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Abstract

The external profile is among the first examined shape parameters of digital search trees in con-
nection with the performance of unsuccessful search of a random query in the early 1970s. However,
finer and important properties beyond the mean such as the variance and the limit law have remained
unknown. In this extended abstract, we describe the first results for the asymptotic variance and the
limit law of the external profile. In particular, the analysis of the variance turns out to be highly
demanding and nontrivial, and we need diverse techniques from analytic combinatorics to unveil its
asymptotic behaviors.

1 Introduction and Results

Digital trees are fundamental data structures in computer algorithm whose analysis has attracted much
attention over the last four decades. One of the three main classes of digital trees is the digital search
tree (DST for short), introduced by Coffman and Eve in 1970 [2]. While DSTs are generally less widely
used as tree data structures than the other two classes of trees, which are tries and Patricia tries, their
analysis is particularly related to the popular Lempel-Ziv compression scheme. Furthermore, due to the
natural occurrence of differential-functional equations, their analysis is often more challenging than that
of tries and PATRICIA tries.

We begin with the definition of DSTs, which are the main object of study in this paper. Similar
to other digital trees, they are built from digital data consisting of records that are represented by 0-1
strings. Assume that we have n such records. Then, the digital search tree of these records is built
as follows. The first record is stored in the root. All other records are distributed to the left- and the
right-subtree according to whether their first bit is 0 and 1, respectively. The subtrees of the root are built
according to the same rules but by using the next digit in further directing the strings to their subtrees.
Note that the resulting tree is a binary tree with (internal) nodes holding the records. External nodes,
which represent places where future records can be inserted, are often added to the tree; see Figure 1 for
an example of a DST built from 5 records (internal nodes are represented by circles and external nodes
by rectangles).
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Figure 1: A DST built from 5 records with its profiles.

For the purpose of analysis, we equip the input data with the following random model, which then
yields random trees. Assume that bits in the strings are independent and identically distributed with a
common Bernoulli random variable with parameter 0 < p < 1. Throughout the paper, we fix p D 1

2
,

namely, we consider only the symmetric case. This random model is called the (symmetric) Bernoulli
model and the corresponding random tree is called random (symmetric) digital search tree. It is simple
yet mathematically tractable and has sufficient predictive power in general.

Under this random model, we study in this paper the external and internal profiles which are defined
as follows: the external profile of a random symmetric digital search tree of size n is a double-indexed
sequence of random variables Xn;k which counts the number of external nodes at (horizontal) level k;
similar the internal node profile In;k is defined (with external nodes simply replaced by internal nodes).
We will only discuss in details our results for the external profile; almost the same results hold for the
internal profile (details are postponed to the journal version of this paper).

The main reason why the profiles are interesting is that they are fine shape characteristics encoding
the complete silhouette of the tree. In particular, many other shape parameters that have been investigated
since the introduction of DSTs are closely related to the profiles and can thus be analyzed in a uniform
way via the profiles; these shape parameters include

� unsuccessful search Un: the distance between a randomly chosen external node and the root; its
distribution is given by the external profile divided by n; see (1);

� successful search or depth Dn: the distance between a randomly chosen internal node and the
root; its distribution is given by the internal profile divided by n;

� (external) path length Tn: the sum of root-distances of all external nodes, or equivalently,
P

k kXn;k ;

� height Hn: the length of the longest path from the root to an external node, or maxfk W Xn;k > 0g;

� fill-up level Fn: the first level from the root at which the number of internal nodes is not a power
of two, or minfk W Xn;k > 0g.

See for example [3, 8] and the references therein for more shape parameters in DSTs.
In fact, the external profile was one of the very first shape parameters which was analyzed for DSTs

due to its close relationship with the cost of unsuccessful search; see Knuth [14] and Konheim and
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Newman [15]. More precisely, the distribution of unsuccessful search is obtained from the mean of the
external profile as follows.

