implies distributional convergence for the
neighbourhood Uv

r (mn, vn). For any vertex rooted planar map m̂ let us set

pm̂,n := P(Uv
r (mn, vn) = m̂)

and

pm̂ :=
2

d(m̂)µv
P(Uv

r (m∞) = m̂).
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In order to deduce weak convergence of Uv
r (mn, vn) it remains to verify∑

m̂

pm̂ = 1(6)

with the sum index ranging over all vertex-rooted planar maps m̂. To this end, let
Xn(m̂) denote the number of vertices v in mn with Uv

r (mn, v) = m̂. Let Yn(m̂)
denote the number of corners in mn whose vertex-rooted r-neighbourhood equals m̂.
For any fixed K ≥ 1 it follows from Inequality (4) that

∑
k≥K

∑
m̂,e(m̂)=k

pm̂,n = E

∑
k≥K

∑
m̂,e(m̂)=k

Xn(m̂)

v(mn)


≤ o(1) + CE

∑
k≥K

∑
m̂,e(m̂)=k

Yn(m̂)

2n


= o(1) + CP(e(Ur(mn)) ≥ K)

for some bound C > 0 that does not depend on n (or k or m̂) and an o(1)
term that converges to zero uniformly in k and m̂ as n becomes large. Since

U c
r (mn)

d−→U c
r (m∞) it follows that for any ε > 0 we may select K ≥ 1 large

enough such that ∑
k≥K

∑
m̂,e(m̂)=k

pm̂,n < ε

for large enough n. This entails∑
k<K

∑
m̂,e(m̂)=k

pm̂ ≥ 1− ε.

We have thus proved Equation (6). Hence there is a random vertex-rooted planar
map Vr with distribution P(Vr = m̂) = pm̂ such that

Uv
r (mn, vn)

d−→Vr(7)

as n becomes large. The family (Vr)r≥1 forms a projective system with respect to
the projections Uv

r (·), since for any 1 ≤ s ≤ r ≤ t it holds that

Uv
s (Uv

r (Vt))
d
=Uv

s (Vt).

It follows by a general result [4, Ch. 9, §4, No. 3, Theorem 2] that there is a random
infinite planar map m∗∞ such that

Uv
r (m∗∞)

d
=Vr

for all r ≥ 1. By (7) it follows that m∗∞ is the distributional limit of the ran-
dom planar map mn rerooted at a uniformly selected vertex, and the convergence
preserves the embedding in the plane. �

We are now ready to prove our main result.

Proof of Theorem 1.1. Let m be a fixed corner-rooted version of the plane map m̂
such that the plane representation of m that has the unbounded face to the right of
the root-edge coincides with m̂. We say m occurs as a pattern at a corner c of mn

if m may be embedded into m in a face-preserving way such that the root-corner
of m gets mapped to the corner c.
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If we count the number Zn of corners of mn where m appears as a pattern, then
we over-count the occurrences of the unrooted plane map m̂. If β(m̂) denotes the
number of ways that m̂ may be rooted at an half-edge of its boundary, then

s(m̂,mn) = Zn/β(m̂).

Lemma 2.2 together with the convergence of mn towards the UIPM m∞ implies
that E[Zn/2n] converges to the probability q(m̂) that m̂ occurs as a pattern at the
root of m∞. Hence

E
[
s(m̂,mn)

n

]
→ 2q(m̂)

β(m̂)
.

�

3. Open Problems

In Theorem 2.1 we have shown that there is a Benjamini–Schramm limit m∗∞
of random planar maps. However, this limit graph has no explicit description. In
particular it is not clear how the probability distribution of some (simple) param-
eters of m∗∞ can be computed. For example, it would be nice to have a proper
representation of the constant γ(m̂) in Theorem 1.1.

Problem 3.1. Describe the Benjamini–Schramm limit m∗∞ of random planar maps
in a proper (explicit) way.

Another open question is to make the pattern count asymptotics of Theorem 1.1
more precise. Actually a central limit theorem is expected (as given, for example,
in [10] for random quadrangulations and 2-connected triangulations or in [9] for
vertices of degree k in random maps or 2-connected maps).

Problem 3.2. Does the number of occurrences s(m̂,mn) of a pattern m̂ in a ran-
dom planar map mn satisfy a central limit theorem (similarly to Lemma 4.1)?

4. Appendix

We have used in the proof of Theorem 2.1 that v(mn)/n is close to constant with
high probability. For the case of uniform planar maps we make this more precise.
The following central limit theorem seems to be classical in the theory of random
planar maps, however, the only explicit reference we found is a lecture by Marc
Noy at the Alea-meeting 2010 in Luminy.2 We give a proof that is based on the
Quadratic Method.

Lemma 4.1. Let mn denote the uniform planar map. The number of vertices
v(mn) satisfies a central limit of the form

v(mn)− n/2√
25n/32

d−→N (0, 1)

with E [v(mn)] = n
2 + 1 and Var[mn] = 25n/32 +O(1).

Proof. Let M(z, x, u) denote the generating function of rooted planar maps, where
the variable z corresponds to the number of edges, x to the number of vertices and

2https://www-apr.lip6.fr/alea2010/
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u to the root face valency. Then by the usual combinatorial decomposition of maps
we have

M(z, x, u) = x+ zu2M(z, x, u)2 + zu
M(z, x, 1)− uM(z, x, u)

1− u
and by the quadratic method we can express M(z, x, 1) as a rational function in
u = u(z, x) that is given by the solution of the algebraic equation

4u4xz+u4z2−2u4z−8u3xz+4u3z+4u2xz+2u3−2u2z−7u2+8u−3 = 0, u(0, 1) = 1,

from which we obtain a singular expansion of the form

u(z, x) = u0(x)+u1(x)

√
1− z

ρ(x)
+u2(x)

(
1− z

ρ(x)

)
+u3(x)

(
1− z

ρ(x)

)3/2

+· · · ,

where the functions uj(x) are analytic at x = 1, satisfy u0(1) = 6
5 , u1(1) = − 6

25 ,

u2(1) = 6
125 , u3(1) = − 6

625 , and the function ρ(x) satisfies the equation

3072x3z4 − 4608x2z4 − 1536x2z3 + 4608xz4 + 1536xz3

− 1536z4 + 192xz2 + 768z3 − 96z2 = 0

with ρ(1) = 1
12 . From this it follows that

M(z, x, 1) =
1− (4xz − z2)u4 − (−8x+ 2)zu3 − (−1 + (4x− 2)z)u2 − 2u

4(1− u)u3z2

(with u = u(z, x)) has a local representation of the form

M(z, x, 1) = b0(x) + b2(x)

(
1− z

ρ(x)

)
+ b3(x)

(
1− z

ρ(x)

)3/2

+ · · · ,

where the functions bj(x) are analytic at x = 1 and satisfy b0(1) = 4
3 , b2(1) = − 4

3 ,

b3(1) = 8
3 .

At this stage we can apply standard tools (see [8, Chapter 2]) to obtain a central

limit theorem for v(mn) of the form (v(mn)− µn)/
√
σ2n

d−→N (0, 1), where

µ = −ρ
′(1)

ρ(1)
, σ2 = µ+ µ2 − ρ′′(1)

ρ(1)
.

Since ρ′(1) = − 1
24 and ρ′′(1) = − 1

384 we immediately obtain µ = 1
2 and σ2 = 25

32 .

We also have E [v(mn)] = µn + O(1) and Var[mn] = σ2n + O(1). In this special
case Euler’s relation and duality can be used to obtain (the even more precise
representation) E [v(mn)] = n/2 + 1. �
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