THE DEGREE DISTRIBUTION OF RANDOM PLANAR GRAPHS

Michael Drmota*

joint work with Omer Giménez and Marc Noy

Institut für Diskrete Mathematik und Geometrie

TU Wien

michael.drmota@tuwien.ac.at

http://www.dmg.tuwien.ac.at/drmota/

* supported by the Austrian Science Foundation FWF, grant S9600.

One-Day Meeting in Combinatorics, Oxford, March 18, 2009

Contents

- Short "history" of random planar graphs
- Generating function for random planar graphs
- Asymptotic enumeration of planar graphs
- The degree distribution of random planar graphs
- Outerplanar and series-parallel graphs
- The degree distribution of outerplanar and series-parallel graphs
- The maximum degree of outerplanar and series-parallel graphs

"History"

 \mathcal{R}_n ... labelled planar graphs with *n* vertices with uniform distribution

 $X_n \dots$ number of **edges** is a random planar graph with *n* vertices

Denise, Vasconcellos, Welsh (1996)

$$\boxed{\mathbb{P}\{X_n > \frac{3}{2}n\} \to 1, \quad \mathbb{P}\{X_n < \frac{5}{2}n\} \to 1}.$$

(Note that $0 \le e \le 3n$ for all planar graphs.)

"History"

McDiarmid, Steger, Welsh (2005)

 $\mathbb{P}{H \text{ appears in } \mathcal{R}_n \text{ at least } \alpha n \text{ times}} \rightarrow 1$

H ... any fixed planar graph, $\alpha > 0$ sufficiently small.

Consequences:

 $\mathbb{P}\{\text{There are } \geq \alpha n \text{ vertices of degree } k\} \rightarrow 1$

k > 0 a given integer, $\alpha > 0$ sufficiently small.

 $\mathbb{P}\{\text{There are } \geq C^n \text{ automorphisms}\} \rightarrow 1$

for some C > 1.

Further Results:

 $\mathbb{P}\{\mathcal{R}_n \text{ is connected}\} \geq \gamma > 0$

[McDiarmid+Reed]

$$\mathbb{E}\Delta_n = \Theta(\log n)$$

 Δ_n ... maximum degree in \mathcal{R}_n

The number of planar graphs

[Bender, Gao, Wormald (2002)]

 b_n ... number of **2-connected** labelled planar graphs

$$b_n \sim c \cdot n^{-\frac{7}{2}} \gamma_2^n n!$$
, $\gamma_2 = 26.18...$

[Gimenez+Noy (2005)]

 g_n number of all labelled planar graphs

$$g_n \sim c \cdot n^{-\frac{7}{2}} \gamma^n n!$$
, $\gamma = 27.22...$

Precise distributional results

[Gimenez+Noy (2005)]

• X_n satisfies a **central limit theorem**:

$$\mathbb{E} X_n \sim 2.21... \cdot n, \quad \mathbb{V} X_n \sim c \cdot n.$$
$$\mathbb{P}\{|X_n - 2.21... \cdot n| > \varepsilon n\} \le e^{-\alpha(\varepsilon) \cdot n}$$

• Connectedness:

$$\mathbb{P}\{\mathcal{R}_n \text{ is connected}\} \to e^{-\nu} = 0.96...$$

number of components of $\mathcal{R}_n =: C_n \to 1 + Po(\nu)$.

Degree Distribution

Theorem [D.+Giménez+Noy]

Let $p_{n,k}$ be the probability that a random node in a random planar graph \mathcal{R}_n has degree k. Then the limit

$$p_k := \lim_{n \to \infty} p_{n,k}$$

exists. The probability generating function

$$p(w) = \sum_{k \ge 1} p_k w^k$$

can be explicitly computed; $p_k \sim c k^{-\frac{1}{2}} q^k$ for some c > 0 and 0 < q < 1.

p_1	<i>p</i> 2	рз	p_4	p_5	p_6
0.0367284	0.1625794	0.2354360	0.1867737	0.1295023	0.0861805

• Implicit equation for $D_0(y, w)$:

$$1 + D_0 = (1 + yw) \exp\left(\frac{\sqrt{S}(D_0(t-1)+t)}{4(3t+1)(D_0+1)} - \frac{D_0^2(t^4 - 12t^2 + 20t - 9) + D_0(2t^4 + 6t^3 - 6t^2 + 10t - 12) + t^4 + 6t^3 + 9t^2}{4(t+3)(D_0+1)(3t+1)}\right),$$

where $t = t(y)$ satisfies $y+1 = \frac{1+2t}{(1+3t)(1-t)} \exp\left(-\frac{1}{2}\frac{t^2(1-t)(18+36t+5t^2)}{(3+t)(1+2t)(1+3t)^2}\right)$
and $S = (D_0(t-1)+t)(D_0(t-1)^3 + t(t+3)^2).$

• Explicit expressions in terms of $D_0(y, w)$ (SEVERAL PAGES !!!!):

$$B_0(y,w), B_2(y,w), B_3(y,w)$$

• Explict expression for p(w):

$$p(w) = -e^{B_0(1,w) - B_0(1,1)}B_2(1,w) + e^{B_0(1,w) - B_0(1,1)}\frac{1 + B_2(1,1)}{B_3(1,1)}B_3(1,w)$$

Conjecture for maximum degree Δ_n

$$\frac{\Delta_n}{\log n} \to \frac{1}{\log(1/q)} \qquad \text{in probability}$$

and

$$\mathbb{E}\,\Delta_n \sim \frac{\log n}{\log(1/q)}$$

where q = 0.6734506... appear in the asymptotics of $p_k \sim c k^{-\frac{1}{2}} q^k$; $1/\log(1/q) = 2.529464248...$

 $X_n^{(k)}$... number of vertices of degree k in a random labelled planar graph of size n

 $p_{n,k}$... probability that a random vertex in a random labelled planar graph of size n has degree k

 $\hat{p}_{n,k}$... probability that the root vertex in a random labelled vertex rooted planar graph of size n has degree k

