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° Types of Concentration

° Chromatic Number of Random Graphs

° Travelling Salesman Problem

° Longest Increasing Subsequence in Random Permutations
° Diameter and Maximum Degree in Random Graphs

° Height and Maximum Degree in Random Trees

° Height of Scale-Free Trees



Outline of the Talk

° Martingales — concentration inequality

° Talagrand’s convex distance — concentration inequality
° Poisson transform, analytic methods

° Martingales, moment methods, ...

° Generating functions, analytic methods

° Generating functions, analytic methods



Conclusions

e Concentration (almost) always appears.

e Smaller extremal parameters are more concentrated than larger
ones.

e Concentration is easy to prove
(compared to the precise position of the mean).
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Types of Concentration

X5 ... non-negative random variable with |E X;, — oo

Concentration:

n

nILmooP{a(n) ZE}:O

for all e > 0 and some sequence a(n) with a(n) — oo

—1

Equivalently X, /a(n) 4, 51, usually [a(n) = E X, |.




Types of Concentration

Xy ... non-negative random variable with |E X;, — oo

Type 1: No Concentration:

Xn_ A
E X,

01

Typically:

Xn d
E X,

>»Y ... not concentrated at 1

and EX2 ~ ¢- (E Xy)? for some ¢ > 1.
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Types of Concentration

Type 2: Weak Concentration:

For all e > 0 there exists K > 0 such that

{‘Xn —a(n)
b(n)

with a(n) — oo, b(n) — oo, and b(n) = o(a(n))

limsup P
n—oo

ZK}ge.

Usually one takes a(n) = E X, and b(n) = (V’Xn)l/2

If EX,QL ~ (EXn)2 the Chebyshev’s inequality implies weak concentra-
tion.

Typically
Xn—EXn d .

v/ Var X,




Types of Concentration

Type 2: Weak Concentration:

E.g. Central Limit Theorem
Xn—E X,
v/ Var X,

. N(0,1).




Types of Concentration

Type 3: Strong Concentration:

For all e > 0 there exists K > 0 with

limsup P{|Xn,—a(n)|> K} <e

n—aoeo

for some sequence a(n) with a(n) — .

Usually a(n) = E X, or a(n) = median of X,, and one has bounded
centralized moments:

E | X, —EXn|?=0(1) (d>1).




Types of Concentration

Type 3: Strong Concentration:

Typically: travelling wave F(x)

P{Xn < k} = F(k — m(n)) + o(1)

(m(n) is close to the median of X,)




Types of Concentration

Type 4: Very Strong Concentration:

Concentration on two (or finitely many values):

P{m(n) < X, <m(n)+ L} =1+ 0o(1)

with m(n) — oo and some fixed L



Chromatic Number of Random Graphs

Definition
Let n be a positive integer and p a real number with 0 < p < 1.

The random graph G(n,p) is a probability space over the set of graphs
on the vertex set {1,2,...,n} determined by

P{{i,j} € G} =p

for all possible (undirected) edges {i,7} with 1 < i < j <n with these
events mutually independent.
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Chromatic Number of Random Graphs
Definition

A reqgular k-coloring of the vertices of a graph GG is a coloring of the
vertices with k colors such that adjacent vertices have different colors.

The chromatic number x(G) of a graph G is the smallest number k
such that there exists a regular k-coloring of the vertices of GG

Notation: We use the notion almost always as an abbreviation for the
property that the probability that a certain condition holds converges
to 1 as the size of the problem goes to the infinity.



Chromatic Number of Random Graphs

Chromatic Number = 3



Chromatic Number of Random Graphs

Theorem (Bollobas, Frieze, Grimmet, McDiarmid)

(i) If Co/n <p=rp(n) < (logn)~" (for a proper constant Cq > 0) then
almost always

np
2log(np) — 2loglog(np) + 1 < x(Gnp) = 2log(np) —

np
40 loglog(np)

(i) If (logn)=2 < p = p(n) < ¢ (for some arbitrary ¢ < 1) then almost
always

n n

< x(G(n, < ,
2logyn — logylogyn — x(G(n,p)) < logyn — 6109y logyn

where b=1/(1 — p).

(iii) If p = p(n) > n=° for every § > 0 (and sufficiently large n) but
p = p(n) < c¢ (for some arbitrary ¢ < 1) then almost always

n
x(G(n,p)) = 2logyn — 2logylogyn + O(1/p)




Chromatic Number of Random Graphs

Theorem (tuczak, Alon and Krivelevich 1997)

Fix some € > 0. For every sequence p = p(n) there exists a function
h(n) such that almost always

(i) if p> n_%_g then x(G(n,p)) ~ h(n), and

(ii) if p < n 3¢ then [A(n) < x(G(n,p)) < h(n) + 1|




Chromatic Number of Random Graphs

Theorem (Shamir and Spencer 1987)

P{|x(G(n,p)) — E (x(G(n,p)))| > \Wn — 1} < 2 */2

1
Remark. This theorem is weaker than the previous one (forp <n 27°)
but the basis for further considerations.



Chromatic Number of Random Graphs

Definition. A martingale is a sequence of random variables Yo, Y7 ...,Yn
on a probabilty space (2, F,P) with

E(Ye+1|Fk) = Y,

where Fo = {0,Q} C F1 C --- C F, = F is an increasing sequence of
o-fields.

