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Abstract

We study the number of divisors in residue classes modulo m and prove, for example,
that there is an exact equidistribution if and only if m = 2*pips...ps where k and s
are non-negative integers and p; are distinct Fermat primes. We also provide a general
lower bound for the proportion of divisiors in the residue class 1 mod m. Finally we present
lower bounds for the number of representations by a binary quadratic form with a negative
discriminant.

1 Introduction

Let m > 1 be a fixed natural number and r € Z relatively prime to m. Our goal is to
compare the behaviour of the two arithmetical functions

Dpor(n) = > d®

dln,d=r (mod m)

and “the total divisor function”

Dma(n) =Y d
din

where « is a real parameter and we make the convention that functions D,, .(n) are defined
only for n relatively prime to m.
We shall show that for most natural n (coprime to m) the approximation

holds independently on r (which are also coprime to m). Moreover we will characterize
those n, for which the above approximations can be replaced by exact equalities. This is
only possible for o = 0. In such case we say that divisors of n are equidistributed mod
m. The set of all such n will be denoted by ED(m). It turn out that for any m the set
ED(m) is big. It contains a complete infinite arithmetic progression and intersects every
arithmetic progression too - so ED(m) is a dense open set in Furstenberg’s topology [5].
We characterize as well those moduli m for which the set ED(m) is very big, in the sense
that it contains almost all natural numbers that are coprime to m. These are precisely
those m for which the regular m-gon can be constructed by compass and rule. Moreover
we prove that for any natural number n (coprime to m) at least a positive proportion of
its divisors ly in the residue class 1 mod m.
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In the last part of the paper similar theorems are provided for the number of represen-
tations of a given natural number n by a positive definite binary quadratic form.

Results concerning upper bounds for the number of divisors in residue classes are
obtained in [4, 7, 2].

2 Divisors

Theorem 1. Let m be a positive integer. Then for almost all natural numbers n (coprime
to m) the following estimate holds

a(m)
Dy a(n) sO(m)' = (log n)b(™)

with positive constants a(m),b(m) depending only on m.

(1)

Proof. With the help of Dirichlet characters we have
Dinar(n Zx Zx @

and consequently we obtain

L+ x(p)p™ + .-+ x(0")p**
1+p + ...+ pok

T sl < o = 11

X#Xo p*||n

There exists a positive constant ¢(m) < 1 depending only on m such that if x(p) # 1 then

1+ x(p)p* + ... + x(p*)p*
14 p®+ ...+ pok

< ¢(m).

By Hardy and Ramanujan [6] the function loglogn is a normal order of the function w(n),
hence for any ¢ € (0,1) almost all natural numbers n relatively prime to m have at least
cloglogn distinct prime factors. This directly leads to (1).

Theorem 2. Let m be a positive integer. For n € N (coprime to m) the equality

1

WDm,a(n) (3)

Dm7a7r (n) =

holds for any r relatively prime to m if and only if « = 0 and for any non-principal
Dirichlet’s character x there exists a prime p with pan such that

x(p) #1 and x(p) =1

Proof. In virtue of the explicit formula (2) and the independence of Dirichlet characters
the proposed equidistribution property is equivalent to the conditions

D ox(d)d* =0 for x#xo

dn

and further to
[Ta+xEp*+.. +x@ )P =0 (x#x0)



Hence for any non-principal x there exists a prime p with p*||n such that

x(p) #1  and (x(p)p™)* ' =1

and the assertion follows.

Remark. For m =4 and o« = 0, = 1 the Theorem 2 has an interesting interpretation in
the theory of quadratic forms. A classical result states that the number of representations
of an odd natural number n as the sum of two squares equals to

4(D47071(n) — D47073 (77,))

The condition given in Theorem 2 states now that n is not representable as the sum of
two squares if and only if there exists p = 3 mod 4 such that p¥||n with odd k.

On the other hand the number of representations of an odd n as the sum of four squares
is equal by Jacobi to

8(Da1,1(n) — Dy13(n))

and again Theorem 2 is consistent with Lagrange theorem stating that the above number
is always positive!

We recall that ED(m) is the set of positive integers n (coprime to m) such that
Dypor(n) = ﬁDm,o(n) holds for all r (coprime to m).

Theorem 3. For any m > 1 the set ED(m) contains an infinite arithmetic progression,
whereas its complement N\ ED(m) does not contain an infinite progression.

Proof. For any non-principal x choose p, a prime such that x(p,) # 1. Now choose
ky € N, such that x(p,)**! = 1. By Theorem 2 the arithmetic progression

IT o +¢ [T o

X7X0 XFX0

meets our requirements. To prove the second part let us first remark that if n; € ED(m)
and gcd(ni,n2) = 1 than niny € ED(m) as well. Consider an arithmetic progression
b+ ta and choose p,, ky as above but additionally p, cannot divide a. The non-empty
subsequence of b+ ta determined by the congruence

at +b = H pf?‘ mod H pixﬂ
X7X0 X7X0

consists completely of elements of ED(m). So we have proved even a stronger assertion.

Theorem 4. The set ED(m) consists of almost all natural numbers (coprime to m) if
and only if

m =2 pipy ... ps,

where k and s are non-negative integers and p; are distinct Fermat primes.

Proof. First let us assume that almost all natural numbers (coprime to m) are in ED(m).
Choose n € ED(m) squarefree. Hence @(m)|Dy,o(n) = 29" where w(n) stands for the
number of distinct primes dividing n. Of course implies that m must be of the form stated
in the theorem.