P.Un D k/ D
E.Xn;k/

n
: (1)

A similar connection between the distribution of the internal profile and the depth holds.
Despite of the long history and the rich connection with other shape parameters, our understanding of

the profiles of symmetric DSTs is still incomplete. Following [14, 15], Louchard [16] derived an explicit
expression for the expected profile; see also [3, 4, 19, 22]. Louchard also established an asymptotic
result for the mean profile in the most important range k D log2 n C O.1/ (where most nodes lie),
characterizing the asymptotic distribution of the depth. These results were then extended in [3, 4, 19, 13].
We extend further the study in this paper to the variance of the profile for which a heavy analysis is
carried out. We also clarify the asymptotic normality of the profiles in the range where the variance
becomes unbounded.

Before stating our results, we briefly recall what is known about the profiles of asymmetric DSTs
and the other two classes of digital trees. First, our results for symmetric DSTs will resemble those
for symmetric tries; see Park et al. [21]. However, for symmetric tries, simple explicit expressions for
the mean and the variance of the profiles are available making the resulting analysis very easy when
compared to that of DST. In fact, the main contribution of [21] lies in the analysis of the profiles of
asymmetric tries which turned out to be both highly non-trivil and interesting (the authors in [21] derived
the mean, variance and limit laws). A similar study has been performed for the profiles of asymmetric
PATRICIA tries for which the mean has been considered in [17] and more refined properties such as
variance and limit laws were obtained in the very recent paper [18]. Finally, the means and variances
of the profiles of asymmetric DSTs have been analyzed in [4] and in [10], respectively. Among the two
missing cases, which are symmetric PATRICIA tries and the symmetric DSTs, we address the latter in
this paper.

We now state our results, focusing only on the external profile. The corresponding results for the
internal profile will be given in the journal version of this paper. First, recall the following function and
related sequence:

Q.z/ D
Y
`>1

�
1 �

z

2`

�
; and Qn D

Y
16`6n

�
1 � 2�`

�
D

Q.2�n/

Q.1/
:

Note that limn!1Qn exits and equals Q.1/ DW Q1.

Figure 2: The function F .

We will first discuss the mean of the external profile for which we have
the following (mostly known) result.

Theorem 1. The expected external profile satisfies

E.Xn;k/

8<:�
2k

Qk

�
1 � 2�k

�n
; if n

2k !1I

D 2kF
�

n
2k

�
CO.1/; if n

4k ! 0;
(2)

where F.x/ is a positive function on Œ0;1/ defined by

F.x/ D
X
j>0

.�1/j 2�.
j
2/

Qj Q1
e�2j x :

Note that the two ranges are overlapping; more precisely, n
2k !1 if 0 6 k 6 log2 n � !n for any

sequence !n tending to infinity with n, and n
4k ! 0 if k > 1

2
log2 nC !n.
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The usefulness of the asymptotic results (2) depends crucially on the function F.x/; see Figure 2 for
a plot. First, the series definition of F provides itself an asymptotic expansion for large x:

F.x/ D
e�x

Q1
CO.e�2x/: (3)

On the other hand, for small x, we have (with � WD 1
x log 2

)

F.x/ D
�1= log 2

p
2�x

exp

0@�.log � log �/2

2 log 2
�

X
j2Z

cj .� log �/��j

1A 1CO

 
.log log �/2

log �

!!
; (4)

where c0 D
log 2
12
C

�2

6 log 2
and cj D

1
2j sinh.2j�= log 2/

for j ¤ 0.

Figure 3: The function G.

It turns out that the variance satisfies the same types of asymptotic ap-
proximations as the mean but with the function F replaced by a much more
complicated function G, which behaves similarly to F .

Theorem 2. The variance of the external profile satisfies

V.Xn;k/

8<:�
2k

Qk

�
1 � 2�k

�n
; if n

2k !1I

D 2kG
�

n
2k

�
CO.1/; if n

4k ! 0;

where G.x/ is a positive function on Œ0;1/ defined by

G.x/ D
X

j ;r>0

X
06h;`6j

2�j .�1/rChC`2�.
r
2/�.

h
2/�.