Theorem (Azuma’'s Inequality) Suppose that Yy, Y7 ...,Y, is @ martin-
gale with constant Yy and that

Yit1 — Yzl < cg

for some some constants ¢, (0 < k <n). Then, for every t > 0,

t2
P{lY, —EY,| >t} <2 ex .
{1Yn n| >t} < p( sz 1Ck>




Chromatic Number of Random Graphs

Theorem (McDiarmid’'s Independent Bounded Difference inequality)

Let X4,...,Xy be independent random variables, with X; taking values
in a set €2;.. Suppose that a function f : 27 x --- x 2, — R satisfies
the property that

[f(x1, - smn) — fQyr, - yn)| < o
if (x1,...,2n) and (y1,...,yn) differ only at the k-th coordinate, that is
Tj=1Yj for 7 = k.

Then, the random variable Y = f(X4q,...,Xy) satisfies, for any ¢t > 0,

42
P{lY —EY| >ttt <2exp|— .
d R p( 22?:10%>




Chromatic Number of Random Graphs

Proof

Fi. ... o-field generated by Xq,..., X

Y., =E(f(Xq1,...,Xn)|Fr), k=0,1,...,n is a martingale

| f(x1,...,2n) — f(Y1,---,yn)| < ¢ implies that Y41 — Y| < ¢

Hence, Azuma’s inequality applies.



Chromatic Number of Random Graphs

Vertex Exposure Martingale

A ={{j,k} : 1 <j <k} ... edges that connect k with j < k.

X = (Ijecg(np)) : € € Ag) --- rand. vector of indicators of edges in Ay.
f ... graph theoretical function (for example, the chromatic number).

Fi. ... o-field generated by Xq,..., X

Y. =E(f(G(n,p))|FL)| ... vertex exposure martingale

(It can be interpreted as the conditional expectation of f with partial
information on the first k£ vertices and their internal edges.)



Chromatic Number of Random Graphs

Remark. |f(x1,...,zn) — f(y1,---,yn)| < ¢ wWith zp,y € A says that
f(H1) — f(H)| < ¢ if Hy,Ho are subgraphs of the complete graph
on the vertices {1,2,...,n} such that the symmetric difference of the
edge sets of Hy and Hy is contained in Ay.

If one adds a vertex to a graph then the chromatic number changes
at most by 1. (Here we use the vertex k.)

—> T his condition is satisfied for the chromatic number with ¢, = 1.



Travelling Salesman Problem

X = (X1,X5,...,Xpn) ... n-tuple of random point selected uniformly
and independently in the unit square [0, 1]2

Length of the minimum (travelling salesman) tour:

n

TSP(X) = min 3 |Xr(j) = Xa(+1)]

Theorem (Beardwood, Halton and Hammersley 1959)

TSP(X)
NG

for some (> > 0.

> B>| in prob.

Remark: Up to now there is no known analytic expression for 3>.



Travelling Salesman Problem
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Travelling Salesman Problem

Notation: M(Y) ... median of r.v. Y

Theorem (Rhee and Talagrand)

P{|TSP(X) — M(TSP(X))| > t} < 4e~t°/.

for some constant ¢ > 0.

Corollary. All central moments of TSP(X) are bounded.

(However, the exact location of the mean is unknown.)



Travelling Salesman Problem

Talagrand’s Inequality
€21,$25,...,82,... probability spaces, 2 =1 X --- X 2p,

X = (X1,X9,...,Xp) ... independent random variables, X, taking
values in £2;..

Weighted Hamming distance related to a = (a1, ..., an) with oy, > O:
da(Xa Y) — Z %
Ti7=Y;

Talagrand’s convex distance

dr(x,A) = sup inf do(x,y)
a>0,[la]=1 YEA

between x € 2 and A C S2.



Travelling Salesman Problem

Talagrand’s Inequality

P{X € A} -P{dp(X,A) >t} < e t/4.




Travelling Salesman Problem

Theorem
f ... real valued function on €2 =21 x --- X 2,

For every x € 2 there exists a non-negative unit n-vector a« and a
constant ¢ > 0 such that for all y € 2

f(x) < f(y) +cda(x,y).

Then, for every random n-tuple X = (X1,...,Xy) of independent ran-
dom variables X, taking values in £2; we have

P{|£(X) — M(f(X))| > t} < 4 t/(4c%),




Travelling Salesman Problem

Proof

o ={yec: f(y) <a}

By assumption for every x € €2 there exists a non-negative unit n-vector
a such that for all y € Ay

f(x) < f(y) +cda(x,y) < a+cda(x,y).

By taking the miminum over all y € A, we, thus, get

f(x) <a—+4cda(x,A40) <a-+ cdp(x,Ag).

Hence

Fx)>a+t = dp(x, Ad) > t/e.

— P{A(X) <a} P{AX) 2 a+t} < PX € Aa} - P{dp(x, Ad) > t/c}
< e—tz/(402).



Travelling Salesman Problem

a = M(f(X)), P{f(X) <a} =3

P{f(X) > M(f(X)) + t} < 2 t/(4c),

o= M(f(X)) - t:
P{f(X) < M(f(X)) — t} < 2 17/(4¢),



Travelling Salesman Problem

Lemma

For every x € ([0,1]2)" there exists non-negative unit vector a and a
constant ¢ > 0 such that for all y € ([0, 1]?)"

