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Abstract. Let tj = (−1)s(j) be the Thue-Morse sequence with s(j) de-
noting the sum of the digits in the binary expansion of j. A well-known
result of Newman [10] says that t0 + t3 + t6 + · · ·+ t3k > 0 for all k ≥ 0.

In the first part of the paper we show that t1 + t4 + t7 + · · ·+ t3k+1 < 0
and t2 + t5 + t8 + · · ·+ t3k+2 ≤ 0 for k ≥ 0, where equality is characterized
by means of an automaton. This sharpens results given by Dumont [4].
In the second part we study more general settings. For a, g ≥ 2 let ωa =

exp(2πi/a) and t
(a,g)
j = ω

sg(j)
a , where sg(j) denotes the sum of digits in

the g-ary digit expansion of j. We observe trivial Newman-like phenomena
whenever a|(g − 1). Furthermore, we show that the case a = 2 inherits
many Newman-like phenomena for every even g ≥ 2 and large classes of
arithmetic progressions of indices. This, in particular, extends results by
Drmota/Skalba [3] to the general g-case.

1. Introduction

Let tj = 1,−1,−1, 1,−1, 1, 1,−1,−1, . . . be the Thue-Morse sequence de-
fined by

(1.1) tj = (−1)s(j) for j ≥ 0,

where s(j) denotes the sum of the digits in the binary expansion of j. Fix
q ≥ 2 and i ≥ 0 and consider the subsequence tkq+i with k ≥ 1. One may ask
whether there is a preponderance of the 1’s over the −1’s in that sequence, or
equivalently, of the numbers with even sum of binary digits over the numbers
with odd sum of binary digits. In 1969 Newman [10] showed that the 1’s prevail
in the case of q = 3 and i = 0. More precisely, by denoting τ(n) = b(n+ 2)/3c
and

(1.2) Sq,i(n) =
∑

0≤j<n,
j≡i (mod q)

tj,

Newman’s Theorem states that for n ≥ 1,

3α

20
< S3,0(n)τ(n)−α < 5 · 3α with α = log4 3.
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Coquet [1] could give a precise expression for S3,0(n) which involves a contin-
uous 1-periodic fractal function ψ,

S3,0(n) = τ(n)α · ψ(log4 n)− η(n)/3,

where η(n) ∈ {−1, 0, 1}. He also displayed the extremal values of ψ(x) on [0, 1]
and provided by the way an alternative proof for S3,0(n) > 0. It is natural to
ask whether there exist similar phenomena for S3,1(n) and S3,2(n). Dumont [4],
by using a method of Newman and Slater [11], could prove that S3,1(n) < 0
for n > n0. In a short comment he also states that both S3,2(n) < 0 and
S3,2(n) > 0 for infinitely many n. This is not correct since we prove

Theorem 1.1. (1) S3,1(n) < 0 for n ≥ 2.
(2) S3,2(n) ≤ 0 for n ≥ 3 with equality if and only if n = 22k+1 for k ≥ 1 or

the binary expansion of n is realized by the automaton given in Figure 1.

00 11

1

00

0 1 0

00

Figure 1

The automaton constructs numbers n which can be described in the fol-
lowing. First, a ’head’ is constructed by means of alternating 1 . . .1- and
0 . . .0-blocks whereas the length of each block is an even number. After the
rightmost 11-entry of the head a ’tail’ is appended which is either of type
0 . . .01 (even number of 0’s), 0 . . .0 (odd number of 0’s) or 0 . . .010 . . . 0
where in the latter case the 0-blocks have (arbitrary) odd length. So, for
instance, for n = (111100000011001100010)2 we have S3,2(n) = 0.

The discrete function Sq,0(n) has also been studied for other fixed values of q
(see [1, 2, 3, 7, 8, 9]). Using an asymptotical approach Drmota and Skalba [3]
showed that Newman’s q = 3 can be replaced by an arbitrary multiple of 3, i.e.
q = 3κ for κ ≥ 1, such that Sq,0(n) attains positive values for all but finitely
many n. We will generalize this fact in

Theorem 1.2. Let ν ≥ 0 and κ ≥ 1. Then there exists n0 such that

(1) S3κ,3ν(n) > 0 for n > n0.
(2) S3κ,3ν+1(n) < 0 for n > n0.



NEWMAN’S PHENOMENON FOR GENERALIZED THUE-MORSE SEQUENCES 3

A straightforward base g generalization of the Thue-Morse sequence was
introduced and investigated by Goldstein, Kelly and Speer [6, Section 5]. Let
a, g ≥ 2 be two fixed positive integers. In analogue to (1.1) define

(1.3) t
(a,g)
k = ωsg(k)

a for k ≥ 1,

where ωa = exp(2πi/a) denotes the a-th primitive root of unity (a is sometimes
also called the parity) and sg(k) the sum of the digits in the g-ary expansion
of k. Similar to (1.2) set

(1.4) S
(a,g)
q,i (n) =

∑

0≤j<n,
j≡i (mod q)

t
(a,g)
j .

Further let

A
(a,g)
q,i;m(n) = |{0 ≤ j < n : j ≡ i (mod q), sg(j) ≡ m (mod a)}|,

which counts how often ωma shows up on the right hand side of (1.4), i.e.

(1.5) S
(a,g)
q,i (n) =

a−1∑

m=0

A
(a,g)
q,i;m(n) ωma .

