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• Mixture of combinatorial, analytic and probabilistic methods

• Heavy use of generating function
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Recursive Trees

Combinatorial Description

• labelled rooted tree

• labels are strictly increasing

• no left-to-right order (non-planar)



Recursive Trees

Motivations

• spread of epidemics

• pyramid schemes

• familiy trees of preserved copies of ancient texts

• convex hull algorithms

• ...



Enumeration of Recursive Trees

All recursive trees of size 4:
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Enumeration of Recursive Trees

Number of recursive trees

yn = number of recursive trees of size n

= (n− 1)!

The node with label j has exactly j − 1 possibilities to be inserted

=⇒ yn = 1 · 2 · · · (n− 1).



Enumeration of Recursive Trees

Bijection to permutations
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root degree = number of cycles

subtree sizes = cycle lengths



Enumeration of Recursive Trees

Generating Functions:

y(x) =
∑
n≥1

yn
xn

n!
=

∑
n≥1

xn

n
= log

1

1− x

y′(x) = 1 + y(x) +
y(x)2

2!
+

y(x)3

3!
+ · · · = ey(x)

R
RRR RR R

= + + + + ...

A recursive tree can be interpreted as a root followed by an unordered

sequence of recursive trees. (y′(x) =
∑

n≥0
yn+1xn/n!)



Random Recursive Trees

Probability Model:

Process of growing trees:

• The process starts with the root that is labeled with 1.

• At step j a new node (with label j) is attached to any previous

node with probability 1/(j − 1).

After n steps every tree (of size n) has equal probability 1/(n− 1)!.
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Random Recursive Trees

Remark: left-to-right order is irrelevant
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Profile of Recursive Trees

First sample of shape parameters:

• insertion depth of the n-th node: Dn

• path length: In (sum of alle distances to the root)

• height Hn (maximal distance to the root)

• degree distribution

• profile Xn,k (number of nodes at level k)



Profile of Recursive Trees

First sample of shape parameters:

• insertion depth of the n-th node: Dn

• path length: In (sum of alle distances to the root)

• height Hn (maximal distance to the root)

• degree distribution

• PROFILE Xn,k (number of nodes at level k)



Profile of Recursive Trees

Relevance of the profile Xn,k:

• P{Dn = k} =
1

n− 1
E Xn−1,k−1

• In =
∑
k≥0

kXn,k

• Hn = max{k ≥ 0 : Xn,k > 0}

• The profile descibes the shape of the tree.



Profile of Recursive Trees

Average profile:

E Xn,k =
n√

2π logn

(
e
−(k−logn)2

2 logn +O
(

1√
logn

))
.

1

1

x

0,50
4

-0,5-1

3
2

0



Profile of Recursive Trees

Central limit theorem for the insertion depth [Devroye, Mahmoud]

Dn − logn√
logn

→ N(0,1)

E Dn = logn + O(1), V Dn = logn + O(1).



Profile of Recursive Trees

Lemma [Dondajewski+Szymánski]

E Xn,k = [uk]
(n + u− 1

n− 1

)
=

|sn,k|
(n− 1)!

sn,k ... Stirling numbers of the first kind

|sn,k| ... number of permutations of {1, . . . n} with k cycles:

n∑
k=0

sn,kuk = u(u− 1) · · · (u− n + 1)

n∑
k=0

|sn,k|uk = u(u + 1) · · · (u + n− 1)



Stirling Numbers

sn+1,k = sn,k−1 − nsn,k, |sn+1,k| = |sn,k−1|+ n|sn,k|

sn,k k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
n = 0 1
n = 1 0 1
n = 2 0 -1 1
n = 3 0 2 -3 1
n = 4 0 -6 11 -6 1
n = 5 0 24 -50 35 -10 1
n = 6 0 -120 274 -225 85 -15 1
n = 7 0 720 -1764 1624 -735 175 -21 1
n = 8 0 -5040 13068 -13132 6769 -1960 322 -28 1



Profile of Recursive Trees

Remark (n + α− 1

n

)
= (−1)n

(−α

n

)
=

nα−1

Γ(α)

(
1 + O

(
1

n

))

Corollary

|sn,k| =
(n− 1)!(logn)k

k!Γ( k
logn + 1)

(
1 + O

(
1

n

))

∼
n!√

2π logn
e
−(k−logn)2

2 logn

Proof:(n + u− 1

n− 1

)
∼

nu

Γ(u + 1)
=⇒ [uk]

(n + u− 1

n− 1

)
∼

(logn)k

k!Γ( k
logn + 1)

.