•
$$p_{n,k} = \hat{p}_{n,k}$$

•
$$\mathbb{E} X_n^{(k)} = n \, p_{n,k}$$

Generating functions for counting planar graphs

 $b_{n,m}$... number of **2-connected labelled planar** graphs with n vertices and m edges, $b_n = \sum_m b_{n,m}$

$$B(x,y) = \sum_{n,m} b_{n,m} \frac{x^n}{n!} y^m$$

 $c_{n,m}$... number of **connected labelled planar** graphs with n vertices and m edges, $c_n = \sum_m c_{n,m}$

$$C(x,y) = \sum_{n,m} c_{n,m} \frac{x^n}{n!} y^m$$

 $g_{n,m}$... number of **all labelled planar** graphs with n vertices and m edges, $g_n = \sum_m g_{n,m}$

$$G(x,y) = \sum_{n,m} g_{n,m} \frac{x^n}{n!} y^m$$

Generating functions for counting planar graphs

 $G(x, y) = \exp\left(C(x, y)\right),$ $\frac{\partial C(x,y)}{\partial x} = \exp\left(\frac{\partial B}{\partial x}\left(x\frac{\partial C(x,y)}{\partial x},y\right)\right),\,$ $\frac{\partial B(x,y)}{\partial u} = \frac{x^2}{2} \frac{1+D(x,y)}{1+u},$ $\frac{M(x,D)}{2x^2D} = \log\left(\frac{1+D}{1+u}\right) - \frac{xD^2}{1+xD},$ $M(x,y) = x^2 y^2 \left(\frac{1}{1+xy} + \frac{1}{1+y} - 1 - \frac{(1+U)^2(1+V)^2}{(1+U+V)^3} \right),$ $U = xy(1+V)^2.$ $V = u(1+U)^2.$

Asymptotic enumeration of planar graphs

$$b_n = b \cdot \rho_1^{-n} n^{-\frac{7}{2}} n! \left(1 + O\left(\frac{1}{n}\right) \right),$$

$$c_n = c \cdot \rho_2^{-n} n^{-\frac{7}{2}} n! \left(1 + O\left(\frac{1}{n}\right) \right),$$

$$g_n = g \cdot \rho_2^{-n} n^{-\frac{7}{2}} n! \left(1 + O\left(\frac{1}{n}\right) \right)$$

$$\rho_1 = 0.03819...,$$

$$\rho_2 = 0.03672841...,$$

$$b = 0.3704247487... \cdot 10^{-5},$$

$$c = 0.4104361100... \cdot 10^{-5},$$

$$g = 0.4260938569... \cdot 10^{-5}$$

Generating functions for the degree distribution of planar graphs

 $C^{\bullet} = \frac{\partial C}{\partial x}$... GF, where one vertex is marked but not counted

 $w \dots$ additional variable that *counts* the **degree of the marked vertex**

Generating functions:

 $G^{\bullet}(x,y,w)$ all rooted planar graphs $C^{\bullet}(x,y,w)$ connected rooted planar graphs $B^{\bullet}(x,y,w)$ 2-connected rooted planar graphs $T^{\bullet}(x,y,w)$ 3-connected rooted planar graphs

Note that $G^{\bullet}(x, y, 1) = \frac{\partial G}{\partial x}(x, y)$ etc.

more precisely

 $g_{n,m,k}^{\bullet}$... number of vertex rooted labelled planar graphs with n+1vertices, m edges, where the (uncounted and unlabelled) root vertex has degree k.

$$G^{\bullet}(x, y, w) = \sum_{n,m,k} g^{\bullet}_{n,m,k} \frac{x^{n}}{n!} y^{m} w^{k}$$
$$\sum_{k} g^{\bullet}_{n-1,m,k} = n g_{n,m}, \qquad \left[p_{n,k} = \frac{g^{\bullet}_{n-1,m,k}}{n g_{n,m}} \right]$$
$$\sum_{k \ge 1} p_{n,k} w^{k} = \frac{1}{n g_{n,m}} \sum_{k \ge 1} g^{\bullet}_{n-1,m,k} w^{k} = \frac{[x^{n-1}]G^{\bullet}(x, 1, w)}{[x^{n-1}]G^{\bullet}(x, 1, 1)}$$
$$\implies \left[p(w) = \sum_{k \ge 1} p_{n} w^{k} = \lim_{n \to \infty} \frac{[x^{n-1}]G^{\bullet}(x, 1, w)}{[x^{n-1}]G^{\bullet}(x, 1, 1)} \right]$$

 $k \ge 1$

$$\begin{split} G^{\bullet}(x, y, w) &= \exp\left(C(x, y, 1)\right) C^{\bullet}(x, y, w), \\ C^{\bullet}(x, y, w) &= \exp\left(B^{\bullet}\left(xC^{\bullet}(x, y, 1), y, w\right)\right), \\ w \frac{\partial B^{\bullet}(x, y, w)}{\partial w} &= xyw \exp\left(S(x, y, w) + \frac{1}{x^{2}D(x, y, w)}T^{\bullet}\left(x, D(x, y, 1), \frac{D(x, y, w)}{D(x, y, 1)}\right)\right) \\ D(x, y, w) &= (1 + yw) \exp\left(S(x, y, w) + \frac{1}{x^{2}D(x, y, w)} \times T^{\bullet}\left(x, D(x, y, 1), \frac{D(x, y, w)}{D(x, y, 1)}\right)\right) - 1 \\ S(x, y, w) &= xD(x, y, 1) \left(D(x, y, w) - S(x, y, w)\right), \\ T^{\bullet}(x, y, w) &= \frac{x^{2}y^{2}w^{2}}{2} \left(\frac{1}{1 + wy} + \frac{1}{1 + xy} - 1 - \frac{(u + 1)^{2} \left(-w_{1}(u, v, w) + (u - w + 1)\sqrt{w_{2}(u, v, w)}\right)}{2w(vw + u^{2} + 2u + 1)(1 + u + v)^{3}}\right), \\ u(x, y) &= xy(1 + v(x, y))^{2}, \quad v(x, y) = y(1 + u(x, y))^{2}. \end{split}$$

with polynomials $w_1 = w_1(u, v, w)$ and $w_2 = w_2(u, v, w)$ given by

$$w_{1} = -uvw^{2} + w(1 + 4v + 3uv^{2} + 5v^{2} + u^{2} + 2u + 2v^{3} + 3u^{2}v + 7uv) + (u + 1)^{2}(u + 2v + 1 + v^{2}),$$

$$w_{2} = u^{2}v^{2}w^{2} - 2wuv(2u^{2}v + 6uv + 2v^{3} + 3uv^{2} + 5v^{2} + u^{2} + 2u + 4v + 1) + (u + 1)^{2}(u + 2v + 1 + v^{2})^{2}.$$

Planar Maps vs. Planar Graphs

Whitney's Theorem

Every 3-connected planar graph has a unique embedding into the plane.

 \implies The counting problem of **rooted 3-connected planar maps** is equivalent to the counting problem of **rooted (labelled) 3-connected planar graphs** (despite of a factor (n - 1)!)

