NEWMAN’S PHENOMENON FOR GENERALIZED
THUE-MORSE SEQUENCES

M. DRMOTA AND TH. STOLL

ABSTRACT. Let t; = (—1)*%) be the Thue-Morse sequence with s(j) de-
noting the sum of the digits in the binary expansion of j. A well-known
result of Newman [10] says that to + t3 +tg + -+ - + t3, > 0 for all k > 0.

In the first part of the paper we show that 1 +t4 +t7 + -+ t3p41 <O
and to +t5 +ts + - - + tspre < 0 for k£ > 0, where equality is characterized
by means of an automaton. This sharpens results given by Dumont [4].
In the second part we study more general settings. For a,g > 2 let w, =
exp(27i/a) and t§a’g) = wzg(]), where s4(j) denotes the sum of digits in
the g-ary digit expansion of j. We observe trivial Newman-like phenomena
whenever a|(g — 1). Furthermore, we show that the case a = 2 inherits
many Newman-like phenomena for every even g > 2 and large classes of
arithmetic progressions of indices. This, in particular, extends results by
Drmota/Skalba [3] to the general g-case.

1. INTRODUCTION

Let t; =1,-1,-1,1,-1,1,1, -1, —-1,... be the Thue-Morse sequence de-
fined by

(1.1) ti=(=1)*9 for j >0,

where s(j) denotes the sum of the digits in the binary expansion of j. Fix
¢ > 2 and ¢ > 0 and consider the subsequence ty,1; with £ > 1. One may ask
whether there is a preponderance of the 1’s over the —1’s in that sequence, or
equivalently, of the numbers with even sum of binary digits over the numbers
with odd sum of binary digits. In 1969 Newman [10] showed that the 1’s prevail
in the case of ¢ = 3 and i = 0. More precisely, by denoting 7(n) = [(n + 2)/3|
and

(1.2) Sei(n) = Yt

0<j<n,
j=i (mod q)

Newman’s Theorem states that for n > 1,

20 < Sso(n)T(n) ™ <5-3% with = log, 3.
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Coquet [1] could give a precise expression for Sso(n) which involves a contin-
uous l-periodic fractal function 1,

Ss(n) = 7(n)* - ¢(logyn) —n(n)/3,
where n(n) € {—1,0,1}. He also displayed the extremal values of ¢)(x) on [0, 1]
and provided by the way an alternative proof for Sso(n) > 0. It is natural to
ask whether there exist similar phenomena for S3(n) and S5 2(n). Dumont [4],
by using a method of Newman and Slater [11], could prove that S3;(n) < 0
for n > ng. In a short comment he also states that both S;2(n) < 0 and
Ss32(n) > 0 for infinitely many n. This is not correct since we prove

Theorem 1.1. (1) S31(n) <0 forn > 2.

(2) S32(n) <0 forn > 3 with equality if and only if n = 22*** fork > 1 or
the binary expansion of n is realized by the automaton given in Figure 1.

FIGURE 1

The automaton constructs numbers n which can be described in the fol-
lowing. First, a ’head’ is constructed by means of alternating 1...1- and
0...0-blocks whereas the length of each block is an even number. After the
rightmost 11-entry of the head a ’tail’ is appended which is either of type
0...01 (even number of 0’s), 0...0 (odd number of 0’s) or 0...010...0
where in the latter case the 0-blocks have (arbitrary) odd length. So, for
instance, for n = (111100000011001100010), we have S52(n) = 0.

The discrete function S, o(n) has also been studied for other fixed values of ¢
(see [1, 2, 3,7, 8,9]). Using an asymptotical approach Drmota and Skalba [3]
showed that Newman’s ¢ = 3 can be replaced by an arbitrary multiple of 3, i.e.
q = 3k for k > 1, such that S,(n) attains positive values for all but finitely
many n. We will generalize this fact in

Theorem 1.2. Let v > 0 and k > 1. Then there exists ng such that
(1) Ssks.(n) >0 for n > ng.
(2) Ssksv+1(n) <0 forn > ny.
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A straightforward base g generalization of the Thue-Morse sequence was
introduced and investigated by Goldstein, Kelly and Speer [6, Section 5]. Let
a, g > 2 be two fixed positive integers. In analogue to (1.1) define

(1.3) 99 = oo for f>1,

where w, = exp(27i/a) denotes the a-th primitive root of unity (a is sometimes
also called the parity) and s,(k) the sum of the digits in the g-ary expansion
of k. Similar to (1.2) set

(@,9) () — (a,9)
(1.4) S my= Y "

0<j<n,
j=i (mod q)

Further let
ACD M) =[{0<j<n: j=i(modg), s,()=m (moda)},

q?z;m

which counts how often w™ shows up on the right hand side of (1.4), i.e.