Using this notation Newman’s Theorem, for instance, translates into

A
(2,2)
3,0;0(n) > A

(2,2)
3,0;1(n) for all n ≥ 1.

For general triples (a, g, q) we use

Definition 1.3. The triple (a, g, q) is said to satisfy an (i,M)-Newman-like
phenomenon if

A
(a,g)
q,i;M(n) > max

0≤m<a
m6=M

A
(a,g)
q,i;m(n) for all but finitely many n ≥ 1.

For sake of shortness such occurrences will be referred to as (i,M)-NLP’s.
The aim of our work is mostly to identify multi-parametric families of NLP’s
for a = 2. Concerning the case a = g = 2 infinite lists of triples satisfying
(0, 0)-NLP’s are already well-known:

(i) (Drmota/Skalba [3]): (2, 2, 3κ), (2, 2, 4κ + 1) for κ ≥ 1.
(ii) (Leinfellner [9]): (2, 2, (24κ−1 + 1)/3) for κ ≥ 1.

As Theorem 1.1 and Theorem 1.2 suggest, there may be (i, 0)- and (i, 1)-
NLP’s for more general g. We first show that there exist only trivial (i,M)-
NLP’s whenever a|(g − 1), thus for a = 2, in particular, there are no NLP’s if
g is odd and q = κ(g + 1).

Theorem 1.4. Let a|(g − 1). Then (a, g, q) satisfies an (i,M)-NLP if and
only if a|q and i ≡M (mod a).

On the other hand, triples of the form (2, g, κ(g + 1)) with even g ≥ 4
are shown to satisfy several (i, 0)- and (i, 1)-NLP’s where i ranges over large
intervals depending explicitly on g. Indeed, I1 ∪ I2 make up more than 50% of
the positive integers i ≥ 0.
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Theorem 1.5. Let g ≥ 4 be even, κ odd and denote

I1 =
∞⋃

ν=0

[
2ν(g + 1),

g

2
+ 2ν(g + 1)

]
,

I2 =
∞⋃

ν=0

[
(2ν + 1)(g + 1),

g

2
+ (2ν + 1)(g + 1)

]
.

(1) If i ∈ I1 is even or i ∈ I2 is odd then (2, g, κ(g + 1)) satisfies an
(i, 0)-NLP.

(2) If i ∈ I1 is odd or i ∈ I2 is even then (2, g, κ(g + 1)) satisfies an
(i, 1)-NLP.

As an immediate consequence of Theorem 1.5 and Theorem 1.2 we notice
that for any i there are infinitely many bases g for which we can observe NLP’s.

Corollary 1.6. Let i ≥ 0 be even (resp. odd). Then for all even g ≥ 2 the
triple (2, g, κ(g + 1)) satisfies an (i, 0)-NLP (resp. (i, 1)-NLP).

Finally we show that there are only few primes q where an NLP occurs. This
a direct generalization of [3, Theorem 2]. Let p be an odd prime and g ≥ 2 an
even integer. Set s = ordp(g) the multiplicative order of g in the multiplicative
group modulo p. Then s|(p− 1) and t = (p− 1)/s is called the co-order of g.
Furthermore let Pt denote the set of odd primes for which g has co-order t.

Theorem 1.7. Let g ≥ 2 be an even integer. Then every prime p ∈ Pt such
that (2, g, p) satisfies an (0, 0)-NLP is bounded by

p ≤ Ct2(log t)2,

where C > 0 only depends on g.
Furthermore,

#{p ≤ x : (2, g, p) satisfies and (0, 0)-NLP} = o

(
x

log x

)
,

that is, almost no primes satisfy a (0, 0)-NLP.

2. Possible extensions

Drmota and Skalba [3] observed that while considering q = (ga− 1)/(g− 1)
the parity a can not be too large in order to obtain (0, 0)-NLP’s. More precisely,
they proved that (a, 2, 2a − 1) satisfies a (0, 0)-NLP if and only if 2 ≤ a ≤ 6.
Numerical simulations motivate several conjectures (see below) that we want
to deal with in a forthcoming paper. Conjecture 1 gives evidence that NLP’s
aren’t rare at all, while Conjecture 2 is a weak analogon of Theorem 1.5 for
the case a = 3. Concerning Conjecture 3, there are expected to be infinitely
many parities a and for each of them again an infinite number of bases g such
that there hold (0, 0)-NLP’s. This casts a more positive light compared to the
result of Drmota/Skalba.
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• Conjecture 1:
For all 0 ≤ i ≤ q − 1 there exists a M = M(i) such that (3, 2, 7κ)
satisfies an (i,M)-NLP.
• Conjecture 2:

Let g ≥ 3 and (g−1, 3) = (κ, 3) = 1. Then the triple (3, g, κ(g2+g+1))
satisfies a (0, 0)-NLP, a (1, 1)-NLP and a (2, 2)-NLP.
• Conjecture 3:

(1) Let a ≡ 0 (mod 2) and g = (ν + 1
2
)a + 1 with ν ≥ 0. Then

(a, g, κ(ga − 1)/(g − 1)) satisfies a (0, 0)-NLP.
(2) Let a ≡ 0 (mod 3) and g = (ν + 2

3
)a + 1 with ν ≥ 0. Then

(a, g, κ(ga − 1)/(g − 1)) satisfies a (0, 0)-NLP.