Furthermore, the counting problem of **rooted 3-connected planar maps** is equivalent to the counting problem of **rooted simple quadrangulations**.

 q_{ijk} ... number of simple quadrangulations with i+1 vertices of type 1 (\circ), j+1 vertices of type 2 (\Box), and with root vertex of degree k+1

$$Q(x, y, w) = \sum_{i,j,k} q_{i,j,k} \cdot x^i y^j w^k$$

Theorem [Mullin+Schellenberg, D+Gimenez+Noy]

$$Q(x, y, w) = xyw \left(\frac{1}{1+wy} + \frac{1}{1+x} - 1\right) - \frac{UV}{(1+U+V)^3} \cdot W(R, S, w)$$

with ...

with algebraic function U = U(x, y), V = V(x, y) given by

$$U = x(V+1)^2$$
, $V = y(U+1)^2$

and

$$W(U, V, w) = \frac{-w_1(U, V, w) + (U - w + 1)\sqrt{w_2(U, V, w)}}{2(V + 1)^2(Vw + U^2 + 2U + 1)}$$

with polynomials $w_1 = w_1(U, V, w)$ and $w_2 = w_2(U, V, w)$ given by

$$w_{1} = -UVw^{2} + w(1 + 4V + 3UV^{2} + 5V^{2} + U^{2} + 2U + 2V^{3} + 3U^{2}V + 7UV) + (U + 1)^{2}(U + 2V + 1 + V^{2}), w_{2} = U^{2}V^{2}w^{2} - 2wUV(2U^{2}V + 6UV + 2V^{3} + 3UV^{2} + 5V^{2} + U^{2} + 2U + 4V + 1) + (U + 1)^{2}(U + 2V + 1 + V^{2})^{2}.$$

Corollary By Whitney's theorem:

$$T^{\bullet}(x, y, w) = \frac{xw}{2}Q(xy, y, w).$$

Planar networks

A **network** N is a (multi-)graph with two distinguished vertices, called its poles (usually labelled 0 and ∞) such that the (multi-)graph \hat{N} obtained from N by adding an edge between the poles of N is 2connected.

Let M be a network and $X = (N_e, e \in E(M))$ a system of networks indexed by the edge-set E(M) of M. Then N = M(X) is called the **superposition** with core M and components N_e and is obtained by replacing all edges $e \in E(M)$ by the corresponding network N_e (and, of course, by identifying the poles of N_e with the end vertices of eaccordingly).

A network N is called an h-network if it can be represented by N = M(X), where the core M has the property that the graph \hat{M} obtained by adding an edge joining the poles is 3-connected and has at least 4 vertices. Similarly N = M(X) is called a p-network if M consists of 2 or more edges that connect the poles, and it is called an s-network if M consists of 2 or more edges that connect the poles in series.

Planar networks

Trakhtenbrot's canonical network decomposition theorem: any network with at least 2 edges belongs to exactly one of the 3 classes of h-, p- or s-networks. Furthermore, any h-network has a unique decomposition of the form N = M(X), and a p-network (or any s-network) can be uniquely decomposed into components which are not themselves p-networks (or s-networks).

Planar networks

Lwt D(x, y, w) and S(x, y, w), respectively, the GFs of (planar) networks and series networks, with the same meaning for the variables x, y and w:

Then by a variant of [Walsh (1982)]

$$D(x, y, w) = (1 + yw) \exp\left(S(x, y, w) + \frac{1}{x^2 D(x, y, w)}T^{\bullet}\left(x, E(x, y), \frac{D(x, y, w)}{D(x, y, 1)}\right)\right)$$

$$S(x, y, w) = xD(x, y, 1) \left(D(x, y, w) - S(x, y, w)\right),$$

A planar network with non-adjacent poles is obtained by distinguishing, orienting and then deleting any edge of an arbitrary 2-connected planar graph:

$$w\frac{\partial B^{\bullet}(x,y,w)}{\partial w} = xyw \exp\left(S(x,y,w) + \frac{1}{x^2 D(x,y,w)}T^{\bullet}\left(x, D(x,y,1), \frac{D(x,y,w)}{D(x,y,1)}\right)\right)$$

 $C^{\bullet}(x, y, w) = e^{B^{\bullet}(xC^{\bullet}(x, y, 1), x, w)}$

All Planar Graphs

$$G^{\bullet}(x, y, w) = \exp\left(C(x, y, 1)\right) C^{\bullet}(x, y, w)$$

Asymptotics for Random Planar Graphs

Functional equations

Suppose that $A(x,u) = \Phi(x,u,A(x,u))$, where $\Phi(x,u,a)$ has a power series expansion at (0,0,0) with non-negative coefficients and $\Phi_{aa}(x,u,a) \neq 0$.

Let $x_0 > 0$, $a_0 > 0$ (inside the region of convergence) satisfy the system of equations:

$$a_0 = \Phi(x_0, 1, a_0), \quad 1 = \Phi_a(x_0, 1, a_0).$$

Then there exists analytic function g(x, u), h(x, u), and $\rho(u)$ such that locally

$$A(x,u) = g(x,u) - h(x,u)\sqrt{1 - \frac{x}{\rho(u)}}$$
Asymptotics for coefficients

$$A(x) = g(x) - h(x)\sqrt{1 - \frac{x}{\rho}} \quad (+ \text{ some technical conditions})$$

$$\implies \qquad \left[x^n \right] A(x) = \frac{h(\rho)}{2\sqrt{\pi}} \rho^{-n} n^{-\frac{3}{2}} \left(1 + O\left(\frac{1}{n}\right) \right).$$

Similarly:

$$A(x,u) = g(x,u) - h(x,u) \sqrt{1 - \frac{x}{\rho(u)}} \quad (+ \text{ some technical conditions})$$

$$\implies [x^n] A(x, u) = \frac{h(\rho(u), u)}{2\sqrt{\pi}} \rho(u)^{-n} n^{-\frac{3}{2}} \left(1 + O\left(\frac{1}{n}\right)\right).$$

Asymptotics for coefficients

and

$$A(x) = g(x) + h(x) \left(1 - \frac{x}{\rho}\right)^{\alpha} \quad (+ \text{ some technical conditions})$$
$$\implies [x^n] A(x) = \frac{h(\rho)}{\Gamma(-\alpha)} \rho^{-n} n^{-\alpha - 1} \left(1 + O\left(\frac{1}{n}\right)\right).$$