TSP(x) < TSP(y) + cda(x,y).

(Elementary proof that uses an approximate minumum tour to con-
struct «.)

Remark

This method can be applied to several other problem, for example to
the minimal Steiner tree problem etc.



Longest Increasing Subsequence in R. P.

Sn ... the set of permutations of the numbers {1,2,...,n}
(We assume that every permutation in S, is equally likely.)

For = € S, we say that =n(i1),n(in),..., (i) is an increasing subse-
quence in w if i1 <ip < --- < and w(i1) < w(ip) < - < 7w(ig).

Lp = Lp(w) ...

length of the longest increasing subsequence.

Ulam’s Problem: EL,, ~ 7

Ulam’'s conjecture:

ELTL ~ C\/N

for some constant ¢ > O.



Longest Increasing Subsequence in R. P.
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Longest Increasing Subsequence in R. P.

Erdds Szekeres 1935: ¢ >

N~

Logan and Shepp 1977: ¢ > 2

Vershik and Kerov 1977: |¢c = 2.

(Alternate proofs are due to Aldous and Diaconis, Seppaldinen, and
Johansson).

Frieze 1991: L,, is concentrated
Bollobas and Brightwell 1992, Talagrand 1995: VL, = O(vVN).
Odlyzko and Rains 2000: order of VL,, should be N1/3.

Baik, Deift, and Johansson 1999: complete solution.



Longest Increasing Subsequence in R. P.

Theorem (Baik, Deift, and Johansson 1999)

Let S, be the group of permutations of n numbers with uniform distri-
bution and L, the longest increasing subsequence. Then there exists
a random variable Y such that

Lp—2yn ¢
nl/6

Furthermore, we have convergence of all moments.

Y.

Remark.

The limiting distribution Y is exactly the same at the limiting distribu-
tion of the largest eigenvalue in random Hermitian matrices. However,
it seems that there is no direct connection between these two problems.



Longest Increasing Subsequence in R. P.

Tracy-Widom distribution: F(t) = P{Y <t}

u(x) ... solution of the Painlevé II equation
u' = 2ud + zu, w(z) ~ Ai(z) (as x — o0);

Ai(x) denotes the Airy function.
> 2 2
F(t) = exp (/ (z — £)2u(2) dac),
¢



Longest Increasing Subsequence in R. P.

Proof Method

Basically one determines the asymptotic behaviour of the Poisson
transform

o0 e—)x)\n
or(N) = Y. ——P{Ly < k}
n=0 n:
that can be represented as
e_)‘ k Y 0
_ . w; by
Pp(N) = (QW)kk!/[—ww]kexp 2VA Y 0| IT | — e by --- dby,
’ 1=1 1<5<¥<k

One has to use the theory of orthogonal polynomials on the unit circle,
sophisticated Riemann-Hilbert problem techniques and certain proper-
ties on eigenvalues of random matrices.



Diameter and Maximum Degree in R. Graphs

Definition

The diameter |[diam(G) | of a graph connected G is the largest distance
between two nodes in G. If G is not connected then diam(G) = oo.

The maximum degree of an (undirected) graph G will be denoted by

A(GD)].




Diameter and Maximum Degree in R. Graphs

Diameter = 3



Diameter and Maximum Degree in R. Graphs

Maximum Degree = 3



Diameter and Maximum Degree in R. Graphs

G(n,p)-Random Graphs

Theorem (Burtin, Bollobas)

(i) If (pn)/logn — oo and logn/log(pn) — oo then almost always
logn
log(pn)

diam(G(n,p)) ~

(ii) Let ¢ be a positive constant and p = p(n) and d = d(n), an inte-
ger > 2, be related by pn?~1 = log(n?/c). Further suppose that
(pn)/(logn)3 — co. Then

lim P{diam(G(n,p)) = d} = e~ />

n—aoeo

and
im P{diam(G(n,p)) =d+ 1} =1 —e /2

n—oo



Diameter and Maximum Degree in R. Graphs

Notation

M=) = (" )P (@ - p(n))" .

k = k(n) > np be such that the quantity max{\;, 1/} is minimal.



Diameter and Maximum Degree in R. Graphs

Theorem (Bollobas) Suppose that p = p(n) = o(logn/n).

(i) If 0O < liminf A, <limsup A\ < oo then, as n — oo,

P{A =k(n)} =1— e +0(1)
and
P{A = k(n)} = e M 4 o(1).

(ii) If lim A, = oo then
P{A =k(n)} =14 o(1).

(iii) If lim A, = 0 then
P{A =k(n) —1} =1+ o(1).

(iv) If there is a function D(n) with P{A = D(n)} =140(1) as n —
then p = p(n) = o(logn/n).



Diameter and Maximum Degree in R. Graphs

Theorem (Bollobas, Riordan and Selby)

Suppose that 0 <p < 1 is fixed and ¢ =1 — p.

(i) For every real number y we have

Ioglogn_l_y—Qﬁ)}

P{Agpn+\/2pqnlogn<1— 41091 3109 n

= exp (—e_y> + o(1).

(ii) Almost always we have

n
logn

pgn
8logn

< loglogn

‘A — pn — \/qunlogn + loglogn

(iii) For every real number b there exists ¢(b) such that

P{A < pn + by/npg} = (c(b) + o(1))™.