Profile of Recursive Trees

Corollary

P{Dn = k} =
E Xn−1,k−1

n− 1
∼

1√
2π logn

e
−(k−logn)2

2 logn

This implies the central limit theorem for Dn.



Cycles in Permutations

|sn,k| = number of permutations of {1, . . . n} with k cycles

Corollary

Cn ... random number of cycles in permutations

Cn − logn√
logn

→ N(0,1)

Corollary

Rn ... root degree of random recursive trees

Rn − logn√
logn

→ N(0,1)



Profile of Recursive Trees

Profile polynomial

Wn(u) =
∑
k≥0

Xn,k uk

Lemma. The normalized profile polynomial

Mn(u) =
Wn(u)

E Wn(u)

is a martingale (with respect to the natural filtration related to the

tree evolution process).



Profile of Recursive Trees

Theorem [Chauvin+Drmota+Jabbour for binary search trees](
Wn(u)

E Wn(u)
, u ∈ B

)
→ (M(u), u ∈ B)

for a suitable domain B ⊆ C.

Remarks

• (M(u), u ∈ B) stochastic process of random analytic functions.

• Fixed point equation:

M(u) ≡ uUuM(1)(u) + (1− U)uM(2)(u) ,

where M(1)(u) and M(2)(u) are independent copies of M(u), U is

uniform in [0,1] and (U, M(1)(u), M(2)(u)) are independent.



Profile of Recursive Trees

Theorem [Chauvin+Drmota+Jabbour for binary search trees] Xn,bα lognc
E Xn,bα lognc

, α ∈ I

→ (M(α), α ∈ I) .

Idea

Xn,k = [uk]Wn(u)

= [uk]Mn(u) · E Wn(u)

∼ [uk]M(u) · E Wn(u)·
∼ M(α)[uk]E Wn(u) = M(α)E Xn,k.

α = k/ logn ... saddle point the function nuu−k.



Path Length

Remark

M ′
n(1) =

In − E In

n

Corollary

In − E In

n
→ M ′(1)

The random variable M ′(1) is not normal. Note also that E In ∼ n logn.



Leaves in Recursive Trees

Theorem [Najock+Heyde]

Ln ... number of leaves in a random recursive tree of size n

P{Ln = k} =
1

(n− 1)!

〈
n− 1
k − 1

〉
.

〈
n
k

〉
... Eulerian numbers

Remark

〈
n− 1
k − 1

〉
= number or recursive trees of size n with k leaves.



Eulerian Numbers

〈
n
k

〉
= k

〈
n− 1

k

〉
+ (n− k)

〈
n− 1
k − 1

〉

〈
n
k

〉
k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

n = 0 1
n = 1 1 1
n = 2 1 4 1
n = 3 1 11 11 1
n = 4 1 26 66 26 1
n = 5 1 57 302 302 57 1
n = 6 1 120 1191 4216 1191 120 1
n = 7 1 247 4293 15619 15619 4293 247 1
n = 8 1 502 14608 88234 156190 88234 14608 502 1



Leaves in Recursive Trees

Corollary

Ln − n
2√

7
12n

→ N(0,1)

E Ln =
n

2
, E (Ln)

2 =
1

12
(3(n− 1)2 + 13(n− 1) + 14),



Leaves in Recursive Trees

Generating functions

`n,k ... number or recursive trees of size n with k leaves.

y(x, u) =
∑
n,k

`n,k · uk ·
xn

n!
=
∑
n,k

P{Ln = k} · uk ·
xn

n

∂y(x, u)

∂x
= u + ey(x,u) − 1

y(x, u) = (x− 1)(u− 1) + log
(

u− 1

1− e(x−1)(u−1)

)



Degree Distribution

`
(d)
n,k ... number or r.t.’s of size n with k nodes of outdegree d.

L
(d)
n ... number of nodes of outdegree d in a random r.t. of size n:

P{L(d)
n = k} =

`
(d)
n,k

(n− 1)!

Dn ... degree of a random node in a random r.t. of size n

P{Dn = d} =
1

n
E L

(d)
n

Theorem

P{Dn = d} =
1

2d+1
+ O

(
1

n2

(2 logn)d

d!