Conversely, assume that m is of this form. It implies that any non-principal character y
attains the value —1. Let us denote by P(x) the set of primes p with property x(p) = —1.
This set is a union of some arithmetic progressions with common difference m intersected



with the set of all primes. For a given non-principal x let M, (z) denotes the number of
n < x such that every p € P(x) appears of even order in n, that is, p||n implies 2|k. By
Dirichlet’s prime number theorem and simple sieve-reasoning it follows easily that

Mx(x) =0 <:CX>
(log x) #(m)

where s, is the number of arithmetical progressions determining P(x) (see e.g. [9], p.147,
ex.4). If ED(m,x) denotes the number of n € ED(m) with n < x then by Theorem 2

ED(m,z) > x — Z M, (x)
X#X0
and this completes the proof.

Before we formulate the last theorem concerning divisors recall some useful definition.
For any finite Abelian group G we define D(G), the Davenport constant of G, as the
smallest natural number k such that from any sequence g1,...,gx € G one can extract a
subsequence g¢;,, ..., g;, satisfying

9iy - Giy = €.

For simplicity let G(m) denote the multiplicative group of reduced residue classes
mod m.

Theorem 5. For any natural number n, relatively prime to m we have

1
Dm,O,l(n) > WDWO(”)

Moreover this estimate is optimal.

Proof. The inequality is a direct consequence of the following general theorem of Zakar-
czemny, proved in his doctoral thesis [11]:

Zakarczemny’s Theorem. Let G be a finite Abelian group and g1, . .., gm the sequence of
its elements. For any sequence of positive integers (by, ..., by) the number N of sequences

(e1,...,em) fulfilling
gi' g =e

and
0<e; <bj, for1<j<m,

satifies the inequality
m
N =2 PO T +1).
j=1

which is optimal. (A list of references to earlier partial results from many authors can be
also found in [11].)



3 Representations by binary quadratic forms

Consider the equation
F(x,y) =n, (4)

where F(x,y) = az? + bry + cy? with a,b, ¢ € Z satisfying a > 0, A = b? — dac < 0
and ged(a,b,c) = 1. Although we are interested only in the form F' we shall consider for
any negative integer A = 0,1 (mod 4) the whole form class group C(A) of all equivalence
classes of integral binary primitive quadratic forms with discriminant A. The group struc-
ture in C(A) is given by Gauss composition of classes, see [3]. The symbol C?(A) denotes
the subgroup of squares in C(A). By Gauss theory C2(A) coincides with the main-genus
subgroup of C(A) but we will not use this important theorem. From now on assume
that there are xg,yo € Z satistying ged(zo,yo) = 1 and F(xg,yp) = n and let us ask for
the number Np(n) of all z,y € Z satisfying (4). We can also ask for the number Nj.(n)
of z,y € 7Z satisfying (4) and additionally (z,y) = 1. We adopt here and in the sequel
the following convention: we identify (z,y) and (—z, —y) in the definitions of Ng(n) and
N} (n). First we prove a lower bound for Nj.(n).

Theorem 6. Let I be a binary quadratic form with coprime coefficients and negative
discriminant A and let n be a positive integer that is represented by ' by coprime integers
and satisfies ged(n, A) = 1. Then we have

N (n) > 21 D(CA) . gu(n), (5)
where w(n) stands for the number of distinct primes dividing n.

Proof. In order to prove (5) we need the correspondence between the quadratic forms and
quadratic orders ([1, 3, 10]) and reformulate the problem as follows. Let K be a class of
proper ideals of the order Oa corresponding to the class of the form F' — the class K is an
element of the ideal-class-group C'(Oa). Further, let S(K,n) denote the set of all integral
ideals of Oa) lying in the class K, having no rational factor but norm n. By assumption
S(K,n) # 0 so let us fix some I € S(K,n). Let

I=pht. . pkm

be the canonical decomposition of I into prime ideals of Oa. All p; are pairwise distinct,
not conjugate and p; # p;. Now let J € S(K,n) be different from I. We have

7 =1Ley 1] #7 (©
jeA  j¢A

and the property that
k;

[Tk)? (7)

jeEA
is principal, where ) # A C {1,...,m} is uniquely determined by J. On the other hand,
any A with the propery that the ideal (7) is principal produces by the formula (6) an ideal
J in S(K,n). In virtue of this bijection the proof of (5) is finished by applying a very
special case of the above theorem of Zakarczemny for by = ... = b,, = 1 (by the way this
is a classical theorem of J.E. Olson and has been proved in [8]).

The corresponding result concerning arbitrary representations is the following one.



Theorem 7. Let I’ be a binary quadratic form with coprime coefficients and negative
discriminant A and let n be a positive integer that is represented by F' by coprime integers
and satisfies ged(n, A) = 1. Then we have

Ne(n) > 21 P A r(p) 8)
where T(n) stands for the number of all positive divisors of n.

Proof. For (z,y) € Z? satisfying (4) we put 2’ = z/D, 3y = y/D with D = ged(x,y).
Then n
F(' ) = D2 and ged(2’,y) = 1.
In this way we can see that
o N
Np(n) = ZD(d)NF(E)a
dn

where [ is the characteristic function of integral squares

1 if d=D?
D(d) = { 0 in other cases.

By (5) we infer
NF(TL) > 21—D(CQ(A)) Z D(d)2w(n/d).
dln

The sum on the right-hand side is a Dirichlet convolution of multiplicative functions and
therefore it is multiplicative, too. We verify easily that for prime powers it coincides with
T, hence we get (8).
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