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Abstract. q–binary search trees are obtained from words, equipped with the geo-
metric distribution instead of permutations. The average and variance of the height
are computed, based on random words of length n, as well as a Gaussian limit law.

1. Introduction

The paper [8] introduces for the first time a meaningful q–model of binary search
trees: instead of binary search trees, one considers tournament trees, which differ only
marginally from binary search trees; if one starts from a permutation ( 1 2 ··· n

π1 π2 ··· πn ), then
one inserts the number i instead of the number πi. Thus, traversing the tree in inorder,
we might think of the associated permutation as ρ1σ, where 1 goes into the root, and ρ
resp. σ form (recursively) the left resp. right subtree. We could have called this paper
“The Height of q-Tournament Trees;” however we decided not to do so since binary
search trees are by far better known, both, in the community of theoretical computer
scientists, and combinatorialists. A nice reference for tournament trees and increasing
trees in general is [2].

Now instead of considering permutations π1π2 · · ·πn, we consider words over the
alphabet {1, 2, 3, . . . }, and (geometric) probabilities attached to the letters, i. e., the
probability of letter i is pqi−1, with p+q = 1. The binary search tree is then constructed
by writing a nonempty word w as w = xay, where a is the smallest letter occurring,
and x ∈ {a + 1, a + 2, . . . }∗ and y ∈ {a, a + 1, . . . }∗. The letter a goes into the root
and x resp. y form the left resp. right subtree.

The paper [8] dealt with the path length; here we consider the height. The height
of a binary search tree (and thus of the trees in our model) is defined to be the largest
number of nodes in a path from the root to a leaf; the empty tree (related to the empty
word) has height 0.

We will prove that the expected height, when considering random words of length
n, is asymptotic to pn; the variance will also be computed as well as a Gaussian limit
law. (The letter p will always denote 1 − q in this paper.) Recall that the result for
traditional binary search trees is ∼ c log n with c = 4.31107, see [3]; unfortunately
we do not get that result as the limit q → 1 as it so happened for the path length.
However, nothing is wrong here, since the limit q → 1 in pn simply tells us that the
average height should be less than linear. Although this original hope of getting the
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classical result as a corollary did not work out, we nevertheless think that the results
presented here are of independent interest. Note also that pn is the expected number
of letters 1 in a (random) string of length n. In our asymmetric model, they must all
lie on one path.

In more detail, we will obtain the following results:
Let Hn denote the height of q–binary search trees with n (internal) nodes (this is a

random variable, defined on words of length n).

Theorem 1. For every positive q < 1 the height Hn of q–binary search trees with n
(internal) nodes satifies a central limit theorem of the form

sup
x∈R

∣∣∣∣∣Pr{Hn ≤ x} − Φ

(
x− pn
√
npq

) ∣∣∣∣∣ = O(n−1/2), (1)

where Φ(x) denotes the normal distribution function

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2 dt.

The expected value is given by

EHn = pn+O
(

1

p

)
, (2)

in which the O-constant is uniform for 0 < q < 1. The variance can be estimated by

VHn = pqn+Oq
(
n1/2 log2 n

)
. (3)

The O-constant in the error term of the variance is not uniform for 0 < q < 1. The
dependency on q has not been worked out since the order of magnitude of the error
term is surely not optimal. However, although the error term for the expected value is
uniform, this theorem cannot be used to cover the case q → 1 where it is known that
the expected value is given by

EHn = c log n+O (log log n)

(with c = 4.31107 · · · , see [3]) and the variance is bounded:

VHn = O(1)

(see [5, 6]).

Intuitively, this result (and its proof) says that the height is dominated by the
number of 1’s in the sequence. This seems to be due to the fact that most 1’s appear
consecutively in the sequence, producing rather skew subtrees. The contribution from
2’s is asymptotically negligible since there are much fewer of them, etc.

Studying the combinatorics (of words) of geometrically distributed random variables
has been a long term project of one of us (H. P.), and further papers can be found on
this author’s webpage. We do not want to give more details here, but in all previous
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cases the correspondence between the model of words and its limit (permutations) led
to very satisfactory results.