Singular expansion

$$A(x) = \left[g(x) - h(x)\sqrt{1 - \frac{x}{\rho}} \right]$$

= $\left(g_0 + g_1(x - \rho) + g_2(x - \rho)^2 + \cdots \right)$
+ $\left(h_0 + h_1(x - \rho) + h_2(x - \rho)^2 + \cdots \right) \sqrt{1 - \frac{x}{\rho}}$
= $a_0 + a_1 \left(1 - \frac{x}{\rho} \right)^{\frac{1}{2}} + a_2 \left(1 - \frac{x}{\rho} \right)^{\frac{2}{2}} + a_3 \left(1 - \frac{x}{\rho} \right)^{\frac{3}{2}} + \cdots$
= $a_0 + a_1 X + a_2 X^2 + a_3 X^3 + \cdots$

with

$$X = \sqrt{1 - \frac{x}{\rho}}.$$

Central limit theorem

$$A(x,u) = g(x,u) - h(x,u)\sqrt{1 - \frac{x}{\rho(u)}}.$$
$$\mathbb{P}\{X_n = k\} = \frac{[x^n u^k] A(x,u)}{[x^n] A(x,1)}$$

(+ some technical conditions).

Then the random variable X_n satisfies a **central limit theorem** with

$$\mathbb{E} X_n \sim n\mu$$
 and $\mathbb{V} \operatorname{ar} X_n \sim n\sigma^2$,

where μ and σ^2 can be computed.

$$U(x, y) = xy(1 + V(x, y))^{2},$$

$$V(x, y) = y(1 + U(x, y))^{2}$$

$$\implies U(x, y) = xy(1 + y(1 + U(x, y))^{2})^{2}$$

$$\implies U(x, y) = g(x, y) - h(x, y)\sqrt{1 - \frac{y}{\tau(x)}}$$

$$\implies V(x, y) = g_{2}(x, y) - h_{2}(x, y)\sqrt{1 - \frac{y}{\tau(x)}}$$

$$M(x, y) = x^{2}y^{2}\left(\frac{1}{1 + xy} + \frac{1}{1 + y} - 1 - \frac{(1 + U)^{2}(1 + V)^{2}}{(1 + U + V)^{3}}\right)$$

$$= M(x, y) = g_{3}(x, y) + h_{3}(x, y)\left(1 - \frac{y}{\tau(x)}\right)^{\frac{3}{2}}$$

due to cancellation of the $\sqrt{1-y/ au(x)}$ -term

$$\frac{M(x,D)}{2x^2D} = \log\left(\frac{1+D}{1+y}\right) - \frac{xD^2}{1+xD}$$

$$!!! \implies D(x,y) = g_4(x,y) + h_4(x,y)\left(1 - \frac{x}{R(y)}\right)^{\frac{3}{2}}$$

due to interaction of the singularities!!!

$$\frac{\partial B(x,y)}{\partial y} = \frac{x^2}{2} \frac{1+D(x,y)}{1+y},$$

$$!!! \implies B(x,y) = g_5(x,y) + h_5(x,y) \left(1-\frac{x}{R(y)}\right)^{\frac{5}{2}}$$

$$\implies b_n \sim b \cdot R(1)^{-n} n^{-\frac{7}{2}} n!$$

$$B'(x,y) = g_6(x,y) + h_6(x,y) \left(1 - \frac{x}{R(y)}\right)^{\frac{3}{2}},$$
$$C'(x,y) = e^{B'(xC'(x,y),y)},$$
$$(1 - \frac{x}{r(y)})^{\frac{3}{2}}$$

due to interaction of the singularities!!!

$$\implies C(x,y) = g_8(x,y) + h_8(x,y) \left(1 - \frac{x}{r(y)}\right)^{\frac{5}{2}}$$

$$\implies c_n \sim c r(1)^{-n} n^{-\frac{7}{2}} n!$$

$$C(x,y) = g_8(x,y) + h_8(x,y) \left(1 - \frac{x}{r(y)}\right)^{\frac{5}{2}}$$

$$\implies \quad G(x,y) = e^{C(x,y)} = g_9(x,y) + h_9(x,y) \left(1 - \frac{x}{r(y)}\right)^{\frac{5}{2}}$$

3-connected planar graphs

$$T^{\bullet}(x, y, w) = \frac{x^2 y^2 w^2}{2} \left(\frac{1}{1 + wy} + \frac{1}{1 + xy} - 1 - \frac{(U+1)^2 \left(-w_1(U, V, w) + (U - w + 1)\sqrt{w_2(U, V, w)} \right)}{2w(Vw + U^2 + 2U + 1)(1 + U + V)^3} \right),$$

$$\tilde{u}_0(y) = -\frac{1}{3} + \sqrt{\frac{4}{9} + \frac{1}{3y}}, \quad r(y) = \frac{\tilde{u}_0(y)}{y(1 + y(1 + \tilde{u}_0(y))^2)^2},$$
$$\tilde{X} = \sqrt{1 - \frac{x}{r(y)}}$$

 $\implies T^{\bullet}(x, y, w) = \tilde{T}_{0}(y, w) + \tilde{T}_{2}(y, w)\tilde{X}^{2} + \tilde{T}_{3}(y, w)\tilde{X}^{3} + O(\tilde{X}^{4})$ due to cancellation of the $\sqrt{1 - x/r(z)}$ -term.

Planar networks

$$D(x, y, w) = (1 + yw) \exp\left(S(x, y, w) + \frac{1}{x^2 D(x, y, w)} \times T^{\bullet}\left(x, D(x, y, 1), \frac{D(x, y, w)}{D(x, y, 1)}\right)\right) - 1$$
$$S(x, y, w) = xD(x, y, 1) \left(D(x, y, w) - S(x, y, w)\right)$$
$$\tau(x) \dots \text{ inverse function of } r(y)$$
$$D(R(y), y, 1) = \tau(R(y))$$

$$X = \sqrt{1 - \frac{x}{R(y)}}$$

$$\Rightarrow \quad D(x, y, w) = D_0(y, w) + D_2(y, w) X^2 + D_3(y, w) X^3 + O(X^4),$$

2-connected planar graphs

$$w\frac{\partial B^{\bullet}(x,y,w)}{\partial w} = xyw \exp\left(S(x,y,w) + \frac{1}{x^2 D(x,y,w)}T^{\bullet}\left(x, D(x,y,1), \frac{D(x,y,w)}{D(x,y,1)}\right)\right)$$

$$\implies B^{\bullet}(x, y, w) = B_0(y, w) + B_2(y, w)X^2 + B_3(y, w)X^3 + O(X^4)$$

Remark. All these functions $B_j(y, w)$ can be *explicitly* computed.

connected planar graphs

$$C^{\bullet}(x, 1, w) = \exp\left(B^{\bullet}\left(xC'(x), 1, w\right)\right)$$
???

