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Methodology

e Mixture of combinatorial, analytic and probabilistic methods

e Heavy use of generating function
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Recursive Trees

Combinatorial Description

e |labelled rooted tree

e |labels are strictly increasing

e no left-to-right order (non-planar)



Recursive Trees

Motivations

e Spread of epidemics

e pyramid schemes

e familiy trees of preserved copies of ancient texts

e convex hull algorithms



Enumeration of Recursive Trees

All recursive trees of size 4:
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Enumeration of Recursive Trees

Number of recursive trees

number of recursive trees of size n
(n—1)!

Yn

The node with label 57 has exactly 7 — 1 possibilities to be inserted
— yp=1-2---(n—1).



Enumeration of Recursive Trees

Bijection to permutations

(0)
/
?@‘*@&@
(4)

root degree = number of cycles

subtree sizes = cycle lengths



Enumeration of Recursive Trees

Generating Functions:

(a:)2 y(z)3 4= @)
3!

R:O+?+R+R + ..

R R R RRR

y'(2) =1+ y(2) + 7

A recursive tree can be interpreted as a root followed by an unordered

sequence of recursive trees. (y/'(z) = X y,+12"/n!)
n>0



Random Recursive Trees

Probability Model:

Process of growing trees:

e [ he process starts with the root that is labeled with 1.

e At step j a new node (with label j) is attached to any previous
node with probability 1/(j5 — 1).

After n steps every tree (of size n) has equal probability 1/(n — 1)!.
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Random Recursive Trees

p=1/2 /@>\
@Epzllz



Random Recursive Trees

p=1/72 p=1/2
S e %g



Random Recursive Trees

Remark: left-to-right order is irrelevant

1



Profile of Recursive Trees

First sample of shape parameters:

e insertion depth of the n-th node: D,

e path length: I,, (sum of alle distances to the root)

e height H, (maximal distance to the root)

e degree distribution

e profile X, , (number of nodes at level k)



Profile of Recursive Trees

First sample of shape parameters:

e insertion depth of the n-th node: D,

e path length: I,, (sum of alle distances to the root)

e height H, (maximal distance to the root)

e degree distribution

e PROFILE X, ; (number of nodes at level k)



Profile of Recursive Trees

Relevance of the profile X, .:

1
o PiDn=k}=——"EX; 151

L In — Z kX’I’L,]C
k>0

e Hp =max{k>0: X, >0}

e [ he profile descibes the shape of the tree.



Profile of Recursive Trees

Average profile:




Profile of Recursive Trees

Central limit theorem for the insertion depth [Devroye, Mahmoud]

E D, =logn+ O(1), VD, =logn+ O(1).



Profile of Recursive Trees

Lemma [Dondajewski+Szymanski]

n+u—1 S, k|
E X, ;= [u" ="
= 1] n—1 ) (n— 1)!
Sp.k --- Stirling numbers of the first kind
Sp.k| ... number of permutations of {1,...n} with k cycles:

> Sn’kuk=u(u—1)---(u—n—|—l)
k=0

n

S Isprluf =u(u+1)- - (u+n—1)
k=0



Stirling Numbers

Sn+1k — Snk—1 — NSn k>

[Sp4-1.k1 = ISnk—1| + 1|5y &l

Sn k k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 =8
n=20 1
n=1 0 1
n=—>2 0 -1 1
n=3 0 2 -3 1
n—=24 0 -6 11 -6 1
n=>5 0 24 -50 35 -10 1
n—=~6 0 -120 274 -225 85 -15 1
n=7 0 720 -1764 1624 -735 175 -21 1
n=3~8 0O -5040 13068 -13132 6769 -1960 322 -28 1




Profile of Recursive Trees

Remark
n+aoa-—1 o[ —C _no‘_l 1
()= () = e ()
Corollary
_ (n—1)Y(logn)*k 1
Sl = B (b + 1) (1+O(ﬁ))
nt  -(ogm:
N\/leogne
Proof:
n+u—1 nY n+u-—1 (logn)k
( n—1 )Nl‘(u+1) — [uk]< n—1 )Nk!r( E_41)

log n



Profile of Recursive Trees

Corollary

EXn—l,k—l 1 _ (k—log n)2

P{D, =Lk} = ~ 2Togn
{Pn ) n—1 \/27T|O(_:Jn6

This implies the central limit theorem for D,,.



