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Abstract

We study the number of divisors in residue classes modulo m and prove, for example,
that there is an exact equidistribution if and only if m = 2kp1p2 . . . ps where k and s
are non-negative integers and pj are distinct Fermat primes. We also provide a general
lower bound for the proportion of divisiors in the residue class 1 mod m. Finally we present
lower bounds for the number of representations by a binary quadratic form with a negative
discriminant.

1 Introduction

Let m > 1 be a �xed natural number and r ∈ Z relatively prime to m. Our goal is to
compare the behaviour of the two arithmetical functions

Dm,α,r(n) =
∑

d|n,d≡r (mod m)

dα

and �the total divisor function�
Dm,α(n) =

∑
d|n

dα

where α is a real parameter and we make the convention that functions Dm,·(n) are de�ned
only for n relatively prime to m.

We shall show that for most natural n (coprime to m) the approximation

Dm,α,r(n) ≈ 1

ϕ(m)
Dm,α(n)

holds independently on r (which are also coprime to m). Moreover we will characterize
those n, for which the above approximations can be replaced by exact equalities. This is
only possible for α = 0. In such case we say that divisors of n are equidistributed mod

m. The set of all such n will be denoted by ED(m). It turn out that for any m the set
ED(m) is big. It contains a complete in�nite arithmetic progression and intersects every
arithmetic progression too - so ED(m) is a dense open set in Furstenberg's topology [5].
We characterize as well those moduli m for which the set ED(m) is very big, in the sense
that it contains almost all natural numbers that are coprime to m. These are precisely
those m for which the regular m-gon can be constructed by compass and rule. Moreover
we prove that for any natural number n (coprime to m) at least a positive proportion of
its divisors ly in the residue class 1 mod m.

1This work was supported by the Austrian Science Foundation, grant Nr. M 00233�MAT.
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In the last part of the paper similar theorems are provided for the number of represen-
tations of a given natural number n by a positive de�nite binary quadratic form.

Results concerning upper bounds for the number of divisors in residue classes are
obtained in [4, 7, 2].

2 Divisors

Theorem 1. Let m be a positive integer. Then for almost all natural numbers n (coprime

to m) the following estimate holds∣∣∣∣Dm,α,r(n)

Dm,α(n)
− 1

ϕ(m)

∣∣∣∣ < a(m)

(log n)b(m)
(1)

with positive constants a(m), b(m) depending only on m.

Proof. With the help of Dirichlet characters we have

Dm,α,r(n) =
1

ϕ(m)

∑
χ

χ(r)
∑
d|n

χ(d)dα (2)

and consequently we obtain∣∣∣∣Dm,α,r(n)

Dm,α(n)
− 1

ϕ(m)

∣∣∣∣ ≤ 1

ϕ(m)

∑
χ 6=χ0

∏
pk‖n

∣∣∣∣1 + χ(p)pα + . . .+ χ(pk)pαk

1 + pα + . . .+ pαk

∣∣∣∣
There exists a positive constant c(m) < 1 depending only on m such that if χ(p) 6= 1 then∣∣∣∣1 + χ(p)pα + . . .+ χ(pk)pαk

1 + pα + . . .+ pαk

∣∣∣∣ ≤ c(m).

By Hardy and Ramanujan [6] the function log log n is a normal order of the function ω(n),
hence for any c ∈ (0, 1) almost all natural numbers n relatively prime to m have at least
c log logn distinct prime factors. This directly leads to (1).

Theorem 2. Let m be a positive integer. For n ∈ N (coprime to m) the equality

Dm,α,r(n) =
1

ϕ(m)
Dm,α(n) (3)

holds for any r relatively prime to m if and only if α = 0 and for any non-principal

Dirichlet's character χ there exists a prime p with pk‖n such that

χ(p) 6= 1 and χ(p)k+1 = 1

Proof. In virtue of the explicit formula (2) and the independence of Dirichlet characters
the proposed equidistribution property is equivalent to the conditions∑

d|n

χ(d)dα = 0 for χ 6= χ0

and further to ∏
pk‖n

(1 + χ(p)pα + . . .+ χ(pk)pkα) = 0 (χ 6= χ0)
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Hence for any non-principal χ there exists a prime p with pk‖n such that

χ(p) 6= 1 and (χ(p)pα)k+1 = 1

and the assertion follows.
Remark. For m = 4 and α = 0,α = 1 the Theorem 2 has an interesting interpretation in
the theory of quadratic forms. A classical result states that the number of representations
of an odd natural number n as the sum of two squares equals to

4(D4,0,1(n)−D4,0,3(n)).