3. Proof of Theorem 1.1

For the following basic properties of Sq,i(n) we refer to [3]. A general expo-
sition will be given later in Section 5.1. To begin with, since (see relation (8)
and the proof of Lemma 5 in [3])

Sq,i(2
k) =

1

q

q−1∑

i=0

ζ−liq

k−1∏

j=0

(
1− ζ l2jq

)

we have

S3,1(2k) = S3,2(2k) = −1 ·
√

3
k

3
, if k is even ≥ 2,

S3,1(2k) =
√

3 ·
√

3
k

3
, if k is odd,

S3,2(2k) = S3,1(20) = S3,2(20) = 0, if k is odd.

Moreover, since for all n′ < 2k it holds (see relation (9) in [3])

Sq,i(2
k + n′) = Sq,i(2

k)− Sq,i−2k(n
′),

all expansion of Sq,i(n) into values of powers of 2 can be seen as paths in the
graph of Figure 2.

S3,2(20) S3,1(2odd) S3,2(2even) S3,1(20)

S3,2(2odd) S3,1(2even)

S3,0(n′)

c d

e f

g h

a

b

Figure 2
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To start with, observe that by Newman’s Theorem

(3.1) S3,0(2k − n′) ≤ S3,0(2k)− S3,0(n′) <
2

3

√
3
k

for all n′ < 2k.

Proof of Theorem 1.1. First we consider the case of S3,1(n). Of course, if
s2(n) = 1 then S3,1(n) < 0. Let now s2(n) > 1 and n = 2k + . . . with k
even. Then

(3.2) S3,1(n) = S3,1(2k)− S3,0(n′) = (−1) ·
√

3
k

3
− S3,0(n′) < 0

by Newman’s Theorem. Now, let k be odd. Denote

A1 = {(ab)m, (ab)ma, (ab)maf, (ab)mafh, (ab)mad},
A2 = {(ab)mc, (ab)me, (ab)meg}.

Let n ∈ A1. Then by (3.2),

S3,1(n) ≤
√

3
k

3

(
−
√

3− −1√
3

)
< 0.

On the other hand, if n ∈ A2 then by (3.1),

S3,1(n) ≤
√

3
k

3
(−
√

3− 0) + S3,0(n′) < −
√

3

3

√
3
k

+
2

3

√
3
k−2

< 0.

Consider now S3,2(n). If s2(n) = 1 then S3,2(n) ≤ 0 with equality if and
only if k is odd. Suppose s2(n) > 1 and k odd. Then by Newman’s Theorem

S3,2(n) = S3,2(2k)− S3,0(n′) < 0.

Let now k be even and put

B1 = {(ba)m, (ba)md, (ba)mf, (ba)mfh},
B2 = {(ba)mbeg},
B3 = {(ba)mb, (ba)mbc, (ba)mbe}.

First note that the edge b gives maximal contribution (namely 0) to the final
sum, if the corresponding 1’s in the binary expansion of n are adjacent. So,
for n ∈ B1 and by (3.1) it holds

S3,2(n) <

√
3
k

3

(
0−
√

3
−l

+
√

3
−l−2

)
+

2

3

√
3
k−l−2

= 0.

If n ∈ B2 then

S3,2(n) ≤
√

3
k

3
(0 + 0)− S3,0(n′) < 0.

Finally, if n ∈ B1 then S3,2(n) ≤ 0 where equality holds if and only if the 1’s
corresponding to the adjacent expansion terms S3,1(2odd) and S3,2(2even) are
adjacent and there is at most one digit 1 at some lower odd position 2k or at
the 20-position. The automaton can now be easily constructed. �
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4. Proof of Theorem 1.4

Let

d(n) =

{
(n− i)/q, q|n− i
[(n− i)/q] + 1, otherwise.

Since sg(n) ≡ n (mod g − 1) and a|(g − 1) we have sg(n) ≡ n (mod a). Thus,
if a 6 |q then by (1.4) and (1.5),

S
(a,g)
q,i (n) =

∑

0≤j<n,
j≡i (mod q)

ωja = ωia

d(n)∑

k=0

ωkqa = ωia
ω
q(d(n)+1)
a − 1

ωqa − 1
.

For n = (ka− 1)q + i with k ≥ 1 holds d(n) ≡ −1 (mod a) and S
(a,g)
q,i (n) = 0.

Hence no NLP occurs. On the other hand, in the case a|q the statement of the

theorem is obviously true since S
(a,g)
q,i (n) = ωia (d(n) + 1). �

5. Proof of Theorem 1.2 and Theorem 1.5

5.1. Preliminaries. The strategy for studying the discrete function S
(a,g)
q,i (n)

for large n consists in expanding the function in a Fourier series and looking

at the behaviour of the asymptotically dominating term S̄
(a,g)
q,i (n). The growth

of this term is basically determined by the absolute maximal eigenvalue λmax

of the matrix

M(ωa) =
s−1∏

m=0

(I + ωaT
gm + ω2

aT
2gm + · · ·+ ωg−1

a T(g−1)gm),

where s = ordq(g) and T denotes the matrix which ’shifts’ the canonical basis
of Cq via Tei = ei+1. This is a straightforward generalization of the case g = 2
treated in detail in [3] and [6].