`
2/C2hC2`

Q1Qr QhQj�hQ`Qj�`

'.2rCj ; 2h
C2`Ix/:

(5)
Here

'.u; vIx/ D e�ux

Z x

0

te�.v�u/t dt D

8<:
e�ux � ..v � u/x C 1/ e�vx

.v � u/2
; if u ¤ vI

1
2
x2e�ux; if u D v:

(6)

See Figure 3 for a plot of the function G. We can show that G satisfies the asymptotic estimates

G.x/ �

(
F.x/; if x !1I

2F.x/; if x ! 0:

A more precise approximation when x !1 is

G.x/ D
e�x

Q1
CO.xe�2x/;

where the second-order term differs from that of F ; see (3).
The two theorems imply that the mean and the variance have very similar behaviors. In particular,

they tend to infinity in the same range of k.

Corollary 1. For large n, E.Xn;k/!1 iff V.Xn;k/!1.
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By Theorem 1 and the behaviors of F , we see that the range of k where the mean tends to infinity is
given by

k0 C
!n

log n
6 k 6 k1 �

!np
log n

; (7)

for any sequence !n tending to infinity with n, where

k0 WD log2 n � log2 log nC
log2 log n

log n
;

k1 WD log2 nC
p

2 log2 n �
1

2
log2 log2 nC 1C

1

log 2
�

3 log log n

4
p

2.log n/.log 2/
: (8)

For convenience, we will refer to this range of k as the central range. This is also the range in which a
central limit theorem holds.

Theorem 3. If V.Xn;k/!1 or k satisfies (7), then

Xn;k � E.Xn;k/p
V.Xn;k/

d
�! N.0; 1/:

Our proof relies on contraction method; see [20].
The same statement holds for the internal profile.
Due to the informativeness of the profiles, our result has many applications to other shape parame-

ters. For brevity, we state here only a result for the height. This result solves a problem of Aldous and
Shields [1], a heuristic solution being given previously by Knessl and Szpankowski in [11]. Recall that
Hn denotes the height of random digital search tree of size n, namely, Hn WD maxfk W Xn;k > 0g.

Theorem 4. Define kH by

kH D min
˚
k W k > log2 n; 2kF

�
n

2k

�
6 1

	
:

Then the distribution of Hn is concentrated on kH and kH � 1:

P.Hn D kH or Hn D kH � 1/ �! 1; .n!1/:

For large n, we have kH D k1 CO.1/, where k1 is given in (8).
This result is to be compared with known results for the height of tries and Patricia tries, which we

summarize in Table 1.

trees E.Hn/ concentration
tries 2 log2 nC P .2 log2 n/C o.1/ no

Patricia tries log2 nC
p

2 log2 nCO.1/ at 3 points
DSTs log2 nC

p
2 log2 n � 1

2
log2 log2 nCO.1/ at 2 points

Table 1: A comparison of the height of random symmetric tries, Patricia tries and DSTs. For more
information, see [5] for the height of symmetric tries, and [12] for that of PATRICIA tries (NB: non-
rigorous proof).

In what follows, we concentrate mainly on describing the main steps used in proving Theorem 2 for
the variance, since this is the most demanding part of our analysis. For that purpose, we first show how
Theorem 1 is proved, and then the proof of Theorem 2 will follow a similar pattern. The detailed proof,
as well as other applications, will be contained in the journal version of this paper.
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2 Asymptotics of Moments

In this section, we explain the ideas behind the proofs of Theorem 1 and Theorem 2, starting from the
following distributional recurrence of the external profile

XnC1;k
d
D XBn;k�1 CX �n�Bn;k�1; .n > 0; k > 1/;

with the initial conditions X0;0 D 1;X0;k D 0 for k > 1, Xn;0 D 0 for n > 1, where Bn D

Binomial
�
n; 1

2

�
and X �

n;k
is an independent copy of Xn;k .

From this recurrence, it follows that all moments satisfy the same type of recurrence of the form

anC1;k D 21�n
X

06j6n

�
n

j

�
aj ;k�1 C bn;k ; (9)

for a given sequence bn;k . In particular, for the expected profile �n;k WD E.Xn;k/, we have

�nC1;k D 21�n
X

06j6n

�
n

j

�
�j ;k�1; .n > 0; k > 1/; (10)

with the initial conditions �0;0 D 1 and �n;0 D 0 and �0;k D 0 for n; k > 1. Similarly, the variance
�2

n;k
WD V.Xn;k/ satisfies (9) with

bn;k D 21�n
X

06j6n

�
n

j

� �
�nC1;k � �j ;k�1 � �n�j ;k�1

�2
; .n > 0; k > 1/ (11)

with the initial conditions s0;0 D 1; sn;0 D 0 for n > 1, and s0;k D 0 for k > 1. We will provide an
asymptotic analysis of the solution to these recurrences.