Lemma

$$f(x) = \sum_{n \ge 0} \boxed{a_n} \frac{x^n}{n!} = f_0 + f_2 X^2 + f_3 \boxed{X^3} + \mathcal{O}(X^4), \quad X = \sqrt{1 - \frac{x}{\rho}},$$

$$H(x, z, w) = h_0(x, w) + h_2(x, w) Z^2 + h_3(x, w) \boxed{Z^3} + \mathcal{O}(Z^4),$$

$$Z = \sqrt{1 - \frac{z}{\boxed{f(\rho)}}},$$

$$f_H(x) = H(x, \boxed{f(x)}, w) = \sum_{n \ge 0} \boxed{b_n(w)} \frac{x^n}{n!}$$

$$\implies \boxed{\lim_{n \to \infty} \frac{b_n(w)}{a_n} = -\frac{h_2(\rho, w)}{f_0} + \frac{h_3(\rho, w)}{f_3} \left(-\frac{f_2}{f_0}\right)^{3/2}}.$$

connected planar graphs

$$C^{\bullet}(x, 1, w) = \exp\left(B^{\bullet}\left(xC'(x), 1, w\right)\right)$$

Application of the lemma with

$$f(x) = xC'(x)$$

and

$$H(x,z,w) = xe^{B^{\bullet}(z,1,w)}.$$

$$\implies p(w) = \lim_{n \to \infty} \frac{b_n(w)}{a_n}$$
$$= \boxed{-e^{B_0(1,w) - B_0(1,1)}B_2(1,w) + e^{B_0(1,w) - B_0(1,1)}\frac{1 + B_2(1,1)}{B_3(1,1)}B_3(1,w)}$$

Random Planar Graphs

Classes of planar graphs

- Outerplanar graphs: all vertices are on the infinite face (equivalently no K_4 and no $K_{2,3}$ as a minor).
- Series-parallel graphs: series-parellel extension of a tree or forest (equivalently no K_4 as a minor).
- **Planar graphs**. (no K_5 and no $K_{3,3}$ as a minor)

Remark.

outerplanar \subseteq series-parallel \subseteq planar

All vertices are on the infinite face.

Generating functions

 b_n ... number of **2-connected labelled outer-planar** graphs with n vertices

$$B(x) = \sum_{n \ge 0} b_n \frac{x^n}{n!}$$

 c_n ... number of **connected labelled outer-planar** graphs with n vertices

$$C(x) = \sum_{n \ge 0} c_n \frac{x^n}{n!}$$

 $g_n \dots$ number of **labelled outer-planar** graphs with *n* vertices

$$G(x) = \sum_{n \ge 0} g_n \frac{x^n}{n!}$$

Generating functions

$$G(x) = e^{C(x)},$$

$$C'(x) = e^{B'(xC'(x))},$$

$$B'(x) = x + \frac{1}{2}x A(x),$$

$$A(x) = x(1 + A(x))^2 + x(1 + A(x))A(x)$$

$$= \frac{1 - 3x - \sqrt{1 - 6x + x^2}}{4x}.$$

Asymptotic enumeration

$$b_n = b \cdot (3 + 2\sqrt{2})^n n^{-\frac{5}{2}} n! \left(1 + O\left(\frac{1}{n}\right)\right),$$

$$c_n = c \cdot \rho^{-n} n^{-\frac{5}{2}} n! \left(1 + O\left(\frac{1}{n}\right)\right),$$

$$g_n = g \cdot \rho^{-n} n^{-\frac{5}{2}} n! \left(1 + O\left(\frac{1}{n}\right)\right),$$

$$\begin{split} \rho &= y_0 e^{-B'(y_0)} = 0.1365937...,\\ y_0 &= 0.1707649...satisfies \ 1 = y_0 B''(y_0),\\ b &= \frac{1}{8\sqrt{\pi}} \sqrt{114243\sqrt{2} - 161564} = 0.000175453...,\\ c &= 0.0069760...,\\ g &= 0.017657... \end{split}$$

Theorem 1

Let $p_{n,k}$ be the probability that a random node in a random 2-connected, connected or unrestricted **outerplanar graph** with n vertices has degree k. Then the limit

$$p_k := \lim_{n \to \infty} p_{n,k}$$

exists. The probability generating function

$$p(w) = \sum_{k \ge 1} p_k w^k$$

can be explicitly computed.

$$p(w) = \sum_{k \ge 1} p_k w^k$$

• 2-connected

$$p(w) = \frac{2(3 - 2\sqrt{2})w^2}{(1 - (\sqrt{2} - 1)w)^2}$$

• connected or unrestricted:

$$p(w) = \frac{c_1 w^2}{(1 - c_2 w)^2} \exp\left(c_3 w + \frac{c_4 w^2}{(1 - c_2 w)}\right)$$

(with certain constants $c_1, c_2, c_3, c_4 > 0$).

Theorem 2

 $X_n^{(k)}$... number of vertices of degree k in random 2-connected, connected or unrestricted labelled outerplanar graphs with n vertices.

$$\implies X_n^{(k)}$$
 satisfies a **central limit theorem** with
 $\mathbb{E} X_n^{(k)} \sim \mu_k n$ and $\mathbb{V} X_n^{(k)} \sim \sigma_k^2 n$

Remark. $\mu_k = p_k$.

Theorem 3

 $\Delta_n \dots$ maximum degree in random 2-connected, connected or unrestricted labelled outerplanar graphs with *n* vertices.

$$\implies \qquad \boxed{\frac{\Delta_n}{\log n} \to c} \quad \text{in probability}$$

 $\mathbb{E}\Delta_n \sim c \log n,$

where $c = 1/\log(1/q)$ and 1/q in radius of convergence of p(w).

