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Outline of the Talk
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Outline of the Talk

•

• Martingales → concentration inequality

• Talagrand’s convex distance → concentration inequality

• Poisson transform, analytic methods

• Martingales, moment methods, ...

• Generating functions, analytic methods

• Generating functions, analytic methods



Conclusions

• Concentration (almost) always appears.

• Smaller extremal parameters are more concentrated than larger

ones.

• Concentration is easy to prove

(compared to the precise position of the mean).
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Types of Concentration

Xn . . . non-negative random variable with EXn →∞

Concentration:

lim
n→∞ P

{∣∣∣∣∣ Xn

a(n)
− 1

∣∣∣∣∣ ≥ ε

}
= 0

for all ε > 0 and some sequence a(n) with a(n) →∞

Equivalently Xn/a(n)
d−→ δ1, usually a(n) = E Xn .



Types of Concentration

Xn . . . non-negative random variable with EXn →∞

Type 1: No Concentration:

Xn

EXn
6 d−→ δ1

Typically:

Xn

EXn

d−→ Y . . . not concentrated at 1

and EX2
n ∼ c · (EXn)2 for some c > 1.



Types of Concentration

Type 2: Weak Concentration:

For all ε > 0 there exists K > 0 such that

lim sup
n→∞

P
{∣∣∣∣∣Xn − a(n)

b(n)

∣∣∣∣∣ ≥ K

}
≤ ε.

with a(n) →∞, b(n) →∞, and b(n) = o(a(n))

Usually one takes a(n) = E Xn and b(n) = (VXn)1/2

If E X2
n ∼ (EXn)2 the Chebyshev’s inequality implies weak concentra-

tion.

Typically

Xn − EXn√
VarXn

d−→ Y.



Types of Concentration

Type 2: Weak Concentration:

E.g. Central Limit Theorem

Xn − EXn√
VarXn

→ N(0, 1).



Types of Concentration

Type 3: Strong Concentration:

For all ε > 0 there exists K > 0 with

lim sup
n→∞

P {|Xn − a(n)| ≥ K} ≤ ε

for some sequence a(n) with a(n) →∞.

Usually a(n) = E Xn or a(n) = median of Xn and one has bounded

centralized moments:

E |Xn − E Xn|d = O(1) (d ≥ 1).



Types of Concentration

Type 3: Strong Concentration:

Typically: travelling wave F (x)

P{Xn ≤ k} = F (k −m(n)) + o(1)

(m(n) is close to the median of Xn)



Types of Concentration

Type 4: Very Strong Concentration:

Concentration on two (or finitely many values):

P{m(n) ≤ Xn ≤ m(n) + L} = 1 + o(1)

with m(n) →∞ and some fixed L .



Chromatic Number of Random Graphs

Definition

Let n be a positive integer and p a real number with 0 ≤ p ≤ 1.

The random graph G(n, p) is a probability space over the set of graphs

on the vertex set {1, 2, . . . , n} determined by

P{{i, j} ∈ G} = p

for all possible (undirected) edges {i, j} with 1 ≤ i < j ≤ n with these

events mutually independent.
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Chromatic Number of Random Graphs

Definition

A regular k-coloring of the vertices of a graph G is a coloring of the

vertices with k colors such that adjacent vertices have different colors.

The chromatic number χ(G) of a graph G is the smallest number k

such that there exists a regular k-coloring of the vertices of G

Notation: We use the notion almost always as an abbreviation for the

property that the probability that a certain condition holds converges

to 1 as the size of the problem goes to the infinity.



Chromatic Number of Random Graphs

Chromatic Number = 3

. .

. .
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Chromatic Number of Random Graphs

Theorem (Bollobás, Frieze, Grimmet, McDiarmid)

(i) If C0/n ≤ p = p(n) ≤ (log n)−7 (for a proper constant C0 > 0) then
almost always

np

2 log(np)− 2 log log(np) + 1
≤ χ(G(n, p)) ≤

np

2 log(np)− 40 log log(np)
.

(ii) If (log n)−2 ≤ p = p(n) ≤ c (for some arbitrary c < 1) then almost
always

n

2 logb n− logb logb n
≤ χ(G(n, p)) ≤

n

logb n− 6 logb logb n
,

where b = 1/(1− p).

(iii) If p = p(n) > n−δ for every δ > 0 (and sufficiently large n) but
p = p(n) ≤ c (for some arbitrary c < 1) then almost always

χ(G(n, p)) =
n

2 logb n− 2 logb logb n + O(1/p)
.



Chromatic Number of Random Graphs

Theorem ( Luczak, Alon and Krivelevich 1997)

Fix some ε > 0. For every sequence p = p(n) there exists a function

h(n) such that almost always

(i) if p ≥ n−
1
2−ε then χ(G(n, p)) ∼ h(n), and

(ii) if p ≤ n−
1
2−ε then h(n) ≤ χ(G(n, p)) ≤ h(n) + 1 .



Chromatic Number of Random Graphs

Theorem (Shamir and Spencer 1987)

P{|χ(G(n, p))− E (χ(G(n, p)))| > λ
√

n− 1} < 2 e−λ2/2.

Remark. This theorem is weaker than the previous one (for p ≤ n−
1
2−ε)

but the basis for further considerations.



Chromatic Number of Random Graphs

Definition. A martingale is a sequence of random variables Y0, Y1 . . . , Yn

on a probabilty space (Ω,F , P) with

E (Yk+1|Fk) = Yk,

where F0 = {∅, Ω} ⊆ F1 ⊆ · · · ⊆ Fn = F is an increasing sequence of

σ-fields.

Theorem (Azuma’s Inequality) Suppose that Y0, Y1 . . . , Yn is a martin-

gale with constant Y0 and that

|Yk+1 − Yk| ≤ ck

for some some constants ck (0 ≤ k < n). Then, for every t > 0,

P{|Yn − E Yn| ≥ t} ≤ 2 exp

(
−

t2

2
∑n

k=1 c2
k

)
.