Mean. We first use Poissonization, which is a standard technique in the analysis of random digital
trees and operates by replacing n by a Poisson random variable with parameter z. More precisely, define
the Poisson mean by

QMk;1.z/ WD e�z
X
n>0

�n;k

zn

n!
;

which, by (10), is readily checked to satisfy the differential-functional equation

QMk;1.z/C QM
0
k;1.z/ D 2 QMk�1;1.z=2/; .k > 1/; (12)

with QM0;1.z/ D e�z . This differential-functional equation can be solved by using the Laplace transform
whose application to (12) yields

L Œ QMk;1.z/I s� D
4L Œ QMk�1;1.z/I 2s�

s C 1
; .k > 1/;

with L Œ QM0;1.z/I s� D 1=.s C 1/. Iterating k times this functional equation gives

L Œ QMk;1.z/I s� D
4k

.s C 1/.2s C 1/ � � � .2ks C 1/
D 2k

X
06j6k

.�1/j 2�.
j
2/

Qj Qk�j

�
1

s C 2j�k
;

where the second equality follows from partial fraction expansion. Now, by applying the inverse Laplace
transform, we obtain

QMk;1.z/ D 2k
X

06j6k

.�1/j 2�.
j
2/

Qj Qk�j

e�z=2k�j

:

A crucial observation is the following identity, which is also useful from an asymptotic point of view.
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Lemma 1. The Poisson generating function of the expected profile satisfies

QMk;1.z/ D 2k
X
r>0

2�.
rC1

2 /�kr

Qr
F .r/

�
z

2k

�
;

where F.z/ is defined in Theorem 1. In particular, as jzj ! 1 in the right half-plane <.z/ > ",

QMk;1.z/ D 2kF
�

z
2k

�
CO.1/: (13)

The right-hand side is already what we anticipated for �n;k if we replace z by n (see (2)), and what
is missing here is to justify such a replacement, or to de-Poissonize the process so as to prove the second
estimate of (2). A general procedure to achieve this is through the use of analytic de-Poissonization
techniques (essentially the saddle-point method), largely developed by Jacquet and Szpankowski [9].
This approach then gives, for n

4k ! 0,

E.Xn;k/ � QMk;1.n/: (14)

More precise expansions are also straightforward (referred to as the Poisson-Charlier expansion; see
[8]). Note that exactly the same behavior was also established for the trie profile; see [21]. This together
with (13) implies the claimed expansion for �n;k in Theorem 1 in the range n

4k ! 0. The other case
when n

2k !1 is much easier and can be treated by elementary means.
To complete our study of �n;k and the proof of Theorem 1, we need to clarify the asymptotic

behaviors of F . The easy case is when jzj ! 1 in the right half-plane <.s/ > 0 in which the series
definition of F is itself an asymptotic expansion. We consider the case when jzj ! 0 in the right
half-plane using the Laplace transform:

L ŒF.z/I s� D
1

Q.�2s/
.<.s/ > 1/:

Then the asymptotic expansion (4) is obtained by applying the saddle-point method to the inverse
Laplace integral

F.z/ D
1

2� i

Z cCi1

c�i1

esz

Q.�2s/
ds .c > 1/:

For this method, the asymptotic behavior of Q.�2s/ for large s is needed, which can be obtained by
applying Mellin transform techniques because the logarithm of Q.�2s/ is a harmonic sum

log Q.�2s/ D
X
j>0

log
�
1C

s

2j

�
I

see the survey paper [6] for more similar details.