a—1
(1.5) Sk (n) =" A9 (n) wi.
m=0

Using this notation Newman’s Theorem, for instance, translates into
Ag(fg(n) > A:%Ql)(n) for all n > 1.
For general triples (a, g,q) we use

Definition 1.3. The triple (a, g, q) is said to satisfy an (i, M )-Newman-like
phenomenon if
A((;i’%(n) > max Afﬁ%(n) for all but finitely many n > 1.
m#M
For sake of shortness such occurrences will be referred to as (i, M)-NLP’s.
The aim of our work is mostly to identify multi-parametric families of NLP’s

for a = 2. Concerning the case a = g = 2 infinite lists of triples satisfying
(0,0)-NLP’s are already well-known:

(i) (Drmota/Skalba [3]): (2,2,3k), (2,2,4" + 1) for k > 1.

(ii) (Leinfellner [9]): (2,2, (2%~ +1)/3) for x > 1.

As Theorem 1.1 and Theorem 1.2 suggest, there may be (7,0)- and (i, 1)-
NLP’s for more general g. We first show that there exist only trivial (i, M)-
NLP’s whenever a|(g — 1), thus for a = 2, in particular, there are no NLP’s if
gisodd and ¢ = k(g + 1).

Theorem 1.4. Let al(g — 1). Then (a,g,q) satisfies an (i, M)-NLP if and
only if alqg and i = M (mod a).

On the other hand, triples of the form (2,¢g,x(g + 1)) with even g > 4
are shown to satisfy several (i,0)- and (i,1)-NLP’s where ¢ ranges over large
intervals depending explicitly on ¢g. Indeed, I; U I, make up more than 50% of
the positive integers ¢ > 0.
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Theorem 1.5. Let g > 4 be even, k odd and denote

L= G 2v(g+1), 5 +20(g+1)] .

v=0

L=/ [(ZV +1)(g + 1), g +(2v+1)(g+ 1)} .
v=0
(1) If i € I, is even or i € Iy is odd then (2,9,k(g + 1)) satisfies an
(4,0)-NLP.
(2) If i € I is odd or i € I is even then (2,9,k(g + 1)) satisfies an
(i,1)-NLP.

As an immediate consequence of Theorem 1.5 and Theorem 1.2 we notice
that for any ¢ there are infinitely many bases g for which we can observe NLP’s.

Corollary 1.6. Let : > 0 be even (resp. odd). Then for all even g > 2 the
triple (2,g,k(g + 1)) satisfies an (i,0)-NLP (resp. (i,1)-NLP).

Finally we show that there are only few primes ¢ where an NLP occurs. This
a direct generalization of [3, Theorem 2]. Let p be an odd prime and g > 2 an
even integer. Set s = ord,(g) the multiplicative order of ¢ in the multiplicative
group modulo p. Then s|(p — 1) and ¢t = (p — 1)/s is called the co-order of g.
Furthermore let P; denote the set of odd primes for which g has co-order ¢.

Theorem 1.7. Let g > 2 be an even integer. Then every prime p € Py such
that (2, g,p) satisfies an (0,0)-NLP is bounded by

p < C’tQ(log t)z,

where C' > 0 only depends on g.
Furthermore,

#{p <zx: (2,9,p) satisfies and (0,0)-NLP} = o (lozx) ,

that is, almost no primes satisfy a (0,0)-NLP.

2. POSSIBLE EXTENSIONS

Drmota and Skalba [3] observed that while considering ¢ = (¢* —1)/(g — 1)
the parity a can not be too large in order to obtain (0, 0)-NLP’s. More precisely,
they proved that (a,2,2% — 1) satisfies a (0,0)-NLP if and only if 2 < a < 6.
Numerical simulations motivate several conjectures (see below) that we want
to deal with in a forthcoming paper. Conjecture 1 gives evidence that NLP’s
aren’t rare at all, while Conjecture 2 is a weak analogon of Theorem 1.5 for
the case a = 3. Concerning Conjecture 3, there are expected to be infinitely
many parities a and for each of them again an infinite number of bases g such
that there hold (0,0)-NLP’s. This casts a more positive light compared to the
result of Drmota/Skalba.
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e Conjecture 1:
For all 0 < ¢ < ¢ — 1 there exists a M = M (i) such that (3,2,7k)
satisfies an (i, M )-NLP.
e Conjecture 2:
Let g > 3 and (9—1,3) = (k,3) = 1. Then the triple (3, g, k(g*+g+1))
satisfies a (0,0)-NLP, a (1,1)-NLP and a (2,2)-NLP.
e Conjecture 3:
(1) Let @ = 0 (mod 2) and g = (v + $)a + 1 with v > 0. Then
(a,g,k(g* —1)/(g — 1)) satisfies a (0,0)-NLP
(2) Let @ = 0 (mod 3) and g = (v + 2)a + 1 Wlth v > 0. Then
(a,g,k(g" —1)/(g — 1)) satisfies a (0,0)-NLP.