Moreover, the function S
(a,g)
q,i (n) can be made explicit by considering a simple

generating relation. To begin with, observe that for 1 ≤ ε ≤ g − 1 it holds
∑

n<εgk

ysg(n)zn =
(

1 + yzg
k

+ · · ·+ yε−1z(ε−1)gk
) ∑
n<gk

ysg(n)zn

= 1−yεzεgk

1−yzgk ·
k−1∏
j=0

(1 + yzg
j

+ · · ·+ yg−1z(g−1)gj).(5.1)

Let

(5.2) S
(a,g)
q,i (y, n) =

∑

0≤j<n,
j≡i (mod q)

ysg(j)

and ζq = exp(2πi/q). By employing two different ways of counting y-powers
we get

q−1∑

i=0

ζ liq S
(a,g)
q,i (y, εgk) =

∑

n<εgk

ysg(n)ζ lnq
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and by (5.1),

(5.3) S
(a,g)
q,i (y, εgk) =

1

q

q−1∑

l=0

ζ−liq

1− yεζεlgkq

1− yζ lgkq
·
k−1∏

j=0

1− ygζ lgj+1

q

1− yζ lgjq
.

Thus, in principle, it is possible to evaluate S
(a,g)
q,i (y, n) at multiples of g-powers.

For general n = εgk+n′ with n′ < gk definition (5.2) provides a simple recursive
relation, namely

(5.4) S
(a,g)
q,i (y, εgk + n′) = S

(a,g)
q,i (y, εgk) + yεS

(a,g)

q,i−εgk(y, n
′),

which enables to split off higher multiples of g-powers. For 1 ≤ l ≤ q − 1 let

(5.5) ηεl (k) =
1− ωεaζεlg

k

q

1− ωaζ lg
k

q

and λl(k) =

k−1∏

j=0

1− ωgaζ lg
j+1

q

1− ωaζ lg
j

q

denote the factors appearing in (5.3). Since λl(k1s+ k2) = λl(s)
k1 · λl(k2) and

ηεl (k1s+ k2) = ηεl (0)k1 · ηεl (k2) we see that

(5.6) S
(a,g)
q,i (ωa, εg

k) =
1

q

q−1∑

l=0

ζ−liq (ηεl (0)λl(s))
k1 ηεl (k2)λl(k2).

Thus the growth of |S(a,g)
q,i (ωa, εg

k)| is asymptotically determined by Λl =
|ηεl (0)λl(s)|. More precisely, let

Lmax =
{
l : |ηεl (0)λl(s)| ≥ |ηεl̂ (0)λl̂(s)| for all 0 ≤ l̂ ≤ q − 1

}

and set Λ = |ηεl (0)λl(s)| for l ∈ Lmax. Then for k = k1s+ k2 we have

S̄
(a,g)
q,i (ωa, εg

k) =
1

q

∑

l∈Lmax

ζ−liq ηεl (k)λl(k)(5.7)

=
Λk1

q

∑

l∈Lmax

ζ−liq exp(ik1θ0)ηεl (k2)λl(k2),

where θ0 = arg(ηεl (0)λl(s)). Note that in the case g = 2 (treated in [3]) we
have ηεl (k) ≡ 1 and thus the calculation of Lmax is just right the calculation
of the maximal |λl(s)|. For the case a = 2, g > 2 determining Lmax is a more
difficult task since for κ > 1 we have

max
l
|ηεl (0)| ·max

l
|λl(s)| > Λ,

i.e. we cannot independently maximize |ηεl (0)| and |λl(s)|. We deal with this
additional difficulty in Lemma 5.2.
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5.2. Outline of proof. From now on let a = 2, g ≡ 0 (mod 2) and q = κ(g+1)
with (κ, 2) = 1. Recall that the case g ≡ 1 (mod 2) is totally characterized for

all q in Theorem 1.4. Our investigation on the fractal behaviour of S
(2,g)
q,i (−1, n)

now splits up into several steps. First we determine Lmax (Lemma 5.2 and

Lemma 5.3) and get an explicit expression for S̄
(2,g)
q,i (−1, εgk) (Lemma 5.4).

Then, starting from a sufficiently large n = ε1g
k + ε2g

k−1 + . . . , we use the
recursive relation (5.4) to ’expand’ the function to values of the function at
points of lower g-order. We obtain a finite tail which can be estimated by a
geometric series with small modulus (Corollary 5.5). A sufficient criterion is
then given which implies (i, 0)- and (i, 1)-NLP’s depending on the parity of i
(Lemma 5.6). Finally by distinguishing several cases on the leading coefficient
ε1 and using the criterion of Lemma 5.6 we obtain the results of Theorem 1.5.
The case g = 2 of Theorem 1.2 will be treated separately.

5.3. Determination of Lmax. For convenience put

ϕg =
π

2(g + 1)
, l1 = κg/2 and l2 = κ(g/2 + 1).

To begin with, we calculate the values of λl(k) and ηεl (k) for l = l1 and l = l2.
For later reference we include the following useful identity

(5.8)
1− zα
1− z = zα/2−1/2 sin(α arg z/2)

sin(arg z/2)
= zα/2−1/2 Uα−1(cos(arg z/2)),

where Uα−1(x) is the Chebyshev polynomial of the second kind of degree α−1.

Lemma 5.1. It holds

λl(k) =





(cotϕg)
k , k even, l ∈ {l1, l2}

−iζ
1/2
g+1 (cotϕg)

k , k odd, l = l1

iζ
−1/2
g+1 (cotϕg)

k , k odd, l = l2

ηεl (k) =

{
exp(−iθ) Uε−1(cosϕg), l = l1

exp(iθ) Uε−1(cosϕg), l = l2

where θ = (ε− 1) · (−1)kϕg.