Variance. We now turn to the variance whose analysis follows the same line of arguments as for the
mean but with more involved technicalities. We first introduce the Poisson generating function of the
second moment:

QMk;2.z/ WD e�z
X
n>0

sn;k

zn

n!
:

Since the second moment satisfies the recurrence (9) with

bn;k WD 21�n
X

06j6n

�
n

j

�
�j ;k�1�n�j ;k�1;
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we then obtain the differential-functional equation

QMk;2.z/C QM
0
k;2.z/ D 2 QMk�1;2.z=2/C 2 QMk�1;1.z=2/

2 .k > 1/; (15)

with QM0;2.z/ D e�z .
Since the binomial distribution is highly concentrated near the mean, we expect that the variance

will not grow too fast when compared with the mean. This implies that there are cancellations when
computing the variance from the second moment and these cancellations are often very messy to deal
with. So we introduce the by now standard technique of Poissonized variance (see [7, 8]) by essentially
incorporating the cancellations at the generating function level and avoiding handling the cancellations
at the coefficient level. More precisely, we consider the generating function

QVk.z/ WD QMk;2.z/ � QMk;1.z/
2
� z QM 0

k;1.z/
2;

which satisfies
QVk.z/C QV

0
k.z/ D 2 QVk�1.z=2/C z QM 00

k;2.z/
2; .k > 1/;

with QV0.z/ D e�z � .1C z/e�2z . By the Laplace transform and the same argument used for QMk;1.z/,
we obtain the exact expression

QVk.z/ D
X

.j ;r;h;`/2V

2k�j .�1/rChC`2�.
r
2/�.

h
2/�.

`
2/C2hC2l

Qr Qk�j�r QhQj�hQ`Qj�`

'
�
2rCj ; 2h

C 2l
I

z

2k

�
; (16)

where
V D f.j ; r; h; `/ W 0 6 j 6 k; 0 6 r 6 k � j ; 0 6 h; ` 6 j g:

Note that 2rCj D 2h C 2` (see (6)) occurs if and only if .j ; r; h; `/ lies in the set

f.j ; r; h; `/ W 1 6 j 6 k; r D 0; h D ` D j � 1 or 0 6 j < k; r D 1; h D ` D j g;

and the corresponding terms in QVk.z/ are

X
06j6k

2k�j 2�2.j�1
2 /C4.j�1/

Qk�j Q2
1
Q2

j�1

�
z2

2
e�2j z

�

X
06j<k

2k�j 2�2.j
2/C4j

Qk�j�1Q1Q2
j

�
z2

2
e�2jC1z;

which cancel since Q1 D
1
2

. Hence, the equality part in the definition '.u; vI z/ can be ignored. The
above expression, even though much more involved than that in the Poisson mean, can still be used to
derive a similar identity for QVk.z/ as in Lemma 1.

Lemma 2. We have the identity

QVk.z/ D 2k
X
m>0

2�.
mC1

2 /�km

Qm
G.m/

�
z

2k

�
;

where G is defined in (5).

The next step is to clarify the asymptotic nature of this expansion.

Lemma 3. As jzj ! 1 in the right half-plane <.z/ > ", the function QVk.z/ satisfies

QVk.z/ D 2kG
�

z
2k

�
CO.1/;

uniformly in z.
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This provides the claimed result in Theorem 2 for the variance in the Poisson model.
Finally, from the theory developed in [8], we can replace z by n (or de-Poissonize) and get

V.Xn;k/ � QVk.n/

if n
4k ! 0. This proves Theorem 2 for k in this range. For the other range in Theorem 2, the proof is

simpler.
The final step is to characterize the asymptotics of G for large and small z. The former is not

complicated and follows directly from the expression (5) for G.z/. For the latter, we again apply the
Laplace transform and get

L ŒG.z/I s� D
X
j>0

4�j
Qg�j .2

�j s/

Q.�21�j s/

where

Qg�j .s/ D
X

06k;`6j

.�1/hC`2�.
h
2/�.

`
2/C2hC2`

QkQj�kQ`Qj�`

�
1

.2j s C 2h C 2`/2
:

This sum is more complicated than the one (the Laplace transform of F ) we encountered in the analysis
of the mean, and the analysis here is expected to be more involved. Furthermore, the technique of
harmonic sums we used above does not apply directly here; however, an asymptotic analysis as jsj ! 1
is still possible by a more careful examination of each g�j .s/. In particular, the crucial observation is that
the term j D 2 of the above sum is dominating.