3. PROOF OF THEOREM 1.1

For the following basic properties of S, ;(n) we refer to [3]. A general expo-
sition will be given later in Section 5.1. To begin with, since (see relation (8)
and the proof of Lemma 5 in [3])

q—1 k—1

1 iy y
S,a(24) = = quz H < Cm )
e §=0
we have
k
S31(2%) = S35(2%) = —1- @ if k& is even > 2,
k
S31(28) =3 g if k is odd,
5372<2k) = 5371(20) = 3372(20) = O, if k is odd.

Moreover, since for all n’ < 2* it holds (see relation (9) in [3])
Sqi(2° + ') = Sga(25) = Sy iar (1),

all expansion of S, ;(n) into values of powers of 2 can be seen as paths in the
graph of Figure 2.

FIGURE 2
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To start with, observe that by Newman’s Theorem
2
(31)  Ss0(2F — 1) < S50(2%) — Syo(n) < g\/§’“ for all n' < 2*.

Proof of Theorem 1.1. First we consider the case of Ss3;(n). Of course, if
s2(n) = 1 then S31(n) < 0. Let now sy(n) > 1 and n = 2¥ + ... with k
even. Then

(32) 53’1(71,) = 53’1(2k) — 5370(71/) = (—1) . @ — Sg,()(n/) <0

by Newman’s Theorem. Now, let £ be odd. Denote
A; = {(ab)™, (ab)"a, (ab)"af, (ab)™afh, (ab)™ad},
Ay = {(ab)™c, (ab)™e, (ab)™eg}.

Let n € A;. Then by (3.2),

Ss1(n) < @k (—\/5— \7—%) < 0.

On the other hand, if n € Ay then by (3.1),

53,1(71) < \/3——3(—\/§ — O) + Sg,o(n/) < _?\/gk + g\/gk_Q < 0.

Consider now Sso(n). If sy(n) = 1 then S59(n) < 0 with equality if and
only if k is odd. Suppose sg(n) > 1 and k odd. Then by Newman’s Theorem

5372(77/) = 53,2(2k> — Sg’g(n/) < 0.
Let now k be even and put
By ={(ba)™, (ba)™d, (ba)™f, (ba)™ fh},
By = {(ba)"beg},
Bs = {(ba)"b, (ba)™bc, (ba)"be}.

First note that the edge b gives maximal contribution (namely 0) to the final
sum, if the corresponding 1’s in the binary expansion of n are adjacent. So,
for n € By and by (3.1) it holds

k
Sya(n) < @ (0-v3 +v3 )+ %\/ngZ — 0.

If n € By then
k

3

T(O + O) — Sg,(](nl) < 0.

Finally, if n € B; then S52(n) < 0 where equality holds if and only if the 1’s
corresponding to the adjacent expansion terms S3;(2°94) and S3(2°7") are
adjacent and there is at most one digit 1 at some lower odd position 2% or at
the 2°-position. The automaton can now be easily constructed. 0

Sz2(n) <
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4. PROOF OF THEOREM 1.4

Let

[(n—1)/q] +1, otherwise.

Since s,(n) =n (mod g — 1) and a|(g — 1) we have s,(n) = n (mod a). Thus,
if a fq then by (1.4) and (1.5),

w((nm) )
IUCRED DI SR EN T
0<j<n,
j=t (mod q)

For n = (ka — 1)g + 4 with k > 1 holds d(n) = —1 (mod a) and Séi’g)(n) =0.
Hence no NLP occurs. On the other hand, in the case a|q the statement of the
theorem is obviously true since S éi’g) (n) = wi (d(n) +1). O

5. PROOF OF THEOREM 1.2 AND THEOREM 1.5

5.1. Preliminaries. The strategy for studying the discrete function S éi’g ) (n)
for large n consists in expanding the function in a Fourier series and looking
at the behaviour of the asymptotically dominating term S’éi’g ) (n). The growth
of this term is basically determined by the absolute maximal eigenvalue A ax
of the matrix

s—1

M(wa) = [J T+ waT9" + w2T>" + - 4 wg 7' TO7D9™),

m=0
where s = ord,(g) and T denotes the matrix which ’shifts’ the canonical basis
of C? via Te; = e;,1. This is a straightforward generalization of the case g = 2
treated in detail in [3] and [6].