Series-parallel extension of a tree or forest

Generating functions

 $b_{n,m}$... number of 2-connected labelled series-parallel graphs with n vertices and m edges, $b_n = \sum_m b_{n,m}$

$$B(x,y) = \sum_{n,m} b_{n,m} \frac{x^n}{n!} y^m$$

 $c_{n,m}$... number of **connected labelled series-parallel** graphs with n vertices and m edges, $c_n = \sum_m c_{n,m}$

$$C(x,y) = \sum_{n,m} c_{n,m} \frac{x^n}{n!} y^m$$

 $g_{n,m}$... number of **labelled series-parallel** graphs with n vertices and m edges, $g_n = \sum_m g_{n,m}$

$$G(x,y) = \sum_{n,m} g_{n,m} \frac{x^n}{n!} y^m$$

Generating functions

$$G(x, y) = e^{C(x, y)}$$

$$\frac{\partial C(x, y)}{\partial x} = \exp\left(\frac{\partial B}{\partial x}\left(x\frac{\partial C(x, y)}{\partial x}, y\right)\right),$$

$$\frac{\partial B(x, y)}{\partial y} = \frac{x^2}{2}\frac{1+D(x, y)}{1+y},$$

$$D(x, y) = (1+y)e^{S(x, y)} - 1,$$

$$S(x, y) = (D(x, y) - S(x, y))xD(x, y).$$

Asymptotic enumeration

$$b_n = b \cdot \rho_1^{-n} n^{-\frac{5}{2}} n! \left(1 + O\left(\frac{1}{n}\right) \right),$$

$$c_n = c \cdot \rho_2^{-n} n^{-\frac{5}{2}} n! \left(1 + O\left(\frac{1}{n}\right) \right),$$

$$g_n = g \cdot \rho_2^{-n} n^{-\frac{5}{2}} n! \left(1 + O\left(\frac{1}{n}\right) \right),$$

$$\rho_1 = 0.1280038...,$$

$$\rho_2 = 0.11021...,$$

$$b = 0.0010131...,$$

$$c = 0.0067912...,$$

$$g = 0.0076388...$$

Theorem 1

Let $p_{n,k}$ be the probability that a random node in a random 2-connected, connected or unrestricted series-parallel graph with n vertices has degree k. Then the limit

$$p_k := \lim_{n \to \infty} p_{n,k}$$

exists. The probability generating function

$$p(w) = \sum_{k \ge 1} p_k w^k$$

can be explicitly computed.

We just mention the case of

2-connected series-parallel graphs $p(w) = \sum_{k \ge 1} p_k w^k$:

$$p(w) = \frac{B_1(1, w)}{B_1(1, 1)},$$

where $B_1(y, w)$ is given by the following procedure ...

$$\begin{aligned} \frac{E_0(y)^3}{E_0(y)-1} &= \left(\log\frac{1+E_0(y)}{1+R(y)} - E_0(y)\right)^2,\\ R(y) &= \frac{\sqrt{1-1/E_0(y)} - 1}{E_0(y)},\\ E_1(y) &= -\left(\frac{2R(y)E_0(y)^2(1+R(y)E_0(y))^2}{(2R(y)E_0(y) + R(y)^2E_0(y)^2)^2 + 2R(y)(1+R(y)E_0(y))}\right)^{\frac{1}{2}},\\ D_0(y,w) &= (1+yw)e^{\frac{R(y)E_0(y)}{1+R(y)E_0(y)}D_0(y,w)} - 1,\\ D_1(y,w) &= \frac{(1+D_0(y,w))\frac{R(y)E_1(y)D_0(y,w)}{1+R(y)E_0(y)}}{1-(1+D_0(y,w))\frac{R(y)E_1(y)D_0(y,w)}{1+R(y)E_0(y)}},\\ B_0(y,w) &= \frac{R(y)D_0(y,w)}{1+R(y)E_0(y)} - \frac{R(y)^2E_0(y)D_0(y,w)^2}{2(1+R(y)E_0(y))},\\ B_1(y,w) &= \frac{R(y)D_1(y,w)}{1+R(y)E_0(y)} - \frac{R(y)^2E_0(y)D_0(y,w)D_1(y,w)}{1+R(y)E_0(y)},\\ &- \frac{R(y)^2E_1(y)D_0(y,w)(1+D_0(y,w)/2)}{(1+R(y)E_0(y))^2}.\end{aligned}$$

Theorem 2

 $X_n^{(k)}$... number of vertices of degree k in random 2-connected, connected or unrestricted labelled series-parallel graphs with n vertices.

$$\implies X_n^{(k)}$$
 satisfies a **central limit theorem** with
 $\mathbb{E} X_n^{(k)} \sim \mu_k n$ and $\mathbb{V} X_n^{(k)} \sim \sigma_k^2 n$.

Remark. $\mu_k = p_k$.

Theorem 3

 $\Delta_n \dots$ maximum degree in random 2-connected, connected or unrestricted labelled series-parallel graphs with *n* vertices.

$$\implies \qquad \boxed{\frac{\Delta_n}{\log n} \to c} \quad \text{in probability}$$

 $\mathbb{E}\Delta_n \sim c \log n,$

where $c = 1/\log(1/q)$ and 1/q in radius of convergence of p(w).

Systems of Functional equations

COMBINATORIAL CENTRAL LIMIT THEOREM

Suppose that a sequence of random variables X_n has distribution

$$\mathbb{P}[X_n = k] = \frac{a_{nk}}{a_n},$$

where the generating function $A(x,u) = \sum_{n,k} a_{n,k} x^n u^k$ is given by

$$A(x,u) = \Psi(x, u, A_1(x, u), \dots, A_r(x, u))$$

for an analytic function $\boldsymbol{\Psi}$ and the generating functions

$$A_{1}(x,u) = \sum_{n,k} a_{1;n,k} u^{k} x^{n}, \dots, A_{r}(x,u) = \sum_{n,k} a_{r;n,k} u^{k} x^{n}$$

satisfy a non-linear system of equations

$$A_j(x,u) = \Phi_j(x,u,A_1(x,u),\ldots,A_r(x,u)), \quad (1 \le j \le r).$$

Systems of Functional equations

COMBINATORIAL CENTRAL LIMIT THEOREM (cont.)

Suppose that at least one of the functions $\Phi_j(x, u, a_1, \dots, a_r)$ is nonlinear in a_1, \dots, a_r and they all have a power series expansion at (0, 0, 0) with non-negative coefficients.

Let $x_0 > 0$, $a_0 = (a_{0,0}, \ldots, a_{r,0}) > 0$ (inside the region of convergence) satisfy the system of equations: $(\Phi = (\Phi_1, \ldots, \Phi_r))$

$$\mathbf{a}_0 = \Phi(x_0, 1, \mathbf{a}_0), \quad 0 = \det(\mathbb{I} - \Phi_{\mathbf{a}}(x_0, 1, \mathbf{a}_0)).$$

Suppose further, that the **dependency graph** of the system $\mathbf{a} = \Phi(x, u, \mathbf{a})$ is **strongly connected** (which means that no subsystem can be solved before the whole system).