)



Degree Distribution

Generating functions

y(x, u) =
∑
n,k

`
(d)
n,k · u

k ·
xn

n!
=
∑
n,k

P{L(d)
n = k} · uk ·

xn

n

∂y(x, u)

∂x
= ey(x,u) + (u− 1)

y(x, u)d

d!

Y (x) =
∂y(x, u)

∂u

∣∣∣∣∣
u=1

=
∑
n≥0

E L
(d)
n ·

xn

n
=

∑
n≥0

P{Dn = d} · xn

Y ′(x) =
1

1− x
Y (x) +

1

d!

(
log

1

1− x

)d



Degree Distribution

Y ′(x) =
1

1− x
Y (x) +

1

d!

(
log

1

1− x

)d

=⇒ Y (x) =
1

2d+1

1

1− x
+ (x− 1)

d∑
j=0

1

j!2d+1−j

(
log

1

1− x

)j

=⇒ P{Dn = d} =
1

2d+1
+ O

(
1

n2

(2 logn)d

d!

)
uniformly for d ≤ (2− ε) logn.

Corollary

P{Dn > d} =
1

2d+1
+ O

(
1

n2

(2 logn)d

d!

)



Maximum Degree

Theorem [Szymánski, Pittel]

∆n ... maximum node degree in random r.t.’s.

E∆n ∼ log2 n

Remark. This degree is much larger than the expected root degree

with is about logn.



First Moment Method

X ... discrete random variable on non-negative integers.

=⇒ P{X > 0} ≤ min{1, E X} .

Proof

E X =
∑
k≥0

k P{X = k} ≥
∑
k≥1

P{X = k} = P{X > 0}.



Maximum Degree

Upper bound: first moment method

Xd ... number of nodes of degree > d:

E Xd = nP{Dn > d} ∆n > d ⇐⇒ Xd > 0

=⇒ E∆n =
∑
d≥0

P{∆n > d}

=
∑
d≥0

P{Xd > 0}

≤
∑
d≥0

min{1, E Xd}

≤
∑

d≤log2 n

1 + n
∑

d>log2 n

P{Dn > d}

= log2 n + O(1).



Second Moment Method

Theorem

X ... non-negative random variable with bounded second moment

=⇒ P{X > 0} ≥
(E X)2

E (X2)
.

Proof

E X = E
(
X · 1[X>0]

)
≤
√

E (X2)
√

E (12
[X>0]) =

√
E (X2)

√
P{X > 0}

Remark In order to apply the second moment method to obtain a

lower bound for E∆n one needs estimates for E (Xd)
2 which can be

derived in a similar fashion as above.



Maximum Degree

Theorem [Goh+Schmutz]

P{∆n ≤ d} = exp
(
−2−(d−log2 n+1)

)
+ o(1)

Remark. The limiting behaviour of ∆n is related the the exteme value

(= Gumbel) distribution (F (t) = e−e−t
).

The distribution of ∆n is extremely concentrated around d ≈ log2 n.

The proof is an analytic “tour de force”.



Height of Recursive Trees

Height Hn

Theorem [Devroye 1987, Pittel 1994]

Hn

logn
→ e (a.s.)



Height Distribution

F (z) solution of

y F (y/e1/e) =
∫ y

0
F (z/e1/e)F (y − z) dz

Recursive sequence of generating functions:

y′k+1(x) = eyk(x) , y0(x) = 0, yk(0) = 0.

Theorem [Drmota]

E Hn = e logn + O
(√

logn (log logn)
)
.

P{Hn ≤ k} = F (n/y′k(1)) + o(1)

P{|Hn − E Hn| ≥ η} � e−cη (c > 0)



Height Distribution

yn,k ... number of r.t.’s of size n and height ≤ k:

P{Hn ≤ k} = yn,k/(n− 1)!

yk(x) =
∑
n≥0

P{Hn ≤ k}
xn

n
=

∑
n≥0

yn,k
xn

n!

y′k+1(x) = eyk(x)

Yk(x) = y′k(x) =
∑
n≥0

P{Hn+1 ≤ k}xn

Y ′
k+1(x) = Yk+1(x)Yk(x)

(Yk+1(0) = 1)



Height Distribution

y F (y/e1/e) =
∫ y

0
F (z/e1/e)F (y − z) dz

Ψ(u) =
∫ ∞
0

F (y)e−yu dy

Y k(x) = ek/e ·Ψ
(
ek/e(1− x)

)



Height Distribution

• 1− Y k(0) ∼ Ck
(
2
e

)k
, Y k(1) = ek/e.