We would like to cite the paper [1] which is of general interest in this context.

2. Weak Convergence

Lemma 1. Let yk(x) denote the generating function

yk(x) =
∑
n≥0

Pr{Hn ≤ k}xn.

Then we have y0(x) ≡ 0, yk(0) = 1 and

yk+1(x) = pxyk(x)yk(qx) + yk+1(qx) (4)

for k ≥ 0.

Proof. The proof is a straightforward translation of the basic decomposition w = xay:
If a = 1 (described by px), then the left subtree consists only of letters in {2, 3, . . . },
described by yk(qx), but the right subtree can have any letters, which is described by
yk(x). However, if a > 1, we get the term yk+1(qx) (we might then think of all letters
being reduced by 1).

If we write this in the form

yk+1(x)− yk+1(qx)

(1− q)x
= yk(qx)yk(x),

then the limit q → 1 gives

y′k+1(x) = y2
k(x),

the usual recursion in the instance of binary search trees. (Recall that f(x)−f(qx)
(1−q)x =:

(Dq f)(x), and Dq is called the q–difference operator.) Also, if we write

yk(x) =
∑

0≤j<2k

ak,jx
j,

then we get, by comparing coefficients,

ak+1,j =
p

1− qj
∑

0≤i<j
ak,i ak,j−1−i q

i for j ≥ 1,

and ak,0 = 1 for all k ≥ 0. Thus, Theorem 1 may be reformulated in terms of ak,j.
However, in this paper we will not make use of this notion.

Lemma 2. The generating functions yk(x) (k ≥ 0, 0 ≤ x < 1) are bounded above by

yk(x) ≤ 1

1− x
− x

1− x

(
px

1− qx

)k
. (5)
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Furthermore, this inequality is also true on the level of coefficients, i. e. for n ≥ 1 and
k ≥ 1

Pr{Hn ≤ k} = [xn]yk(x)

≤ 1− [xn]
x

1− x

(
px

1− qx

)k

=
k−1∑
l=0

(
n− 1

l

)
plqn−1−l.

(6)

Note that this upper bound is an exact binomial distribution function which is
asymptotically normal with mean p(n− 1) + 1 = pn+ q and variance pq(n− 1).

Proof. Since yk(x) ≤ 1/(1− x) we get from (4) that

yk+1(x) ≤ px

1− qx
yk(x) +

1

1− qx
.

Thus, (5) follows by induction. Note that any step in these calculations is also true on
the level of coefficients. Thus,

Pr{Hn ≤ k} ≤ 1− [xn]
x

1− x

(
px

1− qx

)k
.

Set

Yk(x) =
1

1− x
− x

1− x

(
px

1− qx

)k

and

∆k(x) = Yk(x)− Yk−1(x) =
1

p

(
px

1− qx

)k
.

Since

[xn]∆k(x) =

(
n− 1

k − 1

)
pk−1qn−k,

(6) follows immediately.
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Lemma 3. The generating functions yk(x) (k ≥ 0, 0 ≤ x < 1) are bounded below by

yk(x) ≥ 1

1− x
− x

1− x

(
px

1− qx

)k

− (qx)2

1− qx

(
px

1−qx

)k
− (qx)k

px
1−qx − qx

− qx

1− x

(
px

1− qx

) ( px
1−qx

)k
− (qx)k

px
1−qx − qx

+
qx2

1− x

(
px

1− qx

)k
1− (qx)k

1− qx
.

(7)

Furthermore, this inequality is also true on the level of coefficients.

Proof. First we use the trivial lower bound

yk(x) ≥ 1− xk+1

1− x
and the upper bound (5) to obtain the inequality

yk+1(x) = pxyk(x)yk(qx) + yk+1(qx)

≥ x(1− q)yk(x)

(
1

1− qx
− (qx)k+1

1− qx

)
+

1

1− qx
− (qx)k+2

1− qx

≥ px

1− qx
yk(x) +

1

1− qx

− px(qx)k+1

1− qx

 1

1− x
− x

1− x

(
px

1− qx

)k− (qx)k+2

1− qx
.