Systems of Functional equations

COMBINATORIAL CENTRAL LIMIT THEOREM (cont.)

Then there exists analytic function $g_j(x,u), h_j(x,u)$, and $\rho(u)$ (that is **independent of** j) such that locally

$$A_j(x,u) = g_j(x,u) - h_j(x,u) \sqrt{1 - \frac{x}{\rho(u)}}$$

and consequently (for some g(x, u), h(x, u))

$$A(x,u) = g(x,u) - h(x,u)\sqrt{1 - \frac{x}{\rho(u)}}$$

Consequently the random variable X_n satisfies a **central limit theorem** with

$$\mathbb{E} X_n \sim n\mu$$
 and $\mathbb{V} \text{ar} X_n \sim n\sigma^2$,

where μ and σ^2 can be computed.

Nodes of Given Degree

Dissections:

- v_2 counts the number of nodes with degree 2,
- v_3 counts the number of nodes with degree 3,
- v counts the number of nodes with degree > 3, and
- in all cases the two nodes of the rooted edge are are not taken into account.

- $A_{ij}(v_2, v_3, v)$... generating function of dissections with the properties that the left node of the rooted edge has degree i and right one has degree i, $2 \le i, j \le 3$
- $A_{i\infty}(v_2, v_3, v)$... generating function of dissections with the properties that the left node of the rooted edge has degree i and the right has degree > 3,
- $A_{\infty\infty}(v_2, v_3, v)$... generating function of dissections with the properties that both nodes of the rooted edge have degree > 3.

Lemma 1

Remark

All functions $A_{ij}(v_2, v_3, v)$ have a **squareroot singularity** due to the COMBINATORIAL CENTRAL LIMIT THEOREM II!!!

- $B_i^{\bullet}(v_1, v_2, v_3, v)$... exponential genenerating functions of 2-connected labelled and marked outer planar graphs, where the root node (that is not counted) has degree i, $1 \le i \le 3$.
- $B^{\bullet}_{\infty}(v_1, v_2, v_3, v)$... exponential genenerating functions of 2-connected labelled and marked outer planar graphs, where the root node (that is not counted) has degree > 3.

Lemma 2

 $B_{1}^{\bullet}(v_{1}, v_{2}, v_{3}, v) = v_{1},$ $B_{2}^{\bullet}(v_{1}, v_{2}, v_{3}, v) = \frac{1}{2} (v_{2}A_{22} + v_{3}A_{23} + vA_{2\infty}),$ $B_{3}^{\bullet}(v_{1}, v_{2}, v_{3}, v) = \frac{1}{2} (v_{2}A_{23} + v_{3}A_{33} + vA_{3\infty}),$ $B_{\infty}^{\bullet}(v_{1}, v_{2}, v_{3}, v) = \frac{1}{2} (v_{2}A_{2\infty} + v_{3}A_{3\infty} + vA_{\infty\infty}).$

Remark

All functions $B_i^{\bullet}(v_1, v_2, v_3, v)$ have a **squareroot singularity** since all functions $A_{ij}(v_2, v_3, v)$ have squareroot singularities!!!

- $C_i^{\bullet}(v_1, v_2, v_3, v)$... exponential generating functions of connected labelled and marked outer planar graphs, where the root node (that is not counted) has degree i, $0 \le i \le 3$.
- $C^{\bullet}_{\infty}(v_1, v_2, v_3, v)$... exponential generating functions of connected labelled and marked outer planar graphs, where the root node (that is not counted) has degree > 3.

Lemma 3

$$\begin{aligned} C_0^{\bullet}(v_1, v_2, v_3, v) &= 1, \\ C_1^{\bullet}(v_1, v_2, v_3, v) &= B_1^{\bullet}(W_1, W_2, W_3, W), \\ C_2^{\bullet}(v_1, v_2, v_3, v) &= \frac{1}{2!}(B_1^{\bullet}(W_1, W_2, W_3, W))^2 + B_2^{\bullet}(W_1, W_2, W_3, W), \\ C_3^{\bullet}(v_1, v_2, v_3, v) &= \frac{1}{3!}(B_1^{\bullet}(W_1, W_2, W_3, W))^3 \\ &+ \frac{1}{1!1!}B_1^{\bullet}(W_1, W_2, W_3, W)B_2^{\bullet}(W_1, W_2, W_3, W) \\ &+ B_3^{\bullet}(W_1, W_2, W_3, W), \\ C_{\infty}^{\bullet}(v_1, v_2, v_3, v) &= e^{B_1^{\bullet}(W_1, W_2, W_3, W) + B_2^{\bullet}(...) + B_3^{\bullet}(...) + B_{\infty}^{\bullet}(W_1, W_2, W_3, W)} \\ &- 1 - B_1^{\bullet}(W_1, W_2, W_3, W) - B_2^{\bullet}(...) - B_3^{\bullet}(...) \\ &- \frac{1}{1!!}(B_1^{\bullet}(W_1, W_2, W_3, W))^2 - \frac{1}{3!}(B_1^{\bullet}(W_1, W_2, W_3, W))^3 \\ &- \frac{1}{1!!!}B_1^{\bullet}(W_1, W_2, W_3, W)B_2^{\bullet}(W_1, W_2, W_3, W), \end{aligned}$$

where on the right hand side

$W_{1} = v_{1}C_{0}^{\bullet} + v_{2}C_{1}^{\bullet} + v_{3}C_{2}^{\bullet} + v(C_{3}^{\bullet} + C_{\infty}^{\bullet}),$ $W_{2} = v_{2}C_{0}^{\bullet} + v_{3}C_{1}^{\bullet} + v(C_{2}^{\bullet} + C_{3}^{\bullet} + C_{\infty}^{\bullet}),$ $W_{3} = v_{3}C_{0}^{\bullet} + v(C_{1}^{\bullet} + C_{2}^{\bullet} + C_{3}^{\bullet} + C_{\infty}^{\bullet}),$ $W = v(C_{0}^{\bullet} + C_{1}^{\bullet} + C_{2}^{\bullet} + C_{3}^{\bullet} + C_{\infty}^{\bullet}).$

Remark

All functions $C_i^{\bullet}(v_1, v_2, v_3, v)$ have a **squareroot singularity** due to the COMBINATORIAL CENTRAL LIMIT THEOREM II!!!