•

Y
′
k+1(x) = Y k+1(x)Y k(x)

• For every positive integer ` and for every real number k > 0 the

difference

Y`(x)− Y k(x)

has exactly one zero (“Intersection Property”).



Height Distribution

• Y k(x) =
∑
n≥0

Y n,kxn is an entire function with coefficients

Y n,k =
∫ ∞
0

F
(
ve−k/e

)
vne−v dv

and asymptotically we have

Y n,k = F
(
ne−k/e

)
+ o(1)



Height Distribution

Remark:

The functions

yk(x) =
∫ x

0
Y k(t) dt = logY k+1(x)

satisfy the recurrence

yk+1(x) = eyk(x)



Height Distribution

Proof idea

• Yk(x) is approximated by the auxiliary function Y ek(x):

Yk(1) = Y ek(1) ⇐⇒ ek = e · logYk(ρ) ∼ k.

• Yk(x) ≈ Y ek(x) in a neighbourhood of x = 1

=⇒ P{Hn ≤ k} ≈ Y n,ek = F
(
n/Yk(1)

)
+ o(1)



Plane Oriented Trees
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Plane Oriented Trees
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Plane Oriented Trees
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Plane Oriented Trees

Remark: left-to-right order is relevant

1 1

2 23 3
=



Plane Oriented Trees

Number of Plane Oriented Trees:

yn = number of plane oriented trees of size n

= 1 · 3 · 5 · · · (2n− 3) = (2n− 3)!!

=
(2n− 2)!

2n−1(n− 1)!

The node with label j has exactly 2j − 3 possibilities to be inserted

=⇒yn = 1 · 3 · · · (2n− 3).



Plane Oriented Trees

Generating Functions:

y(x) =
∑
n≥1

yn
xn

n!
=

∑
n≥1

1

2n−1

(2(n− 1)

n− 1

)xn

n
= 1−

√
1− 2x

y′(x) = 1 + y(x) + y(x)2 + y(x)3 + · · · =
1

1− y(x)

R
RRR RR R

= + + + + ...

A plane oriented tree can be interpreted as a root followed by an

ordered sequence of plane oriented trees. (y′(x) =
∑

n≥0
yn+1xn/n!)



Plane Oriented Trees

Probability Model:

Process of growing trees

• The process starts with the root that is labeled with 1.

• At step j a new node (with label j) is attached to any previous

node of outdegree d with probability (d + 1)/(2j − 3).

After n steps every tree (of size n) has equal probability 1/(2n− 3)!!.



Plane Oriented Trees

Depth Dn of the n-th node

E Dn = H2n−1 −
1

2
Hn−1 =

1

2
logn + O(1)

V Dn = H2n−1 −
1

2
Hn−1 −H

(2)
2n−1 +

1

4
H

(2)
n−1

=
1

2
logn + O(1)

Central limit theorem:

Dn − 1
2 logn√

1
2 logn

→ N(0,1)



Plane Oriented Trees

Number Ln of leaves

E Ln =
2n− 1

3

V Ln =
n

9
−

1

18
−

1

6(2n− 1)

Central limit theorem:

Ln − 2
3n√

n
9

→ N(0,1)



Plane Oriented Trees

Distribution of out-degrees

Dn ... degree of a random node in a random p.o.r.t. of size n

P{Dn = d} =
4

(d + 1)(d + 2)(d + 3)
+ o(1)

Remark.
4

(d + 1)(d + 2)(d + 3)
∼ 4 d−3 as d →∞.



Plane Oriented Trees

Root degree Rn

P{Rn = k} =
(2n− 3− k)!

2n−1−k(n− 1− k)!
∼
√

2

πn
e−k2/(4n)

E Rn =
√

πn + O(1)



Plane Oriented Trees

Height Hn

[Pittel 1994]

Hn

logn
→

1

2s
= 1.79556 . . . (a.s.)

where s = 0.27846 . . . is the positive solution of ses+1 = 1.

Precise results (as above) are also available ([Drmota]).