Lemma 4. We have, as jsj ! 1 in the right half-plane j<.s/j > ",

Qg�
0
.s/

Q.�2s/
�

1

s2Q.�2s/
; 4�1

Qg�
1
.2�1s/

Q.�s/
�

9

sQ.�2s/

and, for j > 2,

4�j
Qg�j .2

�j s/

Q.�21�j s/
�

.2j � 3/!

..j � 2/!/2
�

2.
j
2/

sj�2Q.�2s/
:

Thus

L ŒG.z/I s� �
2

Q.�2s/
:

Since the dominant term in the right-hand side equals the Laplace transform of 2F.z/, we deduce
the asymptotic estimate that G.z/ � 2F.z/ when jzj ! 0 in the right half-plane.

References

[1] D. Aldous and P. Shields, A difusion limit for a class of random-growing binary trees, Probab.
Theory Related Fields, 79 (1988), 509–542.

[2] E. G. Coffman, Jr. and J. Eve, File structures using hashing functions, Commun. ACM, 13:7 (1970),
427–432.

[3] M. Drmota, Random Trees: An Interplay between Combinatorics and Probability, SpringerWien-
NewYork, Vienna, 2009.

[4] M. Drmota and W. Szpankowski, The expected profile of digital search trees, J. Combin. Theory
Ser. A, 118 (2011), 1939–1965.

9



[5] P. Flajolet, On the performance evaluation of extendible hashing and trie searching, Acta Info. 20
(1983), 345–369.

[6] P. Flajolet, X. Gourdon, P. Dumas, Mellin transforms and asymptotics: harmonic sums, Theoret.
Comput. Sci., 144:1-2 (1995), 3–58.

[7] M. Fuchs, H.-K. Hwang and V. Zacharovas, An analytic approach to the asymptotic variance of
trie statistics and related structures, Theoret. Comput. Sci. 527 (2014), 1–36.

[8] H.-K. Hwang, M. Fuchs, and V. Zacharovas, Asymptotic variance of random symmetric digital
search trees, Discrete Math. Theor. Comput. Sci. (special issue in honor of Philippe Flajolet), 12:2
(2010), 103–166.

[9] P. Jacquet and W. Szpankowski, Analytical de-Poissonization and its applications, Theoret. Com-
put. Sci., 201:1-2 (1998), 1–62.

[10] R. Kazemi and M. Vahidi-Asl, The variance of the profile in digital search trees, Discrete Math.
Theor. Comput. Sci., 13:3 (2011), 21–38.

[11] C. Knessl and W. Szpankowski, Asymptotic behavior of the height in a digital search tree and the
longest phrase of the Lempel-Ziv scheme, SIAM J. Comput., 30:3 (2000), 923–964.

[12] C. Knessl and W. Szpankowski, Limit laws for the height in PATRICIA tries, J. Algorithms 44
(2002), 63–97.

[13] C. Knessl and W. Szpankowski, On the average profile of symmetric digital search trees, Online J.
Anal. Comb., 4 (2009), 14 pp.

[14] D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching, Addison-
Wesley, 1973.

[15] A. G. Konheim and D. J. Newman, A note on growing binary trees, Discrete Math., 4 (1973),
57-63.

[16] G. Louchard, Exact and asymptotic distributions in digital and binary search trees, RAIRO Inform.
Thér. Appl., 21:4 (1987), 479–495.

[17] A. Magner, C. Knessl, and W. Szpankowski, Expected external profile of PATRICIA tries, Proceed-
ings of the Eleventh Workshop on Analytic Algorithmics and Combinatorics (ANALCO) (2014),
16–24.

[18] A. Magner and W. Szpankowski. Profile of PATRICIA tries, submitted.

[19] H. M. Mahmoud. Evolution of Random Search Trees, Wiley-Interscience Series in Discrete Math-
ematics and Optimization, John Wiley & Sons Inc., New York, 1992.
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