Chromatic Number of Random Graphs

Theorem (McDiarmid’s Independent Bounded Difference inequality)

Let X1, . . . , Xn be independent random variables, with Xk taking values

in a set Ωk. Suppose that a function f : Ω1 × · · · × Ωn → R satisfies

the property that

|f(x1, . . . , xn)− f(y1, . . . , yn)| ≤ ck

if (x1, . . . , xn) and (y1, . . . , yn) differ only at the k-th coordinate, that is

xj = yj for j 6= k.

Then, the random variable Y = f(X1, . . . , Xn) satisfies, for any t ≥ 0,

P{|Y − E Y | ≥ t} ≤ 2 exp

(
−

t2

2
∑n

k=1 c2
k

)
.



Chromatic Number of Random Graphs

Proof

Fk ... σ-field generated by X1, . . . , Xk

Yk = E (f(X1, . . . , Xn)|Fk), k = 0, 1, . . . , n is a martingale

|f(x1, . . . , xn)− f(y1, . . . , yn)| ≤ ck implies that |Yk+1 − Yk| ≤ ck.

Hence, Azuma’s inequality applies.



Chromatic Number of Random Graphs

Vertex Exposure Martingale

Ak = {{j, k} : 1 ≤ j < k} ... edges that connect k with j < k.

Xk = (I[e∈G(n,p)] : e ∈ Ak) ... rand. vector of indicators of edges in Ak.

f ... graph theoretical function (for example, the chromatic number).

Fk ... σ-field generated by X1, . . . , Xk

Yk = E (f(G(n, p))|Fk) ... vertex exposure martingale

(It can be interpreted as the conditional expectation of f with partial

information on the first k vertices and their internal edges.)



Chromatic Number of Random Graphs

Remark. |f(x1, . . . , xn) − f(y1, . . . , yn)| ≤ ck with xk, yk ∈ Ak says that

|f(H1) − f(H2)| ≤ ck if H1, H2 are subgraphs of the complete graph

on the vertices {1, 2, . . . , n} such that the symmetric difference of the

edge sets of H1 and H2 is contained in Ak.

If one adds a vertex to a graph then the chromatic number changes

at most by 1. (Here we use the vertex k.)

=⇒ This condition is satisfied for the chromatic number with ck = 1.



Travelling Salesman Problem

X = (X1, X2, . . . , Xn) ... n-tuple of random point selected uniformly

and independently in the unit square [0, 1]2

Length of the minimum (travelling salesman) tour:

TSP(X) = min
π∈Sn

n∑
j=1

∣∣∣Xπ(j) −Xπ(j+1)

∣∣∣

Theorem (Beardwood, Halton and Hammersley 1959)

TSP(X)
√

n
→ β2 in prob.

for some β2 > 0.

Remark: Up to now there is no known analytic expression for β2.



Travelling Salesman Problem
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Travelling Salesman Problem

Notation: M(Y ) ... median of r.v. Y

Theorem (Rhee and Talagrand)

P {|TSP(X)−M(TSP(X))| ≥ t} < 4e−t2/c.

for some constant c > 0.

Corollary. All central moments of TSP(X) are bounded.

(However, the exact location of the mean is unknown.)



Travelling Salesman Problem

Talagrand’s Inequality

Ω1, Ω2, . . . , Ωn... probability spaces, Ω = Ω1 × · · · ×Ωn

X = (X1, X2, . . . , Xn) ... independent random variables, Xk taking

values in Ωk.

Weighted Hamming distance related to α = (α1, . . . , αn) with αk ≥ 0:

dα(x,y) =
∑

xi 6=yi

αi

Talagrand’s convex distance

dT (x, A) = sup
α≥0,‖α‖=1

inf
y∈A

dα(x,y)

between x ∈ Ω and A ⊂ Ω.



Travelling Salesman Problem

Talagrand’s Inequality

P{X ∈ A} · P{dT (X, A) ≥ t} < e−t2/4.



Travelling Salesman Problem

Theorem

f ... real valued function on Ω = Ω1 × · · · ×Ωn

For every x ∈ Ω there exists a non-negative unit n-vector α and a

constant c > 0 such that for all y ∈ Ω

f(x) ≤ f(y) + c dα(x,y).

Then, for every random n-tuple X = (X1, . . . , Xn) of independent ran-

dom variables Xk taking values in Ωk we have

P{|f(X)−M(f(X))| ≥ t} ≤ 4 e−t2/(4c2).



Travelling Salesman Problem

Proof

Aa := {y ∈ Ω : f(y) ≤ a}

By assumption for every x ∈ Ω there exists a non-negative unit n-vector

α such that for all y ∈ Aa:

f(x) ≤ f(y) + c dα(x,y) ≤ a + c dα(x,y).

By taking the miminum over all y ∈ Aa we, thus, get

f(x) ≤ a + c dα(x, Aa) ≤ a + c dT (x, Aa).

Hence

f(x) ≥ a + t =⇒ dT (x, Aa) ≥ t/c.

=⇒ P{f(X) ≤ a} · P{f(X) ≥ a + t} ≤ P{X ∈ Aa} · P{dT (x, Aa) ≥ t/c}

≤ e−t2/(4c2).



Travelling Salesman Problem

a = M(f(X)), P{f(X) ≤ a} = 1
2:

P{f(X) ≥ M(f(X)) + t} ≤ 2 e−t2/(4c2).

a = M(f(X))− t:

P{f(X) ≤ M(f(X))− t} ≤ 2 e−t2/(4c2).



Travelling Salesman Problem

Lemma

For every x ∈ ([0, 1]2)n there exists non-negative unit vector α and a

constant c > 0 such that for all y ∈ ([0, 1]2)n

TSP(x) ≤ TSP(y) + c dα(x,y).

(Elementary proof that uses an approximate minumum tour to con-

struct α.)