D-ary Recursive Trees



D-ary Recursive Trees
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D-ary Recursive Trees
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D-ary Recursive Trees
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D-ary Recursive Trees
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D-ary Recursive Trees
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D-ary Recursive Trees
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Cutting down Recursive Trees
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Cutting down Recursive Trees
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Cutting down Recursive Trees
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Cutting down Recursive Trees
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Cutting down Recursive Trees
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Cutting down Recursive Trees
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Cutting down Recursive Trees
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Cutting down Recursive Trees
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Cutting down Recursive Trees
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Cutting down Recursive Trees

Xn ... number of random cuts to cut down a random r.t. of size n.

X0 = X1 = 0,

Xn ≡ XIn + 1 (n ≥ 2),

where In is a discrete random variable with

P{In = k} =
1

(n− k)(n− k + 1)

n

n− 1
(0 ≤ k < n)

that is independent of (X0, X1, . . . , Xn−1).



Cutting down Recursive Trees

Lemma

The probability to that the remaining tree has size = k if we cut a

random edge in a random recursive tree of size n equals

1

(n− k)(n− k + 1)

n

n− 1

Proof

(k − 1)!(n− k − 1)!

(n− 1)(n− 1)!

k∑
j=1

(n− j

n− k

)
=

(k − 1)!(n− k − 1)!

(n− 1)(n− 1)!

( n

n− k + 1

)
=

1

(n− k)(n− k + 1)

n

n− 1



Cutting down Recursive Trees

Theorem [Drmota+Iksander+Möhle+Rösler]

Xn − n
logn −

n log logn
(logn)2

n
(logn)2

→ Y ,

where Y is a stable random variable with characteristic function

E eiλY = eiλ log |λ|−π
2|λ|.

E Xn =
n

logn
+ O

(
n

log2 n

)
, V Xn =

n2

2 log3 n
+ O

(
n2

log4 n

)



Cutting down Recursive Trees

Stable distributions

The distribution of random variable X is stable, if for all real a, b and

independent copies X1, X2 of X there exists c, d with

aX1 + bX2 ≡ cX + d

Examples: normal distribution, Cauchy distribution, Levy distribution

All stable distributions can be characterized in term of the character-

istic function E eiλX.



Coalescent Process
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Coalescent Process
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Coalescent Process

Stochastic model

Let Λ be a measure on [0,1].

• Continuous Markov process of partitions of {1,2 . . . , n},
Initial partition: {{1}, {2}, . . . , {n}}.

• If ξ and η are two partitions with a resp. b equivalence classes,

where b− a + 1 classes of ξ are merged to obtain η.

Then the rate qξ,η that ξ merges to η is

qξ,η =

{ ∫
[0,1](1− (1− x)b − bx(1− x)b−1)x−2dΛ(x) if ξ = η,∫
[0,1] x

b−a−1(1− x)a−1dΛ(x) if ξ 6= η.



Coalescent Process

Kingman-coalescent

Λ = δ0

Bolthausen-Sznitman-coalescent

Λ = univ[0,1]



Coalescent Process

Remark

The process of number of classes is also a Markov process with rates

gba =
( b

a− 1

) ∫
[0,1]

xb−a−1(1− x)a−1dΛ(x)

(1 ≤ a < b ≤ n)



Coalescent Process

Bolthausen-Sznitman-coalescent

Xn ... number of collisions until there is a single block:

X0 = X1 = 0,

Xn ≡ XIn + 1 (n ≥ 2),

where In is a discrete random variable with

P{In = k} =
1

(n− k)(n− k + 1)

n

n− 1
(0 ≤ k < n)

that is independent of (X0, X1, . . . , Xn−1).



Cutting down Recursive Trees

Lemma

f(s, t) =
∑
n≥1

E sXn tn−1

satisfies the partial differential equation

∂f(s, t)

∂t

(
1− t +

t

log(1− t)

(
1−

1

s

))
= f(s, t)

with initial condition f(s,0) = 1.



Cutting down Recursive Trees

Expected Value

g(t) :=
∂f(s, t)

∂s

∣∣∣∣∣
s=1

=
∑

E Xn tn−1

=⇒ g′(t)−
g(t)

1− t
=

t

(1− t)3 log 1
1−t

=⇒ g(t) =
1

(1− t)2 log 1
1−t

−
log log 1

1−t

1− t
+ O

 1

(1− t)2 log2 1
1−t



=⇒ E Xn =
n

logn
+ O

(
n

log2 n

)
.



Thank You!