Moreover, the function .S ;ai’g ) (n) can be made explicit by considering a simple
generating relation. To begin with, observe that for 1 <e < g — 1 it holds

Z ysg(n)zn :<1+yzgk+ +ys 1 (e—1)g ) Z y

n<egk n<gk
_ 1—yaeet = g 9-1,(9—1)g’
(51) _1—CU7H(1+yZ ‘|‘+y 4 )
j=0
Let
(5.2) S yn)y = yed
0<j<n,
j=i (mod q)

and (, = exp(27i/q). By employing two different ways of counting y-powers

we get
q—1

> sy, egh) = D el

=0 n<egk
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and by (5.1),

1 q— y Calg k— 1 — gclngrl

1
(5.3) S( (y,eq") = —Z HW

=0 1_ C j=0

Thus, in principle, it is possible to evaluate S C(fi’g ) (y,n) at multiples of g-powers.

For general n = eg*+n’ with n’ < g* definition (5.2) provides a simple recursive
relation, namely

(5.4) Syi (y,eg" + 1) = S5y, 2g") + Sy ),

which enables to split off higher multiples of g-powers. For 1 <1 < g —1 let

N T L™
(5:5)  ni(k)=— 0 and
1-— wa(q 0 1- Wag

J=

denote the factors appearing in (5.3). Since \;(kis + ko) = N(s)* - N (k2) and
ni(kis + ko) = nf(0)* - nf (ky) we see that

1L

o 2 G OE M) 7 (k)N (k).

=0

(5.6) S (w0, eg") =

Thus the growth of |Séi’g)(wa,5gk)] is asymptotically determined by A; =
In7 (0)A\;(s)|. More precisely, let

Lo = {15 10 (O)\u(s)| = [ (0)X(s)] for all 0 <1< g—1}

and set A = |7 (0)A,(s)| for | € Lpax. Then for k = kys + ko we have

61 S ened) =2 30 G RN

leLmax

At .y
= D ¢ exp(ikibo)ni (ko) (k)

q l€Lmax

where 0y = arg(nf(0)A,(s)). Note that in the case g = 2 (treated in [3]) we
have 77 (k) = 1 and thus the calculation of L. is just right the calculation
of the maximal |\;(s)|. For the case a = 2, g > 2 determining L.y is a more
difficult task since for k > 1 we have

max |1 (0)] - max [Au(s)] > A,

i.e. we cannot independently maximize |77 (0)| and |\, (s)|. We deal with this
additional difficulty in Lemma 5.2.
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5.2. Outline of proof. From now onlet a =2, g =0 (mod 2) and ¢ = r(g+1)
with (k,2) = 1. Recall that the case g = 1 (mod 2) is totally characterized for
all ¢ in Theorem 1.4. Our investigation on the fractal behaviour of S éi-’g ) (—1,n)
now splits up into several steps. First we determine L., (Lemma 5.2 and
Lemma 5.3) and get an explicit expression for S’éi’g)(—l,egk) (Lemma 5.4).
Then, starting from a sufficiently large n = e,g* + 267! + ..., we use the
recursive relation (5.4) to 'expand’ the function to values of the function at
points of lower g-order. We obtain a finite tail which can be estimated by a
geometric series with small modulus (Corollary 5.5). A sufficient criterion is
then given which implies (7,0)- and (i, 1)-NLP’s depending on the parity of
(Lemma 5.6). Finally by distinguishing several cases on the leading coefficient
¢1 and using the criterion of Lemma 5.6 we obtain the results of Theorem 1.5.
The case g = 2 of Theorem 1.2 will be treated separately.

5.3. Determination of L,,,,. For convenience put
s

=\ |1 = 2 d = 2+1).
909 2(g+1)7 1 "{g/ an 2 ’%(g/ + )

To begin with, we calculate the values of \;(k) and nf (k) for [ =1, and [ = 5.
For later reference we include the following useful identity

1—2” w/2—1/2 Sin(aarg z/2 o/
68 G = ﬁ = 212 U, (cos(ang 2/2),

where U,_1(z) is the Chebyshev polynomial of the second kind of degree o — 1.
Lemma 5.1. It holds

(cot @,)* k even, | € {l1,12}
N(k) =1 = (coty)®, kodd, I =1,
i, 2 (cotpg)*,  k odd, =1

£ () = exp(—if) U._1(cos@y), l=1
A= exp(if) U._1(cos@,), =1y

where 6 = (e — 1) - (—1)*¢,.

Proof. Using (5.5) and the fact that Cégj+2 = Cégj for I € {l;,ls} we see that the
calculation of \;(k) reduces to the computation of ¢} and ¢l for I € {I1,15}.
Moreover, it is easy to verify that él = Cffg and Cé2 = Cf;g which together with
identity (5.8) gives the expressions for A\;(k) and n; (k). O

Note that the eigenvalue A, (s) = A\, (s) = (cotpy)® > 0 is an increasing
function of g with </, (s) = v/3,3.077...,4.381...,5.671... for g = 2,4,6,
respectively.