Diameter and Maximum Degree in R. Graphs

Barabasi-Albert model (for real-world graphs, internet etc.):
e Randomly growing graph

e A new node is joint to an existing one with probability proportional
to the degree.

This definition is not unambigous!!!!



Diameter and Maximum Degree in R. Graphs

Scale-Free Random Graphs

A power law is a distribution Z with tail of the form P{Z =d} ~ c¢-d~*
(for some k£ > 1).

If a (random graph) that has an power law as (asymptotic) degree
distribution is called scale-free.



Diameter and Maximum Degree in R. Graphs

Bollobas and Riordan: G7}, multi-graph

m =1 (G7):
e Initial node 1 with a loop.

e at step k£ we add one node that is connected to 5 < k with propa-
bility
degGl{—l(j)

2k — 1
1

2k —1

if § <k,

if 3 = k.



Diameter and Maximum Degree in R. Graphs

m > 1

e G7, is constructed from G7* by identifying the nodes {({ — 1)m +
L,({—-—1)m+2,...,¢m} (1 <£<n) of G to a new node ¢ (and
all edged within the nodes {(/ —1)m+ 1,4/ —1)m+2,...,¢fm} are
now loops of the new node /)



Diameter and Maximum Degree in R. Graphs
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Diameter and Maximum Degree in R. Graphs
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Diameter and Maximum Degree in R. Graphs
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Diameter and Maximum Degree in R. Graphs

G



Diameter and Maximum Degree in R. Graphs
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Diameter and Maximum Degree in R. Graphs

Scale-Free Random Graphs: G}, is scale free, the tail of the degree
distribution is of the form c-d—3.

Theorem (Bollobas and Riordan 2004)

Suppose that m > 2. Then for every ¢ > 0

997 _ Giam(G™) < (1 + 23" }:1.

lim P{(l—e) <
log logn log logn

n—oo




Height and Maximum Degree of Random Trees

e Galton-Watson Trees
e POlya Trees

e m-Ary Search Trees
e Recursive Trees

e Scale Free Trees

e Tries

e Digital Search Trees



Galton-Watson Trees

¢ ... non-negative integer valued random variable,
Eé=1,0<VEé=02< 0.

(Zk)kzo Galton-Watson branching process: Zg =1,

Zj—1

Zy= ) fj(-k),

j=1

where the (¢*)), ; are iid random variables distributed as ¢.

A Galton-Watson branching processes can be represented by ordered
(finite or infinite) rooted trees T'.

yn = P{|T| =n}, y(z) = X, >19n2", o(t) = E ts:

—  |y(z) = zp(y(x)).




Galton-Watson Trees

Tn ... set of rooted trees T of size |T| = n,
v(T) ... probabilty that T occurs in Galton-Watson branching process:

IS a probability distribution on 7.

02<oo:

d 3/
Yn, ~ n (n =1 mod d),
V2o

where d = gcd{t > 0 : P{{ =<} > O}.




Galton-Watson Trees

Examples.

o(t) =E 6 = (14+1)2/4 =141+ L binary trees with n (internal)
nodes, where each binary tree (of size n) has equal probability.

2
p(t) =Et: =1/(2—t) =5+ L+ +---: planted plane trees, every
rooted planar tree is equally likely.

o(t) = et—1: Cayley trees, every rooted labeled tree is equally likely.

Equivalent description: Simply generated trees (introduced by Meir
and Moon)



Galton-Watson Trees

Cayley Trees: |labeled, rooted, non-planar

root

L @
7\
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Galton-Watson Trees

Cayley Trees: |labeled, rooted, non-planar

root
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Galton-Watson Trees

Theorem (de Bruijn, Knuth and Rice, Flajolet, Gao, Odlyzko and
Richmond, Aldous)

Suppose that the second moment E£2 is finite. Then

1 H,, S 2 max e(t)
Jn " oo<t<l

where (e(t),0 < t < 1) denotes Brownian excursion of duration 1.
Furthermore, if p(t) = Et¢ exists for some ¢ > 1 then we also have
convergence of all moments. For every r > 0 we have, as n — oo,

E(H?) = 2"/26 " r(r — 1) (r/2)¢(r) - n'/2 (1 + O(n—%ﬂ))

where ((s) denotes the Riemann Zeta-function and (r—1){(r) = 1 for
r =1 and n is any positive number.



Galton-Watson Trees

Depth-first search.

Tn([2nt])
cov/n

»e(t) ... Brownian excursion



Galton-Watson Trees

hr ... height of T

yp(z) = ) P{|T|=n, hy < k}a",
n>1

= |Uk+1(2) = zo(yg(z)) | yo(x) = o

H(z) =) EHp-yn-2"= ) (y(z)—yp(x)).

n>1 k>0
A subtle analysis of the above recurrence viels

1
H(x) = — 5 109
o2 1 —

1
4+ K+0 (|1 - x\z—")
for some constant K and every (flxed) n >0

— EHn_@ \F—|—O< +).

(o)




Galton-Watson Trees

Theorem (Meir and Moon, Carr, Goh and Schmutz)

(i) Suppose that ¢, = Pr{¢{ = ¢} > 0 for sufficiently large ¢ > ig and
that p,41/p; — 0 as ¢ — oco. Then

P{|A(Ty) —6(n)| <1} =14 0o(1),
where 6(n) = max{k >0 :P{¢ > k} > 1/n}.