Counting nodes of degree 3:

 $C(v_1, v_2, v_3, v)$... exponential generating function of all connected labelled outer planar graphs

 $C_{d=3}(x, u)$... exponential generating function that counts the number of nodes with x and the number of nodes of degree d = 3 with u:

$$C_{d=3}(x,u) = C(x,x,xu,x).$$

Also:

$$\frac{\partial C_{d=3}(x,u)}{\partial x} = C_1^{\bullet} + C_2^{\bullet} + uC_3^{\bullet} + C_{\infty}^{\bullet} \quad \text{and} \quad \frac{\partial C_{d=3}(x,u)}{\partial u} = xC_3^{\bullet}$$

Central limit theorem

$$\frac{\partial C_{d=3}(x,u)}{\partial x} = C_1^{\bullet} + C_2^{\bullet} + uC_3^{\bullet} + C_{\infty}^{\bullet}$$

$$\implies \frac{\partial C_{d=3}(x,u)}{\partial x} g(x,y) - h(x,y) \sqrt{1 - \frac{x}{\rho(y)}}$$

$$\implies C_{d=3}(x,u) = g_2(x,y) + h_2(x,y) \left(1 - \frac{x}{\rho(y)}\right)^{\frac{3}{2}}$$

⇒ The number of nodes of degree 3 in outerplanar graphs satisfies a central limit theorem.

Relation to number of nodes of given degree

 Δ_n ... maximum degree

 $X_n^{(>k)} = X_n^{(k+1)} + X_n^{(k+2)} + \cdots$... number of nodes of degree > k.

$$\Delta_n > k \iff X_n^{(>k)} > 0$$

First moment method

Y ... a discrete random variable on non-negative integers.

$$\implies \mathbb{P}\{Y > 0\} \le \min\{1, \mathbb{E}Y\}$$

Second moment method

Y is a non-negative random variable with finite second moment.

$$\implies \qquad \mathbb{P}\{Y > 0\} \ge \frac{(\mathbb{E}Y)^2}{\mathbb{E}(Y^2)}$$

Asymptotics for moments

$$\mathbb{E} X_n^{(k)} = n \, p_{n,k}$$

$$p_{n,k} = \frac{g_{n-1,m,k}^{\bullet}}{n g_{n,m}} = \frac{[x^{n-1}w^k] G^{\bullet}(x,w)}{[x^{n-1}] G^{\bullet}(x,1)}$$
$$\implies \mathbb{E} X_n^{(>k)} = \mathbb{E} \left(\sum_{\ell>k} X_n^{(\ell)}\right) = n \sum_{\ell>k} p_{n,\ell}.$$

Precise asymptotics for $p_{n,k}$ are needed that are **uniform** in n and k.

Asymptotics for moments

 $p_{n,k,\ell}$... probability that two different randomly selected vertices (in a random planar graph of size *n*) have degrees *k* and ℓ .

$$\mathbb{E}\left(X_n^{(k)}X_n^{(\ell)}\right) = n(n-1)p_{n,k,\ell} \quad (k \neq \ell)$$

$$p_{n,k,\ell} = \frac{[x^{n-2}w^k t^\ell] \, G^{\bullet \bullet}(x,w,t)}{[x^{n-1}] \, G^{\bullet \bullet}(x,1,1)}$$

$$\implies \mathbb{E} (X_n^{(>k)})^2 = \mathbb{E} \left(\sum_{j>k} X_n^{(j)} \right)^2 = n \sum_{\ell>k} p_{n,\ell} + n(n-1) \sum_{\ell_1,\ell_2>k} p_{n,\ell_1,\ell_1}.$$

Bounds for the distribution of Δ_n

$$\frac{n^2 \left(\sum_{\ell > k} p_{n,\ell}\right)^2}{n\sum_{\ell > k} p_{n,\ell} + n(n-1) \sum_{\ell_1,\ell_2 > k} p_{n,\ell_1,\ell_1}} \le \mathbb{P}\{\Delta_n > k\} \le \min\left\{1, n\sum_{\ell > k} p_{n,\ell}\right\}.$$

$$p_{n,k} \sim c \, k^{\alpha} q^{k}$$
$$p_{n,k,\ell} \sim p_{n,k} p_{n,\ell} \sim c^{2} \, (k\ell)^{\alpha} q^{k+\ell}$$

$$\implies \qquad \frac{\Delta_n}{\log n} \rightarrow \frac{1}{\log(1/q)} \qquad \text{in probability}$$

Generating functions for series-parallel graphs

$$G^{\bullet\bullet}(x,w,t) = e^{C(x)}G^{\bullet}(x,w)G^{\bullet}(x,t) + e^{C(x)}C^{\bullet\bullet}(x,w,t),$$

$$C^{\bullet\bullet}(x,w,t) = \frac{x}{(xC'(x))'}\frac{\partial}{\partial x}C^{\bullet}(x,w)\frac{\partial}{\partial x}C^{\bullet}(x,t)$$

$$+ B^{\bullet\bullet}(xC'(x),w,t)C^{\bullet}(x,w)C^{\bullet}(x,t),$$

$$w\frac{\partial}{\partial w}B^{\bullet\bullet}(x,w,t) = wte^{S_{1}(x,w,t)} + we^{S(x,w)}S_{2}(x,w,t),$$

$$D_{1}(x,w,t) = (1+wt)e^{S_{1}(x,w,t)} - 1,$$

$$S_{1}(x,w,t) = x(D(x,w) - S(x,w))D(x,t),$$

$$D_{2}(x,w,t) = (1+wt)e^{S_{2}(x,w,t)},$$

$$S_{2}(x,w,t) = x(D_{2}(x,w,t) - S_{2}(x,w,t))E(x)$$

$$+ x(D_{1}(x,w,t) - S_{1}(x,w,t))D(x,t),$$

$$D(x,w) = (1+w)e^{S(x,w)} - 1,$$

$$S(x,w) = x(D(x,w) - S(x,w))D(x,1).$$

References

Articles

O. Giménez and M. Noy,

Asymptotic enumeration and limit laws of planar graphs,

J. Amer. Math. Soc. (to appear).

M. Drmota, O. Giménez, and M. Noy,

The number of vertices of given degree in series-parallel graphs *Random Structures and Algorithms* (to appear).

M. Drmota, O. Giménez, and M. Noy, Degree distribution in random planar graphs, *manuscript*.

M. Drmota, O. Giménez, and M. Noy, The maximum degree of planar graphs, *draft*.

General References

Books

Michael Drmota,

Random Trees, Springer, Wien-New York, 2009.

Philippe Flajolet and Robert Sedgewick,

Analytic Combinatorics, Cambridge University Press, 2009. (http://algo.inria.fr/flajolet/Publications/books.html)

Thank You!