We include a technical lemma which handles the general multiplier 7 (0)
which modifies the eigenvalue \;(s) via relation (5.6).
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Lemma 5.2. Let 1 <e <g—1, z =exp(ip) and

filp) = ‘1115 ’ falp) = 11122 '
If fi(p) > cotp, then
F1(0) o) '% < (cot %)2 Sl;fifg)

Proof. For g = 2 the statement of the lemma is equivalent to the first step
of the proof in Lemma 4 in [3]. Assume now g > 4 and put J = [p1, @] =
[T — 204, ™+ 2p,4]. We split the proof up into several steps.

(1)

First we claim that
fi(g) > cotyp, if and only if ¢ € J;

equality holds if and only if ¢ = ¢ or ¢ = 5. To begin with, by
using (5.8) we easily note that for ¢ < ¢ < 9 it holds

hlg) = |22/
cos(p/2)
Viceversa, observe that fi(p) is an oscillating function in ¢ which is
symmetric with respect to ¢ = m. Moreover, note that its envelope
envy (@) = |cos(p/2)| " is strictly increasing on [0,7]. Now, put J' =
[¢, ], where ¢' = (1—2/g)m denotes the largest zero of fi() less than
¢ = m. Then for g > 4 it holds

max fi(p) < |cos(¢'/2)| " = (sin(r/g)) " < cot g,
pel0,m]\J’

> cot @g.

Furthermore, fi(p) is strictly increasing on [¢', p1] with fi(p1) =
cot 4. This completes the proof of the first step.

By the first step, the investigation can now be focused on the interval
J. Let envy(p) = |cos(ge/2)| ™" be the envelope of fo(¢). We claim
that X .
fo(e) = ili) -emvafi) - |F T
is strictly decreasing on [p1,7]. In equivalent terms, we have to show
that

= 20) = 252 iy
sin(ep) ~__ sin(gyp)

sin +/cos(gp)  sin/cos(gp)

is strictly increasing on [0, ¢,]. But this is clear due to the fact that
for all 1 < e < g the function

sin(ep)
sin p+/cos(gy)
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is strictly increasing on [0, ¢4]. This completes the proof of the second
step.

(3) Let J” = [¢", 7] where ¢ = 7(1—1/g+2/g*) denotes the smallest zero
of fa(p) larger that ;1. By the second step we have f3(¢) < f3(¢”) on
[¢", 7]. Since

1—(=2)°
fi(@) f2() ’Hiz

is strictly decreasing on [p1, ¢"], it remains to show that

1 — (—exp(ip1))°
1+ exp(iyr)

sin(e
2_ ( 909) > f3(§0”)'
SN @,

(5.9) f1() f2() = (cot pg)

We calculate

" cos(m/g?)
f3(¢") = sin(w/g) - sin*(m(g/2 — 1)/g?)

Of course,

-sin(em(g/2 —1)/¢%).

sin(em(g/2 —1)/9%) < sin(ep,)
for g > 2. Secondly, for g > 6 we also have
cos(m/g?) (cot )
sin(r/g) - sin?(7(g/2 — 1)/g?) sin ¢,

which gives (5.9) for g > 6. For the single case g = 4, relation (5.9)
can be verified by hand. This finishes the proof of the lemma.

OJ

The following lemma shows that the indices [; and [l indeed maximize the
quantity |77(0)|\;/(s). The proof uses a set splitting argument as seen in [3,
Lemma 4] extended to the general g-case.

Lemma 5.3. It holds
Lmax = {llv l2} .
Proof. Consider

s—1 1 — Clngrl
MN(s)=[Ta() with 6(j) = —2—
jHO 14l

and partition all indices 7 € {0,1,...,s — 1} = M into four disjunct sets My,
My, My and M3 where

My = {j with [6()] = cot o,

M, = {j with |0;(j)| > cot ¢,},

My ={j+1 (mods) with j € M;} and

My = M\ (My UM, UM, U DMs).
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It is clear that either My = {} or My = M. If My = {} then by Lemma 5.2,

B 1—(=¢)° N .
;(0)\i(s)| = %Cf) T 16+ 1 TT 166))
q JjeM; jEMs3
sin(ep,) oM M| _ Sin(epg) s
< TR (cotigy P - (eot ) = TEE0 cot )

The case My = M appears if and only if [ =1, = kg/2 or l =13 = k(g/2 + 1)
where

This completes the proof. O]

5.4. Calculation of the leading term. By using the formula (5.7) it is now

straightforward to calculate the leading term S'éi-’g)(—l, eg®). In what follows
let

Yo(g,1,¢€) :=sin (py(2e — 2i — 1)) +sin (p,(2i + 1)),
1(g,i,€) := — cos (¢g(2e +2i + 1)) + cos (pg(2i + 1)) .