(ii) If ¢(t) = e!~1 then there exists a sequence §(n) that is asymptot-

ically equivalent to §'(n) ~ |O'§%gn such that

P{5'(n) < A(Ty) <8 (n) +1} =1+ 0(1).

(iii) If p(t) = 1/(2 —t) then we have uniformly for all k> 0
P{A(Ty) < k} = exp (—27 (k71092n41)) 4 5(1)



Galton-Watson Trees

—

ya(z) = > P{|T| =n, A(Tn) < d}z".

n>1

va(z) = zog(ya(x)) | with  pq(t) =3 pit".

1<d

—  P{T| =n, A(Ty) < d} ~ Cy(@y(19))"n3/?,

where 7; > 0 is determined by 739)(174) = ¢a(74).

— |P{A(Th) < d} =

Pr{|T| =n, A(Tn) < d}

Pr{|T| = n}

~ V210 Cy (W (ra))™.




Polya Trees

tn ... number of rooted unlabeled (non-planar) trees

t(z) ;= > tpa".

n>1

—  |t(z) = zexp (t(:c) n %t(:ﬂ) n %t(:ﬂ) ¥ ) |




Polya Trees

root

o dH-dt
O O O O

t(z) = ) tna" Ha) = z et @+3tE)+363) 4
n>1



Polya Trees

The height of Pdlya Trees has the same properties as Galton-Watson
trees.

Theorem (Goh and Schmutz)

Let A(T,) denote the maximum out-degree of Pd4lya trees of size n.
Then

P{A(Tn) < k} = exp (—conk_“”) + o(1)

with cg = 3.262..., n =0.3383..., and un = 0.9227... -logn.



Binary Search Trees

Storing Data

4,6,3,51,8,2,7



Binary Search Trees

Storing Data

6,3518,2,7
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Binary Search Trees

Storing Data

351827

@\

&)



Binary Search Trees

Storing Data

518,2,7

(4,
3 ®



Binary Search Trees

Storing Data

18,2,7

v

&)



Binary Search Trees

Storing Data

8,2,7

s

L ©



Binary Search Trees

Storing Data

2,7

VAN



Binary Search Trees

Storing Data

v

VAN



Binary Search Trees

Storing Data



Binary Search Tree

Storing Data

[] ... free position




Binary Search Trees

Probabilistic Model:
Every permutation of {1,2,...,n} is equally likely.

—— probability distribution on binary trees of size n



Binary Search Trees

Height of median of (2t 4+ 1)-variant:
(t = 0: usual binary search trees)

Pr{H, <k+1}= > <ntl>n<ntQ> Pr{H,, <k} -Pr{H,, <k}
n1+no=n—1 (2t+1)

/O\




Binary Search Trees

Generating functions for the median of 2t + 1-variant:

yp(z) = ) Pr{H, <k} 2"
n>0

@D = D (44 (0) )

Y41 (T ()2

with initial conditions yg(x) = 1, 4 (0) = 1.



m-Ary Search Trees

Similarly defined as binary search trees (m = 2).

Here every node can store up to m — 1 items and has (at most) m
subtrees.

There is also a fringe balanced version that corresponds to the median
of 2t + 1-variant in the binary case.



m-Ary Search Trees

V=00U1,Vo...,Vin) ... random vector supported on simplex
A ={(s1,-..,5m) :8; > 0,81 +---+ sm = 1} with density

((t+ 1)m —1)!
(t)ym

(31...8m)t.

f(817"'78m):

Lemma The functional equation

F(z/p1) =E (F(aV1) - F(xVin))

has (up to scaling) a unique solution F(™%)(z) with the properties
1 — p(mt) (z) ~ dizPllogz  (z — 04)
and

lim F0 () = 0.

r—00



m-Ary Search Trees

Let 81 > O be the positive solution of the equation

and set

(m—1)(t4+1)—1

(m(t+1))!

(t+ 1)!

> Iog(5+t+1+j)—log<
j=0
(m—1)(t+1)-1
_ 3 g
= B+t+14g
(m—1)(t+1)—1 ]
pl_exp( EO Bl Fi+ 14

) |

|



m-Ary Search Trees

Theorem (Chauvin and D.)

Let m > 2 and t > 0 be integers. There exist sequences c; with

. C
lim k1l _
k— o0 CL

P1
such that

P{H™Y < kY = FMD (/) + o(1).
Futher there exists n > 0 with

P{H™D —EHY| > 4} = 0(e ™).

In particular we have, as n — oo,

VH™Y = 0(1).



Recursive Trees

Combinatorial Description:

e |labeled rooted tree

e labels are strictly increasing (starting at the root)

e no left-to-right order (non-planar)



E

°



Recursive Trees
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Recursive Trees



Recursive Trees



Recursive Trees



Recursive Trees



Recursive Trees

@G
°

©



E

°



Recursive Trees

Remark



Recursive Trees

Number of Recursive Trees:

number of recusive trees of size n
(n—1)!

Yn

The node with label 57 has exactly 57 — 1 possibilities to be inserted
—yp=1-2---(n—1).