Proof. Using (5.5) and the fact that ζ lg
j+2

q = ζ lg
j

q for l ∈ {l1, l2} we see that the

calculation of λl(k) reduces to the computation of ζ lq and ζ lgq for l ∈ {l1, l2}.
Moreover, it is easy to verify that ζ l1q = ζ l2gq and ζ l2q = ζ l1gq which together with
identity (5.8) gives the expressions for λl(k) and ηεl (k). �

Note that the eigenvalue λl1(s) = λl2(s) = (cotϕg)
s > 0 is an increasing

function of g with s
√
λl1(s) =

√
3, 3.077 . . . , 4.381 . . . , 5.671 . . . for g = 2, 4, 6,

respectively.
We include a technical lemma which handles the general multiplier ηεl (0)

which modifies the eigenvalue λl(s) via relation (5.6).
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Lemma 5.2. Let 1 ≤ ε ≤ g − 1, z = exp(iϕ) and

f1(ϕ) =

∣∣∣∣
1− zg
1 + z

∣∣∣∣ , f2(ϕ) =

∣∣∣∣∣
1− zg2

1 + zg

∣∣∣∣∣ .

If f1(ϕ) > cotϕg then

f1(ϕ)f2(ϕ)

∣∣∣∣
1− (−z)ε

1 + z

∣∣∣∣ < (cotϕg)
2 · sin(εϕg)

sinϕg
.

Proof. For g = 2 the statement of the lemma is equivalent to the first step
of the proof in Lemma 4 in [3]. Assume now g ≥ 4 and put J = [ϕ1, ϕ2] =
[π − 2ϕg, π + 2ϕg]. We split the proof up into several steps.

(1) First we claim that

f1(ϕ) ≥ cotϕg if and only if ϕ ∈ J ;

equality holds if and only if ϕ = ϕ1 or ϕ = ϕ2. To begin with, by
using (5.8) we easily note that for ϕ1 < ϕ < ϕ2 it holds

f1(ϕ) =

∣∣∣∣
sin(gϕ/2)

cos(ϕ/2)

∣∣∣∣ > cotϕg.

Viceversa, observe that f1(ϕ) is an oscillating function in ϕ which is
symmetric with respect to ϕ = π. Moreover, note that its envelope
env1(ϕ) = |cos(ϕ/2)|−1 is strictly increasing on [0, π]. Now, put J ′ =
[ϕ′, π], where ϕ′ = (1−2/g)π denotes the largest zero of f1(ϕ) less than
ϕ = π. Then for g ≥ 4 it holds

max
ϕ∈[0,π]\J ′

f1(ϕ) < |cos(ϕ′/2)|−1
= (sin(π/g))−1 < cotϕg.

Furthermore, f1(ϕ) is strictly increasing on [ϕ′, ϕ1] with f1(ϕ1) =
cotϕg. This completes the proof of the first step.

(2) By the first step, the investigation can now be focused on the interval
J . Let env2(ϕ) = |cos(gϕ/2)|−1 be the envelope of f2(ϕ). We claim
that

f3(ϕ) = f1(ϕ) · env2(ϕ) ·
∣∣∣∣
1− (−z)ε

1 + z

∣∣∣∣
is strictly decreasing on [ϕ1, π]. In equivalent terms, we have to show
that

f3(π − 2ϕ) =
sin(εϕ)

sin2 ϕ
· tan(gϕ)

=
sin(εϕ)

sinϕ
√

cos(gϕ)
· sin(gϕ)

sinϕ
√

cos(gϕ)

is strictly increasing on [0, ϕg]. But this is clear due to the fact that
for all 1 ≤ ε ≤ g the function

sin(εϕ)

sinϕ
√

cos(gϕ)
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is strictly increasing on [0, ϕg]. This completes the proof of the second
step.

(3) Let J ′′ = [ϕ′′, π] where ϕ′′ = π(1−1/g+2/g2) denotes the smallest zero
of f2(ϕ) larger that ϕ1. By the second step we have f3(ϕ) ≤ f3(ϕ′′) on
[ϕ′′, π]. Since

f1(ϕ)f2(ϕ)

∣∣∣∣
1− (−z)ε

1 + z

∣∣∣∣
is strictly decreasing on [ϕ1, ϕ

′′], it remains to show that

(5.9) f1(ϕ)f2(ϕ)

∣∣∣∣
1− (− exp(iϕ1))ε

1 + exp(iϕ1)

∣∣∣∣ = (cotϕg)
2 · sin(εϕg)

sinϕg
> f3(ϕ′′).

We calculate

f3(ϕ′′) =
cos(π/g2)

sin(π/g) · sin2(π(g/2− 1)/g2)
· sin(επ(g/2− 1)/g2).

Of course,

sin(επ(g/2− 1)/g2) < sin(εϕg)

for g ≥ 2. Secondly, for g ≥ 6 we also have

cos(π/g2)

sin(π/g) · sin2(π(g/2− 1)/g2)
<

(cotϕg)
2

sinϕg
,

which gives (5.9) for g ≥ 6. For the single case g = 4, relation (5.9)
can be verified by hand. This finishes the proof of the lemma.