Lemma 5.4. If k is even then

géyzi7g)(_175.gk) = (_1)1 ’ <C0t Spg)k ¢0(gaia5)
q Sin @g
(5.10) = 2yl 2T (e — 20— 1))sin (2,
q sin g,
If k is odd then

(“1)' (cotp,)*
q sin

2 (cot g )F

(5.11) _ 2 _qyileotog)”
q sin g,

We omit the proof of Lemma 5.4 since we simply use prosthaphaeresis for-

mulas in order to obtain the product forms in (5.10) and (5.11). Observe that

the sign of 5(572179)(—1, eg") is basically determined by the parity of .

S (1,e") = U1(g.1, )

sin (pg4(e + 2i + 1)) sin (egy) .

Corollary 5.5.
k—v

2. .
Z S(g,ljg)(—]., €jgj)
j=0

Proof. From Lemma 5.4 we get

2 (cot p,) 1\
< - 7(“.) 20)” (cotgy)™" <1 — > :
q S, cot g

k—v 9 1 k—v
S|S0 reig| < = (cot e,
q,t; »=] — : g
=0 ! q sy ‘=
2 1 (cotpy)f" —1/cot g,
g sing, 1 —1/cot g,
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O

5.5. Proof of Theorem 1.2. We can give a more accurate estimate from
Lemma 5.4 in the case g = 2, namely

5(2‘7_2)(—1, €]2J)

q,t;

2 P2
< Z(cotpy) == -3/2 and
q q

2 1\ !
5.12 < Z.3k=v)/2 (1 - —) .
(5:12) q V3

The estimate (5.12) has been used in the proof of the first part of Theorem 1
in [3]. We include the formula while correcting a minor misprint (see Lemma 5
therein).

Proof of Theorem 1.2. The table below gives the values of géi?y 4+;(—1,2F) for
k > 2 calculated from Lemma 5.4:

jH k even ‘ k odd

; Q\/gk q\/—\/gk
1 3

1 —5\/§k —¥2V/3

2| —1v3 0

q

The first statement of Theorem 1.2 now follows exactly from the lines of the
proof of Lemma 5 in [3]. For the second statement we distinguish several cases.
First let k£ be even.

(1) If n=(100...), then

e

_ 1 2 3

Szgi’fs)wrl(n) < __\/gk + 3 \/_ — < 0.
q V3q 1-+3

(2) If n=(101...), then

k
_ 1 2 - 2 3
S80 m<-tvito2gt 2 V3
q q V3q 1—-3

(3) If n=(11...), then

k
- 1 = 1 ~x 2 3
ehams—vE Ly 2 Y
q q V3 1-43
If k£ is odd then we succeed with the same procedure by considering the cases
n=(10...),, n=(110...), and n = (111...),. O
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5.6. Proof of Theorem 1.5. Let g > 4. We use the recursive relation (5.4)

for the leading term Sﬁ’jg)(—l,n) in order to derive a sufficient criterion for
NLP’s.

Lemma 5.6. Let g and i be such that for all 1 < e1,69 < g—1 and ey # 0
there hold

a) ¢0(g7i751) + (COt @g)il ¢1(gvi - 61752) > R(g) and
b) ¢1(97i751) + (COt SOQ>_1 1/)0(g7i + 51752) > R(g);

where

R(g) = 2 - (cot pg) 2 (1 = (cot og) ™) ™

Then

(1) Ifi is even then (2,g,q) satisfies an (i,0)-NLP.
(2) Ifi is odd then (2,g,q) satisfies an (i,1)-NLP.

If 7>7is replaced by "<” and "R(g)” by "—R(g)” in both a) and b) then
(1) If i 1s even then (2, g,q) satisfies an (i,1)-NLP.
(2) Ifi is odd then (2,g,q) satisfies an (i,0)-NLP.