Remark

This method can be applied to several other problem, for example to

the minimal Steiner tree problem etc.



Longest Increasing Subsequence in R. P.

Sn ... the set of permutations of the numbers {1, 2, . . . , n}
(We assume that every permutation in Sn is equally likely.)

For π ∈ Sn we say that π(i1), π(i2), . . . , π(ik) is an increasing subse-

quence in π if i1 < i2 < · · · < ik and π(i1) < π(i2) < · · · < π(ik).

Ln = Ln(π) . . . length of the longest increasing subsequence.

Ulam’s Problem: E Ln ∼ ?

Ulam’s conjecture: E Ln ∼ c
√

N for some constant c > 0.



Longest Increasing Subsequence in R. P.

1  2  3  4  5  6
3  1  5  6  2  4( )
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Longest Increasing Subsequence in R. P.

Erdős Szekeres 1935: c ≥ 1
2

Logan and Shepp 1977: c ≥ 2

Vershik and Kerov 1977: c = 2 .

(Alternate proofs are due to Aldous and Diaconis, Seppäläinen, and

Johansson).

Frieze 1991: Ln is concentrated

Bollobás and Brightwell 1992, Talagrand 1995: VLn = O(
√

N).

Odlyzko and Rains 2000: order of VLn should be N1/3.

Baik, Deift, and Johansson 1999: complete solution.



Longest Increasing Subsequence in R. P.

Theorem (Baik, Deift, and Johansson 1999)

Let Sn be the group of permutations of n numbers with uniform distri-

bution and Ln the longest increasing subsequence. Then there exists

a random variable Y such that

Ln − 2
√

n

n1/6
d−→ Y.

Furthermore, we have convergence of all moments.

Remark.

The limiting distribution Y is exactly the same at the limiting distribu-

tion of the largest eigenvalue in random Hermitian matrices. However,

it seems that there is no direct connection between these two problems.



Longest Increasing Subsequence in R. P.

Tracy-Widom distribution: F (t) = P{Y ≤ t}

u(x) ... solution of the Painlevé II equation

u′′ = 2u3 + xu, u(x) ∼ Ai(x) (as x →∞);

Ai(x) denotes the Airy function.

F (t) = exp
(∫ ∞

t
(x− t)2u(x)2 dx

)
,



Longest Increasing Subsequence in R. P.

Proof Method

Basically one determines the asymptotic behaviour of the Poisson

transform

φk(λ) =
∞∑

n=0

e−λλn

n!
P{Ln ≤ k}

that can be represented as

φk(λ) =
e−λ

(2π)kk!

∫
[−π,π]k

exp

2
√

λ
k∑

j=1

θj

 ∏
1≤j<`≤k

∣∣∣eiθj − eiθ`
∣∣∣ dθ1 · · · dθk.

One has to use the theory of orthogonal polynomials on the unit circle,

sophisticated Riemann-Hilbert problem techniques and certain proper-

ties on eigenvalues of random matrices.



Diameter and Maximum Degree in R. Graphs

Definition

The diameter diam(G) of a graph connected G is the largest distance

between two nodes in G. If G is not connected then diam(G) = ∞.

The maximum degree of an (undirected) graph G will be denoted by

∆(G) .



Diameter and Maximum Degree in R. Graphs

Diameter = 3
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Diameter and Maximum Degree in R. Graphs

G(n, p)-Random Graphs

Theorem (Burtin, Bollobás)

(i) If (pn)/ log n →∞ and log n/ log(pn) →∞ then almost always

diam(G(n, p)) ∼
log n

log(pn)
.

(ii) Let c be a positive constant and p = p(n) and d = d(n), an inte-

ger ≥ 2, be related by pdnd−1 = log(n2/c). Further suppose that

(pn)/(log n)3 →∞. Then

lim
n→∞P{diam(G(n, p)) = d} = e−c/2

and

lim
n→∞P{diam(G(n, p)) = d + 1} = 1− e−c/2.



Diameter and Maximum Degree in R. Graphs

Notation

λk = λk(n) := n
(n− 1

k

)
p(n)k(1− p(n))n−k−1.

k = k(n) ≥ np be such that the quantity max{λk, 1/λk} is minimal.



Diameter and Maximum Degree in R. Graphs

Theorem (Bollobas) Suppose that p = p(n) = o(log n/n).

(i) If 0 < lim inf λk ≤ lim sup λk < ∞ then, as n →∞,

P{∆ = k(n)} = 1− e−λk + o(1)

and

P{∆ = k(n)} = e−λk + o(1).

(ii) If lim λk = ∞ then

P{∆ = k(n)} = 1 + o(1).

(iii) If lim λk = 0 then

P{∆ = k(n)− 1} = 1 + o(1).

(iv) If there is a function D(n) with P{∆ = D(n)} = 1 + o(1) as n →∞
then p = p(n) = o(log n/n).



Diameter and Maximum Degree in R. Graphs

Theorem (Bollobas, Riordan and Selby)

Suppose that 0 < p < 1 is fixed and q = 1− p.

(i) For every real number y we have

P
{

∆ ≤ pn +
√

2pqn log n

(
1−

log log n

4 log n
+

y − 2
√

π

2 log n

)}
= exp

(
−e−y

)
+ o(1).

(ii) Almost always we have∣∣∣∣∣∆− pn−
√

2pqn log n + log log n

√
pqn

8 log n

∣∣∣∣∣ ≤ log log n

√
n

log n
.

(iii) For every real number b there exists c(b) such that

P{∆ < pn + b
√

npq} = (c(b) + o(1))n.



Diameter and Maximum Degree in R. Graphs

Barabási-Albert model (for real-world graphs, internet etc.):

• Randomly growing graph

• A new node is joint to an existing one with probability proportional

to the degree.

This definition is not unambigous!!!!