Recursive Trees

Generating Functions:

" " 1
y(iﬁ)—nglyna—ngl;—mg —
2 3
V@) =1+y@) + L L = @

R:O+9+R+}K + .-

R R R RRR

A recursive tree can be interpreted as a root followed by an unordered

sequence of recursive trees. (y'(z) = X y,412"/n!)
n>0



Recursive Trees

Probability Model:

Process of growing trees

e [ he process starts with the root that is labeled with 1.

e At step j a new node (with label j) is attached to any previous
node with probability 1/(j5 — 1).

After n steps every tree (of size n) has equal probability 1/(n — 1)!.



Recursive Trees

@



Recursive Trees



Recursive Trees



Recursive Trees

p=1/2 /@>\
@Epzllz



Recursive Trees



Recursive Trees

T heorem

Let H,, denote the height of random recursive trees of size n.

EH, =elogn + O(\/Iog n (loglog n)).

Furthermore we have (uniformly for all k> 0 as n — 00)
P{Hn < k} = F(n/y;,(1)) + o(1),
where F(y) satisfies the integral equation
Y
yF(y/e!®) = [ F(z/e ) F(y - 2) dz

Moreover, as n — oo,

and there exist n > 0 and ¢ > 0 such that

P{|H, —EHp| >y} <ce ™

for all y > 0.

(1)



Recursive Trees

Theorem (Szymanski, Devroye and Lu, Goh and Schmutz)

Let A(T) denote the maximum out-degree or random recursive trees.
Then we have EA(T,) ~ log>n and the distribution is given by

P{A(T,) < k} = exp (_2—<k—'092n+1>) + o(1).




Plane Oriented Trees

@



Plane Oriented Trees



Plane Oriented Trees



Plane Oriented Trees

p 1/3



Plane Oriented Trees

N
A

N R %@

p=1/3 p= 1/3 p=1/3



Plane Oriented Trees

£ %t d b

Remark



Plane Oriented Trees

Number of Plane Oriented Trees:

yn = number of plane oriented trees of size n
= 1-3:-5.--(2n—-3) = (2n — 3)!!
_ (2n—-2)!
 2n—1(p —1)!

The node with label 5 has exactly 27 — 3 possibilities to be inserted
—yp,=1-3---(2n — 3).



Plane Oriented Trees

Generating Functions:

=Yt =Y o (T = v
S|

n>1 n—1

Y (z) =1+ y(x) + y(a:)Q + y(gj)3 4+ ... =

1 —y(x)

R:O+9+R+A + .

R R R RRR

A plane oriented tree can be interpreted as a root followed by an

ordered sequence of plane oriented trees. (¢/'(z) = X y,4+12"/n!)
n>0



Plane Oriented Trees

Probability Model:

Process of growing trees

e [ he process starts with the root that is labeled with 1.

e At step j a new node (with label j) is attached to any previous
node of outdegree d with probability (d+ 1)/(2j — 3).

After n steps every tree (of size n) has equal probability 1/(2n — 3)!I.



Scale Free Trees

Probability Model:

Process of growing trees

e [ he process starts with the root that is labeled with 1.

e At step j a new node (with label j) is attached to any previous

node of outdegree d with probability proportial to
r > 0).

For d = 1 we get plane oriented trees.

d-+ r

(for some



Scale-Free Trees

@
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Scale-Free Trees

p= c/(2+r)/% p = c/(2+r)

= c/(1+r)



Scale-Free Trees

N
A

N R %@

p=c/(2+r) PpP= c/(1+r) p = c/(2+r)



Scale Free Trees

Generating Functions

yn ... weighted sum of plane oriented trees (according to probability
distribution)

n
y(z) = ) ynx— ... generating function

|
nzl n-

1
1 —y(z))"

Y (z) = (

= Y@ =1-(1-(+ 1)




Scale Free Trees

Degree distribution

Set
Ay = nILmOOP (a random node in a tree of size n has out-degree d)
— i expected number of nodes with out-degree d
o n|—>moo n
Then

_(r+DrFrRr+1)r(r+4d)

o F(rr(2r+d+2)

We have a scalefree distribution

N (r4+1)r(2r4+1) g2
(r) '

Ad

Ad




Scale free trees

T heorem

Suppose that r = % > 0 is rational. Then

P{H, <k} = F(c, —drlogn) + o(1),

where ¢, = k+0O(logk) and Set d = 1/((r 4+ 1)s) with rsesT1 =1,

Further, F(x) = V(e %), where W(y) is calculated by the following
procedure.



Scale free trees

Let ®(y) be the solution of

1
yﬁ@(ye_l/dr) - <1 i j—l—l:g-)l-l X
" (x+5)
B+1 1
X / 11 <¢(yg _1/d7“) A+B >
Y1+ +Ya4+B+1=Y,y;=>0 7=1
A+B+1 1
x 1 (¢(ye)yA+B ) dy
{=B+2
Then
A A 1
v = lats) / I <¢<yzj>zﬁ‘l> iz
r( ) z1++24=1,2;20 j=1



Scale free trees

Further, for all » > 0 there exist n > 0 and ¢ > 0 such that

P{|H, —EHyp| >y} <ce W

for all y > 0.

Remark. The concentration property of the height will be proved in
the last part of the talk.



Scale free trees

Theorem (Mori)

Let A(T,) denote the maximum degree of scale-free trees with param-
eter » > 0. Then

A(Tn)
— —pu  (a.s.)
nit+r

for some random variable p (that is related to the degree distribution
of T,,). Further

1
A(Ty) — pnltr

1
,U/n/ 1—|—’I"

4, N(0,1).