�

The following lemma shows that the indices l1 and l2 indeed maximize the
quantity |ηεl (0)|λl(s). The proof uses a set splitting argument as seen in [3,
Lemma 4] extended to the general g-case.

Lemma 5.3. It holds

Lmax = {l1, l2} .
Proof. Consider

λl(s) =
s−1∏

j=0

δl(j) with δl(j) =
1− ζ lgj+1

q

1 + ζ lg
j

q

and partition all indices j ∈ {0, 1, . . . , s− 1} = M into four disjunct sets M0,
M1, M2 and M3 where

M0 = {j with |δl(j)| = cotϕg},
M1 = {j with |δl(j)| > cotϕg},
M2 = {j + 1 (mod s) with j ∈M1} and

M3 = M \ (M0 ∪M1 ∪M2 ∪M3) .
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It is clear that either M0 = {} or M0 = M . If M0 = {} then by Lemma 5.2,

|ηεl (0)λl(s)| =
∣∣∣∣∣
1−

(
−ζ lq

)ε

1 + ζ lq

∣∣∣∣∣ ·
∏

j∈M1

|δl(j)δl(j + 1)| ·
∏

j∈M3

|δl(j)|

<
sin(εϕg)

sinϕg
· (cotϕg)

2|M1| · (cotϕg)
|M3| =

sin(εϕg)

sinϕg
· (cotϕg)

s.

The case M0 = M appears if and only if l = l1 = κg/2 or l = l2 = κ(g/2 + 1)
where

|ηεl (0)λl(s)| =
sin(εϕg)

sinϕg
(cotϕg)

s.

This completes the proof. �
5.4. Calculation of the leading term. By using the formula (5.7) it is now

straightforward to calculate the leading term S̄
(2,g)
q,i (−1, εgk). In what follows

let

ψ0(g, i, ε) := sin (ϕg(2ε− 2i− 1)) + sin (ϕg(2i+ 1)) ,

ψ1(g, i, ε) :=− cos (ϕg(2ε+ 2i+ 1)) + cos (ϕg(2i+ 1)) .

Lemma 5.4. If k is even then

S̄
(2,g)
q,i (−1, εgk) =

(−1)i

q
· (cotϕg)

k

sinϕg
ψ0(g, i, ε)

=
2

q
(−1)i

(cotϕg)
k

sinϕg
cos (ϕg(ε− 2i− 1)) sin (εϕg) .(5.10)

If k is odd then

S̄
(2,g)
q,i (−1, εgk) =

(−1)i

q
· (cotϕg)

k

sinϕg
ψ1(g, i, ε)

=
2

q
(−1)i

(cotϕg)
k

sinϕg
sin (ϕg(ε+ 2i+ 1)) sin (εϕg) .(5.11)

We omit the proof of Lemma 5.4 since we simply use prosthaphaeresis for-
mulas in order to obtain the product forms in (5.10) and (5.11). Observe that

the sign of S̄
(2,g)
q,i (−1, εgk) is basically determined by the parity of i.

Corollary 5.5.∣∣∣∣∣
k−ν∑

j=0

S̄
(2,g)
q,ij

(−1, εjg
j)

∣∣∣∣∣ ≤
2

q
· (cotϕg)

k

sinϕg
· (cotϕg)

−ν
(

1− 1

cotϕg

)−1

.

Proof. From Lemma 5.4 we get
k−ν∑

j=0

∣∣∣S̄(2,g)
q,ij

(−1, εjg
j)
∣∣∣ ≤ 2

q
· 1

sinϕg

k−ν∑

j=0

(cotϕg)
j

=
2

q
· 1

sinϕg

(cotϕg)
k−ν − 1/ cotϕg

1− 1/ cotϕg
.



NEWMAN’S PHENOMENON FOR GENERALIZED THUE-MORSE SEQUENCES 13

�

5.5. Proof of Theorem 1.2. We can give a more accurate estimate from
Lemma 5.4 in the case g = 2, namely

∣∣∣S̄(2,2)
q,ij

(−1, εj2
j)
∣∣∣ ≤ 2

q
(cotϕ2)j =

2

q
· 3j/2 and

(5.12)

∣∣∣∣∣
k−ν∑

j=0

S̄
(2,2)
q,ij

(−1, εj2
j)

∣∣∣∣∣ ≤
2

q
· 3(k−ν)/2

(
1− 1√

3

)−1

.

The estimate (5.12) has been used in the proof of the first part of Theorem 1
in [3]. We include the formula while correcting a minor misprint (see Lemma 5
therein).

Proof of Theorem 1.2. The table below gives the values of S̄
(2,2)
3κ,3ν+j(−1, 2k) for

k ≥ 2 calculated from Lemma 5.4:

j k even k odd

0 2
q

√
3
k √

3
q

√
3
k

1 −1
q

√
3
k −

√
3
q

√
3
k

2 −1
q

√
3
k

0

The first statement of Theorem 1.2 now follows exactly from the lines of the
proof of Lemma 5 in [3]. For the second statement we distinguish several cases.
First let k be even.

(1) If n = (100 . . . )2 then

S̄
(2,2)
3κ,3ν+1(n) ≤ −1

q

√
3
k

+
2
√

3
3
q
·
√

3
k

1−
√

3
−1 < 0.

(2) If n = (101 . . . )2 then

S̄
(2,2)
3κ,3ν+1(n) ≤ −1

q

√
3
k − 2

q

√
3
k−2

+
2
√

3
3
q
·
√

3
k

1−
√

3
−1 < 0.