Now (7) follows by induction. As in the proof of Lemma 2 it can be observed that (7)
is also true on the level of coefficients.

In order to obtain proper error terms for the lower bound for Pr{Hn ≤ k} which
may derived from Lemma 3 we make use of the following lemma.

Lemma 4. Let 0 < q < 1 be given and let F (x) be a function which is analytic for
|x| < 1 + ε for some ε > 0. Then there exist c > 0 and η > 0 (depending on q) such
that

[xn]F (x)

(
px

1− qx

)k
= O

(
n−1/2 exp

(
− c
n

(
k − pn

)2
))

(8)

and

[xn]F (x)

(
px

1−qx

)k
− (qx)k

px
1−qx − qx

= O
(
n−1/2 exp

(
− c
n

(
k − pn

)2
))

+O(qk) (9)
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uniformly for |k − pn| ≤ ηn as n→∞.

Proof. By using standard saddle point asymptotics (compare with [4]) it follows that

[xn]F (x)

(
px

1− qx

)k
=

1

2πi

∫
|z|=x0

F (z)

(
pz

1− qz

)k
dz

zn+1

= O

n−1/2x−n0

(
px0

1− qx0

)k ,

where the saddle point x = x0 =
(
1− k

n

)
/q is determined by the equation

x d
dx

(
px

1−qx

)
px

1−qx
=
n

k
.

In particular we have x0 = 1 if k/n = p. Finally a local expansion of

x−n0

(
px0

1− qx0

)k
=

qn−kpk(
1− k

n

)n−k (
k
n

)k

completes the proof of (8).
The proof of (9) runs along similar lines. However, we have to be a little bit more

careful. The reason is that the denominator

pz

1− qz
− qz

is singular for z1 = 0 and for z2 = (−1 + 2q)/q2. Nevertheless the whole part

(
pz

1−qz

)k
− (qz)k

pz
1−qz − qz
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is regular for |z| < 1/q. Note that |z2| > 1 for 0 < q <
√

2 − 1 and that |z2| < 1 for√
2− 1 < q < 1. Thus, if q 6=

√
2− 1 we get similarly to the above

[xn]F (x)

(
px

1−qx

)k
− (qx)k

px
1−qx − qx

=
1

2πi

∫
|z|=x0

F (z)

(
pz

1−qz

)k
− (qz)k

pz
1−qz − qz

dz

zn+1

=
1

2πi

∫
|z|=x0

F (z)

(
pz

1−qz

)k
pz

1−qz − qz
dz

zn+1
− 1

2πi

∫
|z|=x0

F (z)
(qz)k

pz
1−qz − qz

dz

zn+1

=
1

2πi

∫
|z|=x0

F (z)

(
pz

1−qz

)k
pz

1−qz − qz
dz

zn+1
− 1

2πi

∫
|z|=1

F (z)
(qz)k

pz
1−qz − qz

dz

zn+1

= O

n−1/2x−n0

(
px0

1− qx0

)k+O(qk).

Note that we just shifted the paths of integration in regions of analyticity if η is chosen
sufficiently small such that |x0 − 1| < |1− z2|.

If q =
√

2−1 then there are polar singularities at z2 = −1 after splitting the integral.
However, the residues of the functions involved (at z = −1) are both of order

O
(
(
√

2− 1)k
)

= O(qk),

which implies that we get the same error term as in the case q 6=
√

2− 1.

Note further that (with a little bit more effort) we could have been much more
precise. However, the bound given by Lemma 4 is sufficient for our purposes.