Diameter and Maximum Degree in R. Graphs

Scale-Free Random Graphs

A power law is a distribution Z with tail of the form P{Z = d} ∼ c · d−k

(for some k > 1).

If a (random graph) that has an power law as (asymptotic) degree

distribution is called scale-free.



Diameter and Maximum Degree in R. Graphs

Bollobás and Riordan: Gn
m multi-graph

m = 1 (Gn
1):

• Initial node 1 with a loop.

• at step k we add one node that is connected to j ≤ k with propa-

bility

deg
Gk−1

1
(j)

2k − 1
if j < k,

1

2k − 1
if j = k.



Diameter and Maximum Degree in R. Graphs

m ≥ 1

• Gn
m is constructed from Gmn

1 by identifying the nodes {(`− 1)m +

1, (` − 1)m + 2, . . . , `m} (1 ≤ ` ≤ n) of Gmn
1 to a new node ` (and

all edged within the nodes {(`− 1)m + 1, (`− 1)m + 2, . . . , `m} are

now loops of the new node `)



Diameter and Maximum Degree in R. Graphs
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Diameter and Maximum Degree in R. Graphs
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Diameter and Maximum Degree in R. Graphs
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Diameter and Maximum Degree in R. Graphs

Scale-Free Random Graphs: Gn
m is scale free, the tail of the degree

distribution is of the form c · d−3.

Theorem (Bollobás and Riordan 2004)

Suppose that m ≥ 2. Then for every ε > 0

lim
n→∞P

{
(1− ε)

log n

log log n
≤ diam(Gn

m) ≤ (1 + ε)
log n

log log n

}
= 1.



Height and Maximum Degree of Random Trees

• Galton-Watson Trees

• Pólya Trees

• m-Ary Search Trees

• Recursive Trees

• Scale Free Trees

• Tries

• Digital Search Trees



Galton-Watson Trees

ξ ... non-negative integer valued random variable,

E ξ = 1, 0 < V ξ = σ2 < ∞.

(Zk)k≥0 Galton-Watson branching process: Z0 = 1,

Zk =
Zk−1∑
j=1

ξ
(k)
j ,

where the (ξ
(k)
j )k,j are iid random variables distributed as ξ.

A Galton-Watson branching processes can be represented by ordered

(finite or infinite) rooted trees T .

yn = P{|T | = n}, y(x) =
∑

n≥1 ynxn, ϕ(t) = E tξ:

=⇒ y(x) = xϕ(y(x)).



Galton-Watson Trees

Tn ... set of rooted trees T of size |T | = n,

ν(T ) ... probabilty that T occurs in Galton-Watson branching process:

νn(T ) :=
ν(T )

yn

is a probability distribution on Tn.

σ2 < ∞:

yn ∼
d√
2πσ

n−3/2 (n ≡ 1 mod d),

where d = gcd{i > 0 : P{ξ = i} > 0}.



Galton-Watson Trees

Examples.

ϕ(t) = E tξ = (1 + t)2/4 = 1
4 + t

2 + t2

4 : binary trees with n (internal)

nodes, where each binary tree (of size n) has equal probability.

ϕ(t) = E tξ = 1/(2− t) = 1
2 + t

4 + t2

8 + · · · : planted plane trees, every

rooted planar tree is equally likely.

ϕ(t) = et−1: Cayley trees, every rooted labeled tree is equally likely.

Equivalent description: Simply generated trees (introduced by Meir

and Moon)



Galton-Watson Trees

Cayley Trees: labeled, rooted, non-planar
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Galton-Watson Trees

Cayley Trees: labeled, rooted, non-planar

1 2

3

4

5

6

root

=1

2 2

1

3 3

4 4



Galton-Watson Trees

Theorem (de Bruijn, Knuth and Rice, Flajolet, Gao, Odlyzko and

Richmond, Aldous)

Suppose that the second moment E ξ2 is finite. Then

1
√

n
Hn

d−→
2

σ
max

0≤t≤1
e(t),

where (e(t), 0 ≤ t ≤ 1) denotes Brownian excursion of duration 1.

Furthermore, if ϕ(t) = E tξ exists for some t > 1 then we also have

convergence of all moments. For every r ≥ 0 we have, as n →∞,

E (Hr
n) = 2r/2σ−rr(r − 1)Γ(r/2)ζ(r) · nr/2

(
1 + O(n−

1
4+η)

)
where ζ(s) denotes the Riemann Zeta-function and (r−1)ζ(r) = 1 for

r = 1 and η is any positive number.



Galton-Watson Trees

Depth-first search.

Tn(b2ntc)
c2
√

n
→ e(t) . . . Brownian excursion



Galton-Watson Trees

hT ... height of T

yk(x) =
∑
n≥1

P{|T | = n, hT ≤ k}xn,

=⇒ yk+1(x) = xϕ(yk(x)) , y0(x) = ϕ0x.

H(x) :=
∑
n≥1

E Hn · yn · xn =
∑
k≥0

(y(x)− yk(x)).

A subtle analysis of the above recurrence yiels

H(x) =
1

σ2
log

1

1− x
+ K + O

(
|1− x|

1
4−η

)
for some constant K and every (fixed) η > 0

=⇒ E Hn =

√
2π

σ
·
√

n + O

(
n

1
4+η

)
.



Galton-Watson Trees

Theorem (Meir and Moon, Carr, Goh and Schmutz)

(i) Suppose that ϕi = Pr{ξ = i} > 0 for sufficiently large i ≥ i0 and

that ϕi+1/ϕi → 0 as i →∞. Then

P{|∆(Tn)− δ(n)| ≤ 1} = 1 + o(1),

where δ(n) = max{k ≥ 0 : P{ξ ≥ k} ≥ 1/n}.

(ii) If ϕ(t) = et−1 then there exists a sequence δ′(n) that is asymptot-

ically equivalent to δ′(n) ∼ log n
log log n such that

P{δ′(n) ≤ ∆(Tn) ≤ δ′(n) + 1} = 1 + o(1).