(3) If n = (11 . . . )2 then

S̄
(2,2)
3κ,3ν+1(n) ≤ −1

q

√
3
k − 1

q

√
3
k

+
2
√

3
2
q
·
√

3
k

1−
√

3
−1 < 0.

If k is odd then we succeed with the same procedure by considering the cases
n = (10 . . . )2, n = (110 . . . )2 and n = (111 . . . )2. �
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5.6. Proof of Theorem 1.5. Let g ≥ 4. We use the recursive relation (5.4)

for the leading term S̄
(2,g)
q,ij

(−1, n) in order to derive a sufficient criterion for
NLP’s.

Lemma 5.6. Let g and i be such that for all 1 ≤ ε1, ε2 ≤ g − 1 and ε1 6= 0
there hold

a) ψ0(g, i, ε1) + (cotϕg)
−1 ψ1(g, i− ε1, ε2) > R(g) and

b) ψ1(g, i, ε1) + (cotϕg)
−1 ψ0(g, i+ ε1, ε2) > R(g),

where

R(g) = 2 · (cotϕg)
−2
(
1− (cotϕg)

−1
)−1

.

Then

(1) If i is even then (2, g, q) satisfies an (i, 0)-NLP.
(2) If i is odd then (2, g, q) satisfies an (i, 1)-NLP.

If ”>” is replaced by ”<” and ”R(g)” by ”−R(g)” in both a) and b) then

(1) If i is even then (2, g, q) satisfies an (i, 1)-NLP.
(2) If i is odd then (2, g, q) satisfies an (i, 0)-NLP.

Proof. Denote ηj ∈ {−1, 0, 1}. First, let k be even, then by using Lemma 5.4,
Corollary 5.5 and the identity

cos
(
ϕg(−2ε1g

k + C)
)

= (−1)ε1 cos (ϕg(−2ε1 + C))

we have

S̄
(2,g)
q,i (−1, n) = S̄

(2,g)
q,i (−1, ε1g

k) + (−1)ε1S̄
(2,g)

q,i−ε1gk(−1, ε2g
k−1)

+
k−2∑

j=0

ηjS̄
(2,g)
q,ij

(−1, εjg
j)

=
(−1)i

q
· (cotϕg)

k

sinϕg

(
sin (ϕg(2ε1 − 2i− 1)) + sin (ϕg(2i+ 1))

− cos (ϕg(2ε2 − 2ε1 + 2i+ 1))

cotϕg
+

cos (ϕg(2ε1 − 2i− 1))

cotϕg

+
δ

(cotϕg)2
·
(

1− 1

cotϕg

)−1)
,

where |δ| ≤ 2. This gives the first inequality of Lemma 5.6. Now, let k be odd.
Then since

sin
(
ϕg(±2ε1g

k + C)
)

= (−1)ε1 sin (ϕg(∓2ε1 + C))
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we have

S̄
(2,g)
q,i (−1, n) =

(−1)i

q
· (cotϕg)

k

sinϕg

(
− cos (ϕg(2ε1 + 2i+ 1)) + cos (ϕg(2i+ 1))

+
sin (ϕg(2ε2 − 2ε1 − 2i− 1))

cotϕg
+

sin (ϕg(2ε1 + 2i+ 1))

cotϕg

+
δ

(cotϕg)2
·
(

1− 1

cotϕg

)−1)
,

where again |δ| ≤ 2. This yields the second inequality. �
We are now ready to give the proof of Theorem 1.5.

Proof of Theorem 1.5. For convenience put

α = cos ((2i+ 1)ϕg) , β = sin ((2i+ 1)ϕg)

and consider the left hand side of inequality a) in Lemma 5.6. Then by using
trigonometric addition formulas we have

ψ0(g, i, ε1)+ (cotϕg)
−1 ψ1(g, i− ε1, ε2) =

α

(
sin(2ε1ϕg) +

cos(2ε1ϕg)

cotϕg
− cos(2(ε2 − ε1)ϕg)

cotϕg

)

+ β

(
− cos(2ε1ϕg) + 1 +

sin(2ε1ϕg)

cotϕg
+

sin(2(ε2 − ε1)ϕg)

cotϕg

)

=: αγ1 + βγ2.

The same calculation for inequality b) in Lemma 5.6 yields

ψ1(g, i, ε1) + (cotϕg)
−1 ψ0(g, i+ ε1, ε2) = αγ2 + βγ1.

We distinguish two cases on the leading coefficient ε1. First let ε1 ≤ g
2
. Then

γ1 ≥ sin(2ϕg) +
cos(2ϕg)

cotϕg
− 1

cotϕg
= 2 sin(2ϕg)− 2 tanϕg,

γ2 ≥ − cos(2ε1ϕg) + 1 +
sin(2ε1ϕg)

cotϕg
+

sin(−2ε1ϕg)

cotϕg

≥ 1− cos(2ϕg) = 2(sinϕg)
2.

On the other hand, if ε1 >
g
2

then

γ1 ≥ sin((g − 1)ϕg) +
cos((g − 1)ϕg)

cotϕg
− 1

cotϕg
= 1− tanϕg,

γ2 ≥ 1− cos((g + 2)ϕg) +
sin((g + 2)ϕg)

cotϕg
− sin(gϕg)

cotϕg
= 1 + sinϕg.