Lemma 5. For every 0 < q < 1 there exist c > 0 and η > 0 (depending on q) such
that ∣∣∣∣∣Pr{Hn ≤ k} −

k∑
l=0

(
n− 1

l

)
plqn−1−l

∣∣∣∣∣ = O
(
n−1/2 exp

(
− c
n

(
k − pn

)2
))

(10)

uniformly for |k − pn| ≤ ηn and∣∣∣Pr{|Hn − pn| ≥ m}
∣∣∣ = O

(
exp

(
− cm

2

n

))
(11)

uniformly for |m| ≤ ηn as n→∞.

Proof. First we note that (9) of Lemma 4 applies to the function

(qx)2

1− qx

(
px

1−qx

)k
− (qx)k

px
1−qx − qx

.
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Thus we obtain

[xn]
(qx)2

1− qx

(
px

1−qx

)k
− (qx)k

px
1−qx − qx

= O
(
n−1/2 exp

(
− c
n

(
k − pn

)2
))

+O(qk)

uniformly for |k − pn| ≤ ηn as n→∞.
The remaining terms will now be treated in the same way as in the proof of Lemma 4:

[xn]

 qx

1− x

(
px

1− qx

) ( px)
1−qx

)k
− (qx)k

px
1−qx − qx

+
qx2

1− x

(
px

1− qx

)k
1− (qx)k

1− qx



=
1

2πi

∫
|z|=1−ε

 qz

1− z

(
pz

1− qz

) ( pz
1−qz

)k
− (qz)k

pz
1−qz − qz

− qz2

1− z

(
pz

1− qz

)k
1− (qz)k

1− qz

 dz

zn+1

=
1

2πi

∫
|z|=x0

 qz

1− z

(
pz

1− qz

)
1

pz
1−qz − qz

− qz2

1− z
1

1− qz

( pz

1− qz

)k
dz

zn+1

− 1

2πi

∫
|z|=1−k−1

qz

1− z

(
pz

1− qz

)
(qz)k

pz
1−qz − qz

dz

zn+1

+
1

2πi

∫
|z|=1−k−1

qz2

1− z

(
pz

1− qz

)k
(qz)k

1− qz
dz

zn+1

= O

n−1/2x−n0

(
px0

1− qx0

)k+O(kqk).

For the first integral we use the fact that the function

F (z) =
qz

1− z

(
pz

1− qz

)
1

pz
1−qz − qz

− qz2

1− z
1

1− qz

is regular at z = 1 und thus bounded in a vicinity of z = 1 (compare with the proof
of Lemma 4). The second and third integrals are easy to estimate. We only have to
apply the trivial bounds

max
|z|=1−k−1

∣∣∣∣ 1

1− z

∣∣∣∣ = k,

max
|z|=1−k−1

∣∣∣zk∣∣∣ = O(1)

and

max
|z|=1−k−1

∣∣∣∣∣ pz

1− qz

∣∣∣∣∣
k

=
(
1 +O(k−1)

)k
= O(1).
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Finally observe that in the range |k − pn| ≤ ηn we surely have

kqk = O
(
n−1/2 exp

(
− c
n

(
k − pn

)2
))

which completes the proof of (10).
The proof of (11) is now easy. We just have to combine a proper tail estimate for

the binomial distribution, i. e.

∑
|l−pn|≥m

(
n− 1

l

)
plqn−1−l = O

(
exp

(
− cm

2

n

))
,

with (10).

We are now able to complete the first part of Theorem 1. It is well known that the
distribution function of the binomial distribution can be estimated by the distribution
function of the normal distribution up to a uniform error of order O(n−1/2), i. e., as
n→∞,

sup
x∈R

∣∣∣∣∣∣
∑
l≤x

(
n− 1

l

)
plqn−1−l − Φ

(
x− pn
√
pqn

)∣∣∣∣∣∣ = O(n−1/2), (12)

compare with [7, p. 542].
Furthermore, by (10) we get a similar result for the distribution of Hn:

sup
x∈R

∣∣∣∣∣∣Pr{Hn ≤ x} −
∑
l≤x

(
n− 1

l

)
plqn−1−l

∣∣∣∣∣∣ = O(n−1/2). (13)

Note that (10) provides (13) just for x with |x− pn| ≤ ηn. However, by (11) we know
that ∣∣∣Pr{|Hn − pn| ≥ ηn}

∣∣∣ = O
(
exp

(
−cη2n

))
.