(iii) If ϕ(t) = 1/(2− t) then we have uniformly for all k ≥ 0

P{∆(Tn) ≤ k} = exp
(
−2−(k−log2 n+1)

)
+ o(1)



Galton-Watson Trees

yd(x) =
∑
n≥1

P{|T | = n, ∆(Tn) ≤ d}xn.

=⇒ yd(x) = x ϕd(yd(x)) with ϕd(t) =
∑
i≤d

ϕit
i.

=⇒ P{|T | = n, ∆(Tn) ≤ d} ∼ Cd(ϕ′d(τd))nn−3/2,

where τd > 0 is determined by τdϕ
′
d(τd) = ϕd(τd).

=⇒ P{∆(Tn) ≤ d} =
Pr{|T | = n, ∆(Tn) ≤ d}

Pr{|T | = n}
∼
√

2πσCd (ϕ′d(τd))n.



Pólya Trees

tn ... number of rooted unlabeled (non-planar) trees

t(x) :=
∑
n≥1

tnxn.

=⇒ t(x) = x exp
(
t(x) +

1

2
t(x2) +

1

3
t(x3) + · · ·

)
.



Polya Trees

root

=

t(x) =
∑
n≥1

tn xn t(x) = x et(x)+1
2t(x2)+1

3t(x3)+···



Pólya Trees

The height of Pólya Trees has the same properties as Galton-Watson

trees.

Theorem (Goh and Schmutz)

Let ∆(Tn) denote the maximum out-degree of Pólya trees of size n.

Then

P{∆(Tn) ≤ k} = exp
(
−c0ηk−µn

)
+ o(1)

with c0 = 3.262 . . ., η = 0.3383 . . ., and µn = 0.9227 . . . · log n.
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Binary Search Trees

Probabilistic Model:

Every permutation of {1, 2, . . . , n} is equally likely.

−→ probability distribution on binary trees of size n



Binary Search Trees

Height of median of (2t + 1)-variant:

(t = 0: usual binary search trees)

Pr{Hn ≤ k + 1} =
∑

n1+n2=n−1

(
n1
t

)(
n2
t

)
(

n
2t+1

) Pr{Hn1 ≤ k} ·Pr{Hn2 ≤ k}



Binary Search Trees

Generating functions for the median of 2t + 1-variant:

yk(x) =
∑
n≥0

Pr{Hn ≤ k} · xn

yk+1(x)(2t+1) =
(2t + 1)!

(t!)2

(
yk(x)(t)

)2

with initial conditions y0(x) = 1, yk(0) = 1.



m-Ary Search Trees

Similarly defined as binary search trees (m = 2).

Here every node can store up to m − 1 items and has (at most) m

subtrees.

There is also a fringe balanced version that corresponds to the median

of 2t + 1-variant in the binary case.



m-Ary Search Trees

V = (V1, V2 . . . , Vm) ... random vector supported on simplex

∆ = {(s1, . . . , sm) : sj ≥ 0, s1 + · · ·+ sm = 1} with density

f(s1, . . . , sm) =
((t + 1)m− 1)!

(t!)m
(s1 · · · sm)t.

Lemma The functional equation

F (x/ρ1) = E (F (xV1) · · ·F (xVm))

has (up to scaling) a unique solution F (m,t)(x) with the properties

1− F (m,t)(x) ∼ d1xβ1 log x (x → 0+)

and

lim
x→∞F (m,t)(x) = 0.



m-Ary Search Trees

Let β1 > 0 be the positive solution of the equation

(m−1)(t+1)−1∑
j=0

log(β + t + 1 + j)− log

(
(m(t + 1))!

(t + 1)!

)

=
(m−1)(t+1)−1∑

j=0

β

β + t + 1 + j

and set

ρ1 = exp

(m−1)(t+1)−1∑
j=0

1

β1 + t + 1 + j

 .



m-Ary Search Trees

Theorem (Chauvin and D.)

Let m ≥ 2 and t ≥ 0 be integers. There exist sequences ck with

lim
k→∞

ck+1

ck
= ρ1

such that

P{H(m,t)
n ≤ k} = F (m,t)(n/ck) + o(1).

Futher there exists η > 0 with

P{|H(m,t)
n − E H

(m,t)
n | ≥ y} = O(e−ηy).

In particular we have, as n →∞,

VH
(m,t)
n = O(1).



Recursive Trees

Combinatorial Description:

• labeled rooted tree

• labels are strictly increasing (starting at the root)

• no left-to-right order (non-planar)
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Recursive Trees

Remark
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Recursive Trees

Number of Recursive Trees:

yn = number of recusive trees of size n

= (n− 1)!

The node with label j has exactly j − 1 possibilities to be inserted

=⇒yn = 1 · 2 · · · (n− 1).



Recursive Trees

Generating Functions:

y(x) =
∑
n≥1

yn
xn

n!
=

∑
n≥1

xn

n
= log

1

1− x

y′(x) = 1 + y(x) +
y(x)2

2!
+

y(x)3

3!
+ · · · = ey(x)

R
RRR RR R

= + + + + ...

A recursive tree can be interpreted as a root followed by an unordered

sequence of recursive trees. (y′(x) =
∑

n≥0
yn+1xn/n!)



Recursive Trees

Probability Model:

Process of growing trees

• The process starts with the root that is labeled with 1.

• At step j a new node (with label j) is attached to any previous

node with probability 1/(j − 1).

After n steps every tree (of size n) has equal probability 1/(n− 1)!.
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Recursive Trees

Theorem

Let Hn denote the height of random recursive trees of size n.

E Hn = e log n + O
(√

log n (log log n)
)
.

Furthermore we have (uniformly for all k ≥ 0 as n →∞)

P{Hn ≤ k} = F (n/y′k(1)) + o(1),

where F (y) satisfies the integral equation

y F (y/e1/e) =
∫ y

0
F (z/e1/e)F (y − z) dz. (1)

Moreover, as n →∞,

VHn = O(1)

and there exist η > 0 and c > 0 such that

P{|Hn − E Hn| ≥ y} ≤ c e−ηy

for all y ≥ 0.