Proof. Denote n; € {—1,0,1}. First, let k be even, then by using Lemma 5.4,
Corollary 5.5 and the identity

cos (gog(—Qélgk + C)) = (—1) cos (¢4(—2e1 + C))
we have

S (=1m) = S (=1, e1g") o+ (<1)7 537

q,t q, q,1 e1g

(1,829
+Z77JS(9 —1,e;9°)

—(_1)i . (co‘upg) sin €1 — 21 — sin )
S L (i g 260 — 2= 1) sin (214 1)
o8 (py(2e2 — 261 +2i+ 1)) . cos (pg(2e1 —2i — 1))

cot g cot g

L0 L1 -
(cot pg)? cot ¢, ’

where |§| < 2. This gives the first inequality of Lemma 5.6. Now, let k& be odd.
Then since

sin (py(£2e1¢" + C)) = (—1)*' sin (p,(F2e1 + O))
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we have
_ -1 ) t k
SEI(—1,n) _ ; ) (Csinigj ( — 08 (g (261 + 2i + 1)) + cos (py(2i + 1))
N sin (p,(2e2 — 261 — 20 — 1)) N sin (p,(2e1 +2i 4+ 1))
cot g cot g
5 1\
(1=
" (cot pg)? ( cot ‘Pg) >7
where again |§] < 2. This yields the second inequality. O

We are now ready to give the proof of Theorem 1.5.
Proof of Theorem 1.5. For convenience put
a = cos ((2i + 1)¢y) B =sin ((2i + 1))

and consider the left hand side of inequality a) in Lemma 5.6. Then by using
trigonometric addition formulas we have

Yo(g,i,e1)+ (cot ) " Yi(g,i — 1, 82) =

cos(2e1p5)  cos(2(e2 — €1)py)
cot g cot g

a <sin(2€1gog) +

+ 3 <— cos(2e1p4) + 1 +
= an + 7.
The same calculation for inequality b) in Lemma 5.6 yields

¥1(g,4,€1) + (cot ‘Pg)_l Yo(g,i+¢€1,€2) = aya + B
We distinguish two cases on the leading coefficient ;. First let e < §. Then

sin(2e1¢,) N sin(2(e2 — €1)py)
cot g cot g

cos(2p,) 1

11 > sin(2¢,) + = 2sin(2¢,) — 2tan ¢,

cot g cot g
sin(2e1¢,) n sin(—2e1¢,)
cot g cot g

> 1 — cos(2p,) = 2(sinp,)*.

Y2 > —cos(2e1p4) + 1+

On the other hand, if £; > § then

: cos((g — 1)¢g) 1
> -1 + — =1-t ,
71 > sin((g — 1)) —— cot o, an @,

sin((g +2)gpy)  sin(gey)
cot g cot g

Y2 > 1 —cos((g +2)py) +

=1+ sinp,.

Now, consider the case where o > 0 and [ > 0. Since for x € [0, 1] it holds
2x(sin(2¢,) — tan¢,) + 2v1 — 22(sin ¢,)* > 2(sin(2¢,) — tan ¢,) > R(g)

and
(1 —tanp,) + V1 —22(1 +sinp,) > 1 —tanp, > R(g)
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we have that ay; + Gy > R(g) and aye + 671 > R(g) is satisfied whenever
i€ LVJ [2u(g +1), % +2w(g + 1)} .

Now, let & < 0 and 3 < 0. We use the same inequalities as before (multiplied
by —1) and have ay; + 372 < —R(g) and oy, + By < —R(g). Thus,

i e U [(2y+1)(9+ 1),§+ (2y+1)(9+1)] .

The application of Lemma 5.6 finishes the proof of Theorem 1.5.

6. PROOF OF THEOREM 1.7

The idea of the proof is to show that

p 1 k— 11_Clgy+l

S L) = S [T

lgi
l 1 5=0 1 +Cg
is positive for infinitely many k and also negative for infinitely many k. The
multiplicative subgroup U = {1,g,¢% ...,¢° '} induces a partition of cosets
Ly, Lo, ..., L; of the set {1,2,...,p— 1}. As above we define the eigenvalues
s—1 lgit1
1—¢f
=T
l
i 1+¢7

Since \;, = A, if [ and [l belong to the same coset L we also use the short
hand notation Ay for \; if [ € L.

. . . . 2, s

With help of this notations we get proper representations for S]g,og )(—1, g*)

and Szg?dg)(—l, g"*7%) that will be used in the proof of Theorem 1.7:

t
2, s S
S}E),Og)(_lagk ) = _Z)\Izrv

. 1+C’ 1+Cgl)
SEI(—1,g"72) = —Z LTZ

r=1 leLl, CP )

In particular we use the following estimates:

Lemma 6.1. For every r we have A} > 0. Hence

(6.1) SEI(—1,¢"%) > 0.
Furthermore
t
2, s p 1
62 S (L") < (- ) L oA

r=1

for some constants c1,co > 0 that only depend on g.
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Proof. By definition it follows that ); is either real or imaginary. Hence A} > 0.
Thus, (6.1) follows immediately.

The proof of (6.2) requires several steps. First, we will prove that there are
constants ¢q, ¢y such that

3 (1+¢)+¢h p?

S C1S — 6o e
l 2] 2
ier, 1 =) =G i !