The condition given in Theorem 2 states now that n is not representable as the sum of
two squares if and only if there exists p ≡ 3 mod 4 such that pk‖n with odd k.

On the other hand the number of representations of an odd n as the sum of four squares
is equal by Jacobi to

8(D4,1,1(n)−D4,1,3(n))

and again Theorem 2 is consistent with Lagrange theorem stating that the above number
is always positive!

We recall that ED(m) is the set of positive integers n (coprime to m) such that
Dm,0,r(n) = 1

ϕ(m)Dm,0(n) holds for all r (coprime to m).

Theorem 3. For any m > 1 the set ED(m) contains an in�nite arithmetic progression,

whereas its complement N \ ED(m) does not contain an in�nite progression.

Proof. For any non-principal χ choose pχ a prime such that χ(pχ) 6= 1. Now choose
kχ ∈ N, such that χ(pχ)kχ+1 = 1. By Theorem 2 the arithmetic progression∏

χ 6=χ0

p
kχ
χ + t

∏
χ 6=χ0

p
kχ+1
χ

meets our requirements. To prove the second part let us �rst remark that if n1 ∈ ED(m)
and gcd(n1, n2) = 1 than n1n2 ∈ ED(m) as well. Consider an arithmetic progression
b + ta and choose pχ, kχ as above but additionally pχ cannot divide a. The non-empty
subsequence of b+ ta determined by the congruence

at+ b ≡
∏
χ 6=χ0

p
kχ
χ mod

∏
χ 6=χ0

p
kχ+1
χ

consists completely of elements of ED(m). So we have proved even a stronger assertion.

Theorem 4. The set ED(m) consists of almost all natural numbers (coprime to m) if

and only if

m = 2kp1p2 . . . ps,

where k and s are non-negative integers and pj are distinct Fermat primes.

Proof. First let us assume that almost all natural numbers (coprime to m) are in ED(m).
Choose n ∈ ED(m) squarefree. Hence ϕ(m)|Dm,0(n) = 2ω(n), where ω(n) stands for the
number of distinct primes dividing n. Of course implies that m must be of the form stated
in the theorem.

Conversely, assume thatm is of this form. It implies that any non-principal character χ
attains the value −1. Let us denote by P (χ) the set of primes p with property χ(p) = −1.
This set is a union of some arithmetic progressions with common di�erence m intersected
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with the set of all primes. For a given non-principal χ let Mχ(x) denotes the number of
n ≤ x such that every p ∈ P (χ) appears of even order in n, that is, p‖n implies 2|k. By
Dirichlet's prime number theorem and simple sieve-reasoning it follows easily that

Mχ(x) = O

(
x

(log x)
sχ
ϕ(m)

)

where sχ is the number of arithmetical progressions determining P (χ) (see e.g. [9], p.147,
ex.4). If ED(m,x) denotes the number of n ∈ ED(m) with n ≤ x then by Theorem 2

ED(m,x) ≥ x−
∑
χ 6=χ0

Mχ(x)

and this completes the proof.

Before we formulate the last theorem concerning divisors recall some useful de�nition.
For any �nite Abelian group G we de�ne D(G), the Davenport constant of G, as the
smallest natural number k such that from any sequence g1, . . . , gk ∈ G one can extract a
subsequence gi1 , . . . , git satisfying

gi1 · . . . · git = e.

For simplicity let G(m) denote the multiplicative group of reduced residue classes
mod m.

Theorem 5. For any natural number n, relatively prime to m we have

Dm,0,1(n) ≥ 1

2D(G(m))−1
Dm,0(n)

Moreover this estimate is optimal.