Recursive Trees

Theorem (Szymanski, Devroye and Lu, Goh and Schmutz)

Let ∆(Tn) denote the maximum out-degree or random recursive trees.

Then we have E ∆(Tn) ∼ log2 n and the distribution is given by

P{∆(Tn) ≤ k} = exp
(
−2−(k−log2 n+1)

)
+ o(1).
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Plane Oriented Trees

Number of Plane Oriented Trees:

yn = number of plane oriented trees of size n

= 1 · 3 · 5 · · · (2n− 3) = (2n− 3)!!

=
(2n− 2)!

2n−1(n− 1)!

The node with label j has exactly 2j − 3 possibilities to be inserted

=⇒yn = 1 · 3 · · · (2n− 3).



Plane Oriented Trees

Generating Functions:

y(x) =
∑
n≥1

yn
xn

n!
=

∑
n≥1

1

2n−1

(2(n− 1)

n− 1

)xn

n
= 1−

√
1− 2x

y′(x) = 1 + y(x) + y(x)2 + y(x)3 + · · · =
1

1− y(x)

R
RRR RR R

= + + + + ...

A plane oriented tree can be interpreted as a root followed by an

ordered sequence of plane oriented trees. (y′(x) =
∑

n≥0
yn+1xn/n!)



Plane Oriented Trees

Probability Model:

Process of growing trees

• The process starts with the root that is labeled with 1.

• At step j a new node (with label j) is attached to any previous

node of outdegree d with probability (d + 1)/(2j − 3).

After n steps every tree (of size n) has equal probability 1/(2n− 3)!!.



Scale Free Trees

Probability Model:

Process of growing trees

• The process starts with the root that is labeled with 1.

• At step j a new node (with label j) is attached to any previous

node of outdegree d with probability proportial to d + r (for some

r > 0).

For d = 1 we get plane oriented trees.
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Scale Free Trees

Generating Functions

yn . . . weighted sum of plane oriented trees (according to probability

distribution)

y(x) =
∑
n≥1

yn
xn

n!
. . . generating function

y′(x) =
1

(1− y(x))r

=⇒ y(x) = 1− (1− (r + 1)x)
1

r+1



Scale Free Trees

Degree distribution

Set

λd = lim
n→∞P (a random node in a tree of size n has out-degree d)

= lim
n→∞

expected number of nodes with out-degree d

n

Then

λd =
(r + 1)Γ(2r + 1)Γ(r + d)

Γ(r)Γ(2r + d + 2)

We have a scalefree distribution

λd ∼
(r + 1)Γ(2r + 1)

Γ(r)
· d−2−r.



Scale free trees

Theorem

•
Suppose that r = A

B > 0 is rational. Then

P{Hn ≤ k} = F (ck − dr log n) + o(1),

where ck = k+O(log k) and Set dr = 1/((r + 1)s) with r s es+1 = 1.

Further, F (x) = Ψ(e−x), where Ψ(y) is calculated by the following

procedure.



Scale free trees

Let Φ(y) be the solution of

y
1

A+BΦ(ye−1/dr) =
Γ
(
1 + 1

A+B

)
Γ
(

1
A+B

)A+B+1
×

×
∫

y1+···+yA+B+1=y,yj≥0

B+1∏
j=1

(
Φ(yje

−1/dr)y
1

A+B−1

j

)

×
A+B+1∏
`=B+2

(
Φ(y`)y

1
A+B−1

`

)
dy

Then

Ψ(y) =
Γ
(

A
A+B

)
Γ
(

1
A+B

)A
∫

z1+···+zA=1,zj≥0

A∏
j=1

(
Φ(yzj)z

1
A+B−1

j

)
dz



Scale free trees

Further, for all r > 0 there exist η > 0 and c > 0 such that

P{|Hn − E Hn| ≥ y} ≤ c e−ηy

for all y ≥ 0.

Remark. The concentration property of the height will be proved in

the last part of the talk.



Scale free trees

Theorem (Mori)

Let ∆(Tn) denote the maximum degree of scale-free trees with param-

eter r > 0. Then

∆(Tn)

n
1

1+r

→ µ (a.s.)

for some random variable µ (that is related to the degree distribution

of Tn). Further

∆(Tn)− µn
1

1+r√
µn

1
1+r

d−→ N(0, 1).



Tries

Tries are rooted trees which are used to store data which are labeled

with a (possibly) infinite string of symbols from a binary (or generally

finite) alphabet.

Each string xj defines an infinite path in the (infinite) binary tree. Let

uj denote the node where the suffix part starts. Then we can trim the

tree by cutting away everything below node uj. The node uj becomes

now a leaf representing xj. If we repeat this procedure for all labels

x1, . . . ,xn then we obtain a finite binary tree with n nodes, called the

trie.

It is usual to assume that the strings follow the Bernoulli model with

probability p ∈ (0, 1), or equivalently they are obtained from a memo-

ryless source on 2 symbols.



Tries

Theorem (Flajolet)

Let Hn denote the height of tries in the symmetric case p = 1
2. Then

P{Hn ≤ k} = exp
(
−2−(k−2 log2 n)−1

)
+ o(1).

Furthermore, as n →∞,

E Hn = 2 log2 n + O(1), VHn = O(1)

and there exist η > 0 and c > 0 such that

P{|Hn − E Hn| ≥ y} � e−η y

for all y ≥ 0.

Remark. P{Hn ≤ k} = n!
2kn

(
2k

n

)



Tries

Theorem (Devroye)

Let Hn denote the height of tries of generated by iid labels with f(x)

as a density on [0, 1]. If C :=
∫ 1
0 f(x)2 dx < ∞ then

P{Hn ≤ k} = exp
(
−C 2−(k−2 log2 n)−1

)
+ o(1).