For the sake of shortness set

(6.3)

(T4 ¢+ ¢
1-¢hHe—¢™

By elementary calculations we have

T, =

l
arg (T}) = ;”(1 — )+

If |l mod p| < np, where n = 1/(4(g*> — 1)), then |T;| > p?/I* and consequently

?
R(N) < —C2l—2
for some constant co > 0. On the other hand, if |l mod p| > np then R(7T}) <
|T}| < ¢; for another constant ¢; > 1. Of course, this directly proves (6.3) (by
assuming without loss of generality that co < ney).
The next step is to use Pdlya-Vinogradov inequality (compare with [3]
and [12, p. 86, Aufgabe 12 b]) to obtain for all cosets L,

#{l € L, : |l mod p| < 2tp*?logp} > p'/*log p.

Hence
p_z N P32
= 12— 4t?logp
and consequently
3/2
ZGZLTTl = ZGXL:T SCE(Tl) < Clzg - C2t2plogp
which directly gives (6.2). O

We can now prove the first part of Theorem 1.7. If p € P; and p > Ct*(log p)?
then we surely have
VP

<
tlogp

which shows that Slg?dg)(—l,g‘*ks_z) < 0 for all k. Hence, (2,g,p) does not
satisfy a (0,0)-NLP.
We can also state this observation in the following way:.

C1 — Co
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Lemma 6.2. Suppose g > 2 is an even integer and p an odd prime. If (2, g,p)
satisfies a (0,0)-NLP then

5 = ordy(g) < CpV?logp,
where C' > 0 just depends on g.
Now a proper variation of a result of Erdés [5] (compare also with [3]) says:

Lemma 6.3. For every even integer g > 2 and every sequence ¢, — 0 (as
p — 00) we have

< : — d < 1/2+Ep — T .
#{p<z:s=ordy(g) <p } O(Ing

Of course, a combination of these two lemmas directly proves the second
part of Theorem 1.7. O

REFERENCES

[1] J. Coquet, A summation formula related to the binary digits, Invent. Math. 73(1) (1983),
107-115.

[2] M. Drmota and M. Skatba, Sign-changes of the Thue-Morse fractal function and Dirichlet
L-series, Manuscripta Math. 86(4) (1995), 519-541.

[3] M. Drmota and M. Skalba, Rarified sums of the Thue-Morse sequence, Trans. Amer.
Math. Soc. 352(2) (2000), 609-642.

[4] J.-M. Dumont, Discrépance des progressions arithmétiques dans la suite de Morse, C. R.
Acad. Sci. Paris Sér. I Math. 297(3) (1983), 145-148.

[5] P. Erdds, Bemerkungen zu einer Aufgabe von Elementen, Arch. Math. (Basel) 27(2)
(1976), 159-163.

[6] S. Goldstein, K. A. Kelly and E. R. Speer, The fractal structure of rarefied sums of the
Thue-Morse sequence, J. Number Theory 42(1) (1992), 1-19.

[7] P. J. Grabner, A note on the parity of the sum-of-digits function, in: Séminaire
Lotharingien de Combinatoire (Gerolfingen, 1993), volume 1993/34 of Prépubl. Inst.
Rech. Math. Av., Univ. Louis Pasteur, Strasbourg, 1993, 35-42.

[8] P.J. Grabner, T. Herendi and R. F. Tichy, Fractal digital sums and codes, Appl. Algebra
Engrg. Comm. Comput. 8(1) (1997), 33-39.

[9] H. Leinfellner, New results on rarefied sums of the Thue-Morse sequence, in: Beitrige
zur zahlentheoretischen Analysis, volume 338 of Grazer Math. Ber., Karl-Franzens-Univ.
Graz, Graz, 1999, 9-30.

[10] D. J. Newman, On the number of binary digits in a multiple of three, Proc. Amer. Math.
Soc. 21 (1969), 719-721.

[11] D. J. Newman and M. Slater, Binary digit distribution over naturally defined sequences,
Trans. Amer. Math. Soc. 213 (1975), 71-78.

[12] 1. M. Vinogradov, Elemente der Zahlentheorie, Oldenburg, Miinchen, 1956.

MICHAEL DRMOTA, INSTITUT FUR DISKRETE MATHEMATIK UND GEOMETRIE, TECH-
NISCHE UNIVERSITAT WIEN, WIEDNER HAUPTSTRASSE 8-10/104, A-1040 WIEN, AUS-
TRIA

FE-mail address: michael.drmota@tuwien.ac.at

THOMAS STOLL, INSTITUT FUR DISKRETE MATHEMATIK UND GEOMETRIE, TECHNIS-
CHE UNIVERSITAT WIEN, WIEDNER HAUPTSTRASSE 8-10/104, A-1040 WIEN, AUSTRIA
E-mail address: stoll@dmg.tuwien.ac.at