By the monotonicity of the distribution function this implies that for x with |x−pn| ≥
ηn we also have ∣∣∣Pr{|Hn − pn| ≥ x}

∣∣∣ = O
(
exp

(
−cη2n

))
.

Thus (13) follows.
The first part of Theorem 1, i. e. (1), is now a trivial consequence of (12) and (13).

3. Convergence of Moments

Lemmata 2 and 3 can be easily used to get quite tight bounds for the expected value.
Note that ∑

n≥0

EHn x
n =

∑
k≥0

(
1

1− x
− yk(x)

)
. (14)
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Lemma 6. The expected value of Hn can be bounded by

pn+ q ≤ EHn ≤ pn+O
(

1

p

)
. (15)

Proof. Set

E(x) =
∑
k≥0

(
1

1− x
− yk(x)

)
.

Then by (5) we obtain

E(x) ≥ x

1− x
∑
k≥0

(
px

1− qx

)k
=
x(1− qx)

(1− x)2
,

which is also true on the level of coefficients. Thus, we have

EHn ≥ pn+ q.

Similarly we get the upper bound. From

E(x) ≤ x(1− qx)

(1− x)2
+

(qx)2

1− qx
1(

px
1−qx

)
− qx

 1

1− px
1−qx

− 1

1− qx


+

qx

1− x

(
px

1− qx

)
1(

px
1−qx

)
− qx

 1

1− px
1−qx

− 1

1− qx


− qx2

1− x
1

1− qx

 1

1− px
1−qx

− 1

1− qx2(1−q)
1−qx


=
x(1− qx)

(1− x)2
+

(qx)2

(1− x)(1− qx)

+
pqx2

(1− x)2(1− qx)
− qx2

(1− x)2
+

qx2

(1− x)
(
1− pqx2

1−qx

)
=
x(1− qx)

(1− x)2
+

qx2(1− qx)

(1− x) (1− qx− pqx2)

we directly obtain

EHn ≤ pn+O
(

1

p

)
.

This completes the proof of Lemma 6.

Unfortunately it seems that we cannot prove similarly tight estimates for the vari-
ance. However, we can obtain a non–trivial result:

Lemma 7. The variance of Hn can be bounded by

VHn = pqn+Oq
(
n1/2 log2 n

)
. (16)
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Proof. If F (x) = Pr{X ≤ x} denotes the distribution function of a random variable
X (of compact support) then the variance of X can be represented by

VX = 2
∫
EX

−∞
(EX − y)F (y) dy + 2

∫ ∞
EX

(y − EX)(1− F (y)) dy.

We apply this formula for the height Hn where we have very precise estimates for
EHn and its distribution function Fn(x) = Pr{Hn ≤ x}, compare with Lemma 5 and
Lemma 6.

Let u ≤ η
√
n be a parameter to be defined later. By applying Lemma 5 and Lemma 6

we get

2
∫
EHn−u

√
n

0
(EHn − y)Fn(y) dy = O

(
ne−cu

2
)
,

2
∫
EHn

EHn−u
√
n
(EHn − y)Fn(y) dy =

pqn

2
+O

(
u2
√
n
)
,

2
∫
EHn−u

√
n

EHn
(y − EHn)(1− Fn(y)) dy =

pqn

2
+O

(
u2
√
n
)
,

and

2
∫ n

EHn−u
√
n
(y − EHn)(1− Fn(y)) dy = O

(
ne−cu

2
)
.

Choosing u = log2 n gives the result.

It should be further mentioned that it is quite easy to get asymptotic relations for
all central moments of the form

E(Hn − EHn)k ∼ ck(pqn)k/2 (n→∞)

by the method as described in Lemma 7, where c2k = (2k)!/(2kk!) and c2k+1 = 0.
Thus we have not only a weak convergence result for Hn (properly normalized) but
convergence of moments, too.
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