Furthermore,

E Hn = 2 log2 n + O(1).

If
∫ 1
0 f(x)2 dx = ∞ then E Hn = ∞ for all n ≥ 2.



Tries

Theorem (Pittel)

Let Hn denote height of tries of generated by iid labels on an m-ary

alphabet with probability distribution p1, p2, . . . , pm and set

b =

 m∑
i=1

p2
i

−1
2

.

Then

P{Hn ≤ k} = exp
(
−

1

2
b−2(k−logb n)

)
+ o(1).



Digital Search Trees

Digital search trees are again rooted trees which are used to store data

which are labeled with a (possibly) infinite string of symbols from a

binary (or generally finite) alphabet.

The empty string is stored in the root, while the first item occupies the

right or left child of the root depending whether its first symbol is “1”

or “0”. The remaining items are always stored in the next available

node according to the rule that we move to the right if the next symbol

is “1” and we move to the left if the next symbol is “0”. In the same

way we can also search for a specific item.

We assume that the 0-1-strings follow the Bernoulli model with prob-

ability p ∈ (0, 1)



Digital Search Trees

Theorem

Let Hn denote the height of digital search trees in the symmetric case

p = 1
2. Then there exists a sequence kn that is asymptotically given by

kn = log2 n +
√

2 log2 n− log2

(√
2 log2 n

)
+ O(1)

such that

P{kn ≤ Hn ≤ kn + 1} = 1 + o(1).

Furthermore, if 0 ≤ y ≤ c1
√

log n (for some constant c1 > 0) then there

exist constants c2, c3 > 0 with

P{|Hn − kn| ≥ y} ≤ c2 e−yc3
√

log2 n.



Height of Scale-Free Trees

yn . . . weighted sum of plane oriented trees (according to probability

distribution)

y(x) =
∑
n≥1

yn
xn

n!
. . . generating function

y′(x) =
1

(1− y(x))r

=⇒ y(x) = 1− (1− (r + 1)x)
1

r+1

yn = n!(−1)n−1(r + 1)n
(1/(r + 1)

n

)
.



Height of Scale-Free Trees

yk(z) =
∑
n≥0

ynP{Hn ≤ k}
zn

n!

=⇒ y′k+1(z) =
1

(1− yk(z))r
(y0(z) = 0, yk+1(0) = 0).

Yk(z) := y′k(z)

=⇒ Y ′
k+1(z) = r Yk+1(z)1+1

r Yk(z) (Y1(z) = 1, Yk+1(0) = 1).

Yk(z) = y′k(z) =
∑
n≥0

yn+1P{Hn+1 ≤ k}
zn

n!
.



Height of Scale-Free Trees

Lemma 1

Y1(z), Y2(z), Y 1(z), Y 2(z) ... non-negative, continuous functions, de-

fined for z ≥ 0

Y1(0) < Y 1(0), Y2(0) < Y 2(0),

Y ′
2(z) = r Y2(z)1+1

r Y1(z), Y
′
2(z) = r Y 2(z)1+1

r Y 1(z).

Y 1(z)− Y1(z) has exactly one positive zero

=⇒ Y 2(z)− Y2(z) has at most one positive zero.



Height of Scale-Free Trees

Proof of Lemma 1.

yj(z) :=
∫ z

0
Yj(t) dt and yj(z) =

∫ z

0
Y j(t) dt (j = 1, 2)

y′1(z)− y′1(z) = Y 1(z)− Y1(z)

=⇒ y′1(z)− y′1(z) has exactly one positive zero ζ.

=⇒ y1(z)− y1(z) increasing for 0 ≤ z ≤ ζ and decreasing for z ≥ ζ.

=⇒ y1(z)− y1(z) has at most one positive zero.

=⇒ Y 2(z)− Y2(z) = y′2(z)− y′2(z)

=
(1− y1(z))−r − (1− y1(z))−r

y1(z)− y1(z)
(y1(z)− y1(z))

has at most one positive zero, too.



Height of Scale-Free Trees

Lemma 2

The sequence Yk(1/(r + 1)) is log-concave, that is,

Yk+2(1/(r + 1))

Yk+1(1/(r + 1))
≤

Yk+1(1/(r + 1))

Yk(1/(r + 1))
.

Corollary

The limit

lim
k→∞

Yk+1(1/(r + 1))

Yk(1/(r + 1))
=: ρ ≥ 1

exists.



Height of Scale-Free Trees

Proof of Lemma 2

For 0 ≤ γ < 1 set

Vk(z, γ) =


(1− (r + 1)z)−r/(r+1) for 0 ≤ z ≤ 1

r+1(1− γ),

γ−r/(r+1)Yk

(
z− 1

r+1(1−γ)

γ

)
for 1

r+1(1− γ) ≤ z ≤ 1
r+1.

=⇒ V ′
k+1(z, γ) = r Vk+1(z, γ)1+1

r Vk(z, γ),

(Vk(0) = 1 and Vk(1/(r + 1), γ) = γ−r/(r+1)Yk(1/(r + 1)).)

Lemma 1 =⇒ Yk+1(z)− Vk(z, γ) has (at most) one positive zero.



Height of Scale-Free Trees

γk :=

(
Yk(1/(r + 1))

Yk+1(1/(r + 1))

)1+1
r

=⇒ Vk(1/(r + 1), γk) = Yk+1(1/(r + 1)).

=⇒ ζ = 1/(r + 1) is the only positive zero of Yk+1(z)− Vk(z, γ).

=⇒ Yk+1(z) ≤ Vk(z, γk) for 0 ≤ z ≤
1

r + 1

+ integration

=⇒ Yk+2(1/(r + 1)) ≤ Vk+1(1/(r + 1), γk)

= γ
−r/(r+1)
k Yk+1(1/(r + 1))

=
Yk+1(1/(r + 1))2

Yk(1/(r + 1))
.