Tries

Tries are rooted trees which are used to store data which are labeled
with a (possibly) infinite string of symbols from a binary (or generally
finite) alphabet.

Each string x; defines an infinite path in the (infinite) binary tree. Let
u; denote the node where the suffix part starts. Then we can trim the
tree by cutting away everything below node Uj. The node U becomes
now a leaf representing X If we repeat this procedure for all labels
X1,...,Xn then we obtain a finite binary tree with n nodes, called the
trie.

It is usual to assume that the strings follow the Bernoulli model with
probability p € (0,1), or equivalently they are obtained from a memo-
ryless source on 2 symbols.



Tries

Theorem (Flajolet)

Let H, denote the height of tries in the symmetric case p = % Then

P{Hy < k} = exp (-2~ (F=21092m)~1) 4 5(1).

Furthermore, as n — oo,

EH,=2logorn+0(1), VH,=0(1)
and there exist n» > 0 and ¢ > 0 such that

P{|Hn —EHn| >y} <"

for all y > 0.

k
Remark. P{H, < k} = 21 (%))



Tries

Theorem (Devroye)

Let H, denote the height of tries of generated by iid labels with f(x)
as a density on [0,1]. If C := [3 f(z)?dz < oo then

P{Hy < k} = exp (—C2~(k=21092m)~1) 4 5(1),

Furthermore,
E H, =2logyn+ O(1).
If fol f(2)2dx = oo then E H, = oo for all n > 2.



Tries

Theorem (Pittel)

Let H,, denote height of tries of generated by iid labels on an m-ary
alphabet with probability distribution pq1,po,...,pm and set

1

m 2
b = (Z p?) .
=1

P{H, < k} = exp (—%b—ﬂ’f—'ogb")) + o(1).

T hen




Digital Search Trees

Digital search trees are again rooted trees which are used to store data
which are labeled with a (possibly) infinite string of symbols from a
binary (or generally finite) alphabet.

The empty string is stored in the root, while the first item occupies the
right or left child of the root depending whether its first symbol is “1"
or “O". The remaining items are always stored in the next available
node according to the rule that we move to the right if the next symbol
is “1” and we move to the left if the next symbol is “0". In the same
way we can also search for a specific item.

We assume that the 0-1-strings follow the Bernoulli model with prob-
ability p € (0,1)



Digital Search Trees

T heorem

Let H,, denote the height of digital search trees in the symmetric case
p = % Then there exists a sequence k;,, that is asymptotically given by

kn = l0ogon + \/2 logo n — 10g» <\/2 l0g»o n) + O(1)

such that

P{kn, < Hp < kn+ 1} = 1 4+ o(1).

Furthermore, if 0 < y < c1v/logn (for some constant ¢; > 0) then there
exist constants co,c3 > 0 with

P{|Hp — kn| > y} < cpe¥3VI0927,




Height of Scale-Free Trees

yn ... weighted sum of plane oriented trees (according to probability
distribution)

n
y(z) = > ynw—l ... generating function
ns1

1
(1 —y(@))"

Y (z) =

= @) =1-(1 -+ D)=

1/(r+1)
(VD

n

yn = n!(—=1)""1(r 4 1)"



Height of Scale-Free Trees

n

2z
yp(z) = Z ynP{ Hp, < k}—l
n>0 n!

1
(1 —yi(2))"

= |ypy1(2) = (yo(2z) =0, yx41(0) =0).

Yi(2) == yp(2)

— V(@) = OMYG) | (k) =1, %41(0) = 1),

n

y
Vi(2) = yp(2) = > ypr1P{H,11 < k}g-
n>0 '



Height of Scale-Free Trees

Lemma 1

Y1(2),Y>(2),Y1(2),Y>(2) ... non-negative, continuous functions, de-
fined for z > 0O

Y1(0) < Y1(0), Y>(0) <Y (0),
V() = rYa(2) T ivi(2),  Yh(z) = rVa(2) Tr71(2).

Y1(2) —Y1(z) has exactly one positive zero

—> Yo(2) — Yo(2) has at most one positive zero.



Height of Scale-Free Trees

Proof of Lemma 1.

yi (2) ::/Oij(t)dt and yj(z)Z/OZ?j(t)dt (G =1,2)

71(2) —y1(2) =Y 1(2) — Y1(»)

—>  7,1(2) —9}(2) has exactly one positive zero (.
—>  y1(2) —y1(z) increasing for 0 < z < ¢ and decreasing for z > (.

—>  71(2) —y1(2) has at most one positive zero.

—>  Yo(2) — Ya(2) = 75(2) — ya(2)
_ A-71()7" A —y1(2)™"
71(2) —y1(2)
has at most one positive zero, too.

(71(2) —y1(2))



Height of Scale-Free Trees

Lemma 2

The sequence Y, (1/(r + 1)) is log-concave, that is,

Corollary

The limit

exists.