Now, consider the case where α > 0 and β > 0. Since for x ∈ [0, 1] it holds

2x(sin(2ϕg)− tanϕg) + 2
√

1− x2(sinϕg)
2 ≥ 2(sin(2ϕg)− tanϕg) > R(g)

and
x(1− tanϕg) +

√
1− x2(1 + sinϕg) ≥ 1− tanϕg > R(g)
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we have that αγ1 + βγ2 > R(g) and αγ2 + βγ1 > R(g) is satisfied whenever

i ∈
⋃

ν

[
2ν(g + 1),

g

2
+ 2ν(g + 1)

]
.

Now, let α < 0 and β < 0. We use the same inequalities as before (multiplied
by −1) and have αγ1 + βγ2 < −R(g) and αγ2 + βγ1 < −R(g). Thus,

i ∈
⋃

ν

[
(2ν + 1)(g + 1),

g

2
+ (2ν + 1)(g + 1)

]
.

The application of Lemma 5.6 finishes the proof of Theorem 1.5.
�

6. Proof of Theorem 1.7

The idea of the proof is to show that

S
(2,g)
p,0 (−1, gk) =

1

p

p−1∑

l=1

k−1∏

j=0

1− ζ lgj+1

p

1 + ζ lg
j

p

is positive for infinitely many k and also negative for infinitely many k. The
multiplicative subgroup U = {1, g, g2, . . . , gs−1} induces a partition of cosets
L1, L2, . . . , Lt of the set {1, 2, . . . , p− 1}. As above we define the eigenvalues

λl =
s−1∏

j=0

1− ζ lgj+1

p

1 + ζ lg
j

p

.

Since λl1 = λl2 if l1 and l2 belong to the same coset L we also use the short
hand notation λL for λl if l ∈ L.

With help of this notations we get proper representations for S
(2,g)
p,0 (−1, gks)

and S
(2,g)
p,0 (−1, gks−2) that will be used in the proof of Theorem 1.7:

S
(2,g)
p,0 (−1, gks) =

s

p

t∑

r=1

λkLr ,

S
(2,g)
p,0 (−1, gks−2) =

1

p

t∑

r=1

λkLr

∑

l∈Lr

(1 + ζ lp)(1 + ζglp )

(1− ζglp )(1− ζg2l
p )

.

In particular we use the following estimates:

Lemma 6.1. For every r we have λ4
Lr
> 0. Hence

(6.1) S
(2,g)
p,0 (−1, g4ks) > 0.

Furthermore

(6.2) S
(2,g)
p,0 (−1, g4ks−2) ≤

(
c1 − c2

√
p

t log p

)
1

t

t∑

r=1

λ4k
Lr

for some constants c1, c2 > 0 that only depend on g.
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Proof. By definition it follows that λl is either real or imaginary. Hence λ4
l > 0.

Thus, (6.1) follows immediately.
The proof of (6.2) requires several steps. First, we will prove that there are

constants c1, c2 such that

(6.3)
∑

l∈Lr

(1 + ζ lp)(1 + ζglp )

(1− ζglp )(1− ζg2l
p )
≤ c1s− c2

∑

l∈Lr

p2

l2
.

For the sake of shortness set

Tl =
(1 + ζ lp)(1 + ζglp )

(1− ζglp )(1− ζg2l
p )

By elementary calculations we have

arg (Tl) =
lπ

p
(1− g2) + π.

If |l mod p| ≤ ηp, where η = 1/(4(g2− 1)), then |Tl| � p2/l2 and consequently

<(Tl) ≤ −c2
p2

l2

for some constant c2 > 0. On the other hand, if |l mod p| > ηp then <(Tl) ≤
|Tl| ≤ c1 for another constant c1 > 1. Of course, this directly proves (6.3) (by
assuming without loss of generality that c2 ≤ ηc1).

The next step is to use Pólya-Vinogradov inequality (compare with [3]
and [12, p. 86, Aufgabe 12 b]) to obtain for all cosets Lr

#{l ∈ Lr : |l mod p| ≤ 2tp1/2 log p} > p1/2 log p.

Hence
∑

l∈Lr

p2

l2
≥ p3/2

4t2 log p

and consequently

∑

l∈Lr
Tl =

∑

l∈Lr
<(Tl) ≤ c1

p

t
− c2

p3/2

t2 log p

which directly gives (6.2). �

We can now prove the first part of Theorem 1.7. If p ∈ Pt and p > Ct2(log p)2

then we surely have

c1 − c2

√
p

t log p
< 0

which shows that S
(2,g)
p,0 (−1, g4ks−2) < 0 for all k. Hence, (2, g, p) does not

satisfy a (0, 0)-NLP.
We can also state this observation in the following way.
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Lemma 6.2. Suppose g ≥ 2 is an even integer and p an odd prime. If (2, g, p)
satisfies a (0, 0)-NLP then

s = ordp(g) ≤ Cp1/2 log p,

where C > 0 just depends on g.

Now a proper variation of a result of Erdős [5] (compare also with [3]) says:

Lemma 6.3. For every even integer g ≥ 2 and every sequence εp → 0 (as
p→∞) we have

#{p ≤ x : s = ordp(g) ≤ p1/2+εp} = o

(
x

log x

)
.

Of course, a combination of these two lemmas directly proves the second
part of Theorem 1.7. �
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