Proof. The inequality is a direct consequence of the following general theorem of Zakar-
czemny, proved in his doctoral thesis [11]:

Zakarczemny's Theorem. Let G be a �nite Abelian group and g1, . . . , gm the sequence of

its elements. For any sequence of positive integers (b1, . . . , bm) the number N of sequences

(e1, . . . , em) ful�lling

ge11 · . . . · g
em
m = e

and

0 ≤ ej ≤ bj , for 1 ≤ j ≤ m,

sati�es the inequality

N ≥ 21−D(G)
m∏
j=1

(bj + 1).

which is optimal. (A list of references to earlier partial results from many authors can be
also found in [11].)
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3 Representations by binary quadratic forms

Consider the equation
F (x, y) = n, (4)

where F (x, y) = ax2 + bxy + cy2 with a, b, c ∈ Z satisfying a > 0, ∆ = b2 − 4ac < 0
and gcd(a, b, c) = 1. Although we are interested only in the form F we shall consider for
any negative integer ∆ ≡ 0, 1 (mod 4) the whole form class group C(∆) of all equivalence
classes of integral binary primitive quadratic forms with discriminant ∆. The group struc-
ture in C(∆) is given by Gauss composition of classes, see [3]. The symbol C2(∆) denotes
the subgroup of squares in C(∆). By Gauss theory C2(∆) coincides with the main-genus
subgroup of C(∆) but we will not use this important theorem. From now on assume
that there are x0, y0 ∈ Z satisfying gcd(x0, y0) = 1 and F (x0, y0) = n and let us ask for
the number NF (n) of all x, y ∈ Z satisfying (4). We can also ask for the number N∗F (n)
of x, y ∈ Z satisfying (4) and additionally (x, y) = 1. We adopt here and in the sequel
the following convention: we identify (x, y) and (−x,−y) in the de�nitions of NF (n) and
N∗F (n). First we prove a lower bound for N∗F (n).

Theorem 6. Let F be a binary quadratic form with coprime coe�cients and negative

discriminant ∆ and let n be a positive integer that is represented by F by coprime integers

and satis�es gcd(n,∆) = 1. Then we have

N∗F (n) ≥ 21−D(C2(∆)) · 2ω(n). (5)

where ω(n) stands for the number of distinct primes dividing n.

Proof. In order to prove (5) we need the correspondence between the quadratic forms and
quadratic orders ([1, 3, 10]) and reformulate the problem as follows. Let K be a class of
proper ideals of the order O∆ corresponding to the class of the form F � the class K is an
element of the ideal-class-group C(O∆). Further, let S(K,n) denote the set of all integral
ideals of O∆) lying in the class K, having no rational factor but norm n. By assumption
S(K,n) 6= ∅ so let us �x some I ∈ S(K,n). Let

I = pk11 · . . . · p
km
m

be the canonical decomposition of I into prime ideals of O∆. All pj are pairwise distinct,
not conjugate and p̄j 6= pj . Now let J ∈ S(K,n) be di�erent from I. We have

J =
∏
j∈A

p̄
kj
j

∏
j 6∈A

p
kj
j (6)

and the property that ∏
j∈A

(p
kj
j )2 (7)

is principal, where ∅ 6= A ⊆ {1, . . . ,m} is uniquely determined by J . On the other hand,
any A with the propery that the ideal (7) is principal produces by the formula (6) an ideal
J in S(K,n). In virtue of this bijection the proof of (5) is �nished by applying a very
special case of the above theorem of Zakarczemny for b1 = . . . = bm = 1 (by the way this
is a classical theorem of J.E. Olson and has been proved in [8]).

The corresponding result concerning arbitrary representations is the following one.
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Theorem 7. Let F be a binary quadratic form with coprime coe�cients and negative

discriminant ∆ and let n be a positive integer that is represented by F by coprime integers

and satis�es gcd(n,∆) = 1. Then we have

NF (n) ≥ 21−D(C2(∆))τ(n) (8)

where τ(n) stands for the number of all positive divisors of n.

Proof. For (x, y) ∈ Z2 satisfying (4) we put x′ = x/D, y′ = y/D with D = gcd(x, y).
Then

F (x′, y′) =
n

D2
and gcd(x′, y′) = 1.

In this way we can see that

NF (n) =
∑
d|n

�(d)N∗F (
n

d
),

where � is the characteristic function of integral squares

�(d) =

{
1 if d = D2

0 in other cases.

By (5) we infer

NF (n) ≥ 21−D(C2(∆))
∑
d|n

�(d)2ω(n/d).

The sum on the right-hand side is a Dirichlet convolution of multiplicative functions and
therefore it is multiplicative, too. We verify easily that for prime powers it coincides with
τ , hence we get (8).
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