Yi4o(1/(r+ 1)) < Yip41(1/(r+ 1))

Vit1(1/(r+1)) = Y (1/(r+1))

Yip1(1/(r+1))
A N Y )




Height of Scale-Free Trees

Proof of Lemma 2

For 0 <~ <1 set
(1= +1z)7/0FD for 0<2< 24(1—7),
Viz, 1) =14 _ e (1)

ey (SO ror by o) <2<

Y r4+1-

\

1
= |Vig1(z7) = r Vi1 Gz V(G ),

(Vx(0) =1 and Vi,(1/(r + 1),7) = 4/ C+Dy(1/(r + 1)).)

Lemma 1 =  Y;41(2) — Vi(2,7v) has (at most) one positive zero.



Height of Scale-Free Trees

) .:< Yi(1/(r + 1)) >1+3~
T W (/G 1))

— Vi(1/(r+1),v) = Ye41(1/(r+ 1)).

—> (=1/(r+1) is the only positive zero of Y;41(2) — Vi(z,7).

—>  Yip41(2) < Vi(z,7,) for 0<z<

<+ integration

—> Yo (1/(r+1)) < Ve 1(1/(r 4+ 1), )
=7,y /6 + 1)
_ Y1 (B/Cr + 1))?
Vi(1/(r+1))




Height of Scale-Free Trees

Lemma 3

For0§z<r+%and k> 1 we have

or L 1Nk 1 1 ¢
Y(Z)_Yk(2)§<r—|—1> ZEOOgl—(r—I—l)z)) '

>k




Height of Scale-Free Trees

Proof of Lemma 3
By induction:
k=1 Yi(z)=1and (1 —(r4+ 1))+ < (1 - (r4+1)2)" 1

k— k+ 1:

V() = Vi1 () =7 (Y27 = Y (7))
r (Y27 - ()2 1)
(24 0) Y@M () - i)

1
OB AO)

VAN

VAN

=(2r+1)



Height of Scale-Free Trees

Lemma 4

Suppose that 1 < C < e’/ (r+1) and C > (2 + %) elog C

Yip41(1/(r+ 1)) S

vi(l/(r 1)) =C

—

for all £k > 1.

Corollary. |p> 1|




Height of Scale-Free Trees

Proof of Lemma 4. Set ¢ = C~7/("t1) and 25 = (1= ).

Lemma 3 =— (with some ¢7; > 0)

Y (20) — Yi(20) < (2:_:_11)2261! (k 109 %)e

k

(27“ + 1)’€ (klog 1)
I\ rx k!

VAN
o

Y(z0) =CF, C > (2—|—%)elogC

= Y(1/(r+ 1)) > Vi(20) > C*(1 + o(2)).



Height of Scale-Free Trees

i Yep1(1/(r41))
— PTGty

Yp41(1/(r+1))
Y (1/(r+1))

Yi41(1/(r+ 1)) S
Vi(1/(r+1)) —

Lemma 2 — the sequence IS decreasing.




Height of Scale-Free Trees

Lemma 5

If n>Y.(1 143
> Y (1/(r4 1)) " then

P{Hy, <k} = O (Yj,(1/(r + 1)) - n~ /D)

1
Conversely if n < Y.(1/(r + 1))+ then

P{H, > k} = O (Yk(l/(r + 1)) 17, n> |




Height of Scale-Free Trees

Proof of Lemma 5.

Define 2L by Y(Zk) = Yk(l/(l —I-T)) :

- z 1 (1—nk ”1"> with 7, =Y. (1/(1 4+ r)).

:r—l—l
Set

V(2) = (zp(r + 1))y (2.(r 4+ 1)2)

- - 1
— V' (2) = vV (2)° 7.

Y(0)<1+ Lemmal —=

o Y (2) <Yy(2) for 0 <z < 2,

o Y (2) >Yy(2) for z > z..



Height of Scale-Free Trees

P{H, 41 < k} < P{Hy < k}

z > 2 —>
Y(2) > Yi(2)
n—1 A
> > ye1P{Hpp1 < k}—
¢=0
n—1 A
> P{Hn < k} Z ?J£—|-1€|
(=0
141
nzmn. ", z=r_|1_1:

Y(1/(r+1)) < comp,

o (r+ 1)

I e TR n"/(r1)

— |P{Hn <k} < C4nkn_r/(r+1).




Height of Scale-Free Trees

0< 2<z, =

Y(2) -Y(2) > Y(Z) Y (2)
L

> Z ye+1IP’{H£+1>’€}
f=n—1




Height of Scale-Free Trees

Lemma 6

Let k(n) := max{¢>1:Yy(1/(r + 1))}F7 <n}. Then

E Hp = k(n) + O(1)
and there exist n» > 0 and ¢ > 0 such that

P{|Hy, —E Hyp| >y} < ce” "

for all y > 0.
Proof of Lemma 6.

Lemma 4 —>

Yk(n)—l—ﬁ(l/(r + 1)) > ot

Yiom (L/(r £ 1)) = (£=20).

(2)



—  P{Hp > k(n) 4 £} < cgVimyo(1/(r + 1))

r4 1
<cgC

Ly —1-1
r Yk(n)(l/(T-Fl)) TN

_r+1
<cgC 7 £

Similarly

P{Hy < k(n) — €} < c10C~".



Height of Scale-Free Trees

Remark

The above proof provides stong concentration around the mean but it
does not say where the mean value actually is.

It is related to the the actual growth of Y, (1/(r+1)). Thus one has to

141

analyze the recurrence Yé+1(z) = "“(Yk+1(z)) "Yi(z) in more detail.



T hank You!