Height of Scale-Free Trees

Lemma 3

For 0 ≤ z < 1
r+1 and k ≥ 1 we have

Y (z)− Yk(z) ≤
(

2r + 1

r + 1

)k ∑
`≥k

1

`!

(
log

1

1− (r + 1)z)

)`

.



Height of Scale-Free Trees

Proof of Lemma 3

By induction:

k = 1: Y1(z) = 1 and (1− (r + 1)z)−r/(r+1) ≤ (1− (r + 1)z)−1.

k → k + 1:

Y (z)′ − Yk+1(z)′ = r

(
Y (z)2+1

r − Yk+1(z)1+1
r Yk(z)

)
≤ r

(
Y (z)2+1

r − Yk(z)2+1
r

)
≤ r

(
2 +

1

r

)
Y (z)1+1

r (Y (z)− Yk(z))

= (2r + 1)
1

1− (r + 1)z
(Y (z)− Yk(z))



Height of Scale-Free Trees

Lemma 4

Suppose that 1 < C < er/(r+1) and C >
(
2 + 1

r

)
e log C

=⇒
Yk+1(1/(r + 1))

Yk(1/(r + 1))
≥ C

for all k ≥ 1.

Corollary. ρ > 1 .



Height of Scale-Free Trees

Proof of Lemma 4. Set c = C−r/(r+1) and z0 = 1
r+1(1− ck).

Lemma 3 =⇒ (with some c1 > 0)

Y (z0)− Yk(z0) ≤
(

2r + 1

r + 1

)k ∑
`≥k

1

`!

(
k log

1

c

)`

≤ c1

(
2r + 1

r + 1

)k
(
k log 1

c

)k
k!

≤ c1

(
2r + 1

r + 1
e log

1

c

)k

= c1

((
2 +

1

r

)
e log C

)k
.

Y (z0) = Ck, C >
(
2 + 1

r

)
e log C

=⇒ Yk(1/(r + 1)) ≥ Yk(z0) ≥ Ck(1 + o(1)).
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=⇒ ρ = lim
k→∞

Yk+1(1/(r + 1))

Yk(1/(r + 1))
≥ C.

Lemma 2 =⇒ the sequence
Yk+1(1/(r+1))
Yk(1/(r+1)) is decreasing.

=⇒
Yk+1(1/(r + 1))

Yk(1/(r + 1))
≥ C.
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Lemma 5

If n ≥ Yk(1/(r + 1))1+1
r then

P{Hn ≤ k} = O
(
Yk(1/(r + 1)) · n−r/(r+1)

)
.

Conversely if n ≤ Yk(1/(r + 1))1+1
r then

P{Hn > k} = O

(
Yk(1/(r + 1))−1−1

r · n
)

.
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Proof of Lemma 5.

Define zk by Y (zk) = Yk(1/(1 + r)) .

=⇒ zk =
1

r + 1

(
1− η

−1−1
r

k

)
with ηk = Yk(1/(1 + r)).

Set

Ỹ (z) = (zk(r + 1))r/(r+1)Y (zk(r + 1)z)

=⇒ Ỹ ′(z) = rỸ (z)2+1
r .

Ỹ (0) < 1 + Lemma 1 =⇒

• Ỹ (z) ≤ Yk(z) for 0 ≤ z ≤ zk,

• Ỹ (z) ≥ Yk(z) for z ≥ zk.
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P{Hn+1 ≤ k} ≤ P{Hn ≤ k}

z ≥ zk =⇒

Ỹ (z) ≥ Yk(z)

≥
n−1∑
`=0

y`+1P{H`+1 ≤ k}
z`

`!

≥ P{Hn ≤ k}
n−1∑
`=0

y`+1
z`

`!

n ≥ η
1+1

r
k , z = 1

r+1:

Ỹ (1/(r + 1)) ≤ c2ηk,

n−1∑
`=0

y`+1
(r + 1)`

`!
≥ c2nr/(r+1)

=⇒ P{Hn ≤ k} ≤ c4ηkn−r/(r+1).
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0 ≤ z ≤ zk =⇒

Y (z)− Ỹ (z) ≥ Y (z)− Yk(z)

≥
∞∑

`=n−1

y`+1P{H`+1 > k}
z`

`!

≥ P{Hn > k}
∞∑

`=n−1

y`+1
z`

`!
.

n ≤ η
1+1

r
k , z′ = 1

r+1

(
1− 1

n

)
≤ zk.

Y (z′)− Ỹ (z′) ≤ c5n
1+ r

r+1η
−1−1

r
k ,

∞∑
`=n−1

y`+1
(z′)`

`!
≥ c6 nr/(r+1)

=⇒ P{Hn > k} ≤ c7η
−1−1

r
k n
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Lemma 6

Let k(n) := max{` ≥ 1 : Y`(1/(r + 1))1+1
r ≤ n}. Then

E Hn = k(n) + O(1) (2)

and there exist η > 0 and c > 0 such that

P{|Hn − E Hn| > y} ≤ ce−ηy

for all y > 0.

Proof of Lemma 6.

Lemma 4 =⇒
Yk(n)+`(1/(r + 1))

Yk(n)(1/(r + 1))
≥ C` (` ≥ 0).



=⇒ P{Hn > k(n) + `} ≤ c8Yk(n)+`(1/(r + 1))−1−1
r n

≤ c8 C
r+1

r ` Yk(n)(1/(r + 1))−1−1
r n

≤ c9C−r+1
r `.

Similarly

P{Hn ≤ k(n)− `} ≤ c10C−`.
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Remark

The above proof provides stong concentration around the mean but it

does not say where the mean value actually is.

It is related to the the actual growth of Yk(1/(r+1)). Thus one has to

analyze the recurrence Y ′
k+1(z) = r

(
Yk+1(z)

)1+1
r Yk(z) in more detail.



Thank You!