Cycles in Permutations

|sp. k| = number of permutations of {1,...n} with k cycles

Corollary

Cy ... random number of cycles in permutations

N(O,1
viogn — NV )

Corollary

R, ... root degree of random recursive trees

R, —logn

er VD)




Profile of Recursive Trees

Profile polynomial

Wn(w) = Y Xppu®
k>0

Lemma. The normalized profile polynomial
is a martingale (with respect to the natural filtration related to the
tree evolution process).

My (uw) =



Profile of Recursive Trees

Theorem [Chauvin+Drmota+Jabbour for binary search trees]

(EWn(uYU c B) — (M(u),u € B)

for a suitable domain B C C.

Remarks

e (M(u),u € B) stochastic process of random analytic functions.

e Fixed point equation:

M(u) = wU*M® () + (1 — U)“M (2 (v)

~

where M1 (w) and M(2)(v) are independent copies of M(w), U is
uniform in [0, 1] and (U, M1 (w), M(2)(w)) are independent.



Profile of Recursive Trees

Theorem [Chauvin+Drmota+Jabbour for binary search trees]

X
( n,|lalogn] Lo € I) N (M(Oé),()é c I)
EXn,Lozlognj

Idea
= [ Mp(w) - EWp(u)
~ [uF]M (u) - E Wi (u):
~ M () [WMEWy(u) = M(a)E X, 1.

a = k/logn ... saddle point the function nbu k.



Path Length

Remark
I, —EI
M (1) == &
n
Corollary
I, —EI, . M’(l)
mn

The random variable M’(1) is not normal. Note also that E I, ~ nlogn.



Leaves In Recursive Trees

Theorem [Najock+Heyde]

L, ... number of leaves in a random recursive tree of size n

1 n—1
P{Ln:k}:(n—l)!< k-1 >

<Z> ... EBEulerian numbers

Remark

<Z’ : i> = number or recursive trees of size n with k leaves.



Eulerian Numbers

(k)=

n—1 n—1
< k >+(”_k)<k—1

)

<Z> k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=28
n=~0 1

n = 1 1

n = 1 4 1

n=3 1 11 11 1

n = 1 26 66 26 1

n=~>5 1 57 302 302 57 1

n = 1 120 1191 4216 1191 120 1

n=7 1 247 4293 15619 15619 4293 247 1

n = 1 502 14608 88234 156190 88234 14608 502 1




Leaves In Recursive Trees

Corollary

ELo=7,  E(In)?= %(3@ _1)2 4 13(n— 1) + 14),



Leaves In Recursive Trees

Generating functions

lpk .-~ NumMber or recursive trees of size n with k leaves.

:U’I’L

n
n,k 7 n! n.k n

oy(xz,u)

D) — g ) 1

y(z,u) = (z —1)(u—1) +log (1 _ ezvjliu—l))




Degree Distribution

éfldlz ... humber or r.t.'s of size n with &k nodes of outdegree d.

L%d) ... humber of nodes of outdegree d in a random r.t. of size n:
(d) o
P{L,' =k} =—"20
L J (n—1)!

D, ... degree of a random node in a random r.t. of size n

P{D, = d} = & L{®
n

T heorem

_ 1 1 (2logn)¢
PiDn=d} =57 + 0 (n? d! )




Degree Distribution

Generating functions

nk n! n,k n
oy(x,u) (1) y(z,u)?
dx ¢’ +u-1) d!
Oy(z,u) (d) =" _
Y(z) = = > ELy’-—= > P{Dp=d} 2"

ou |,—1 n>0 n "0

Y(z) = %_QCY(.%) + % (Iog ! )d




Degree Distribution

1 1 (2logn)?
— P{D, =d} 2d+1+0<n2 T
uniformly for d < (2 —¢) logn.
Corollary
_ 1 1 (2logn)d
FiDn > d} = 57 + 0 <n2 d! )




Maximum Degree

Theorem [Szymanski, Pittel]

A, ... maximum node degree in random r.t.’s.

Remark. This degree is much larger than the expected root degree
with is about logn.



First Moment Method

X ... discrete random variable on non-negative integers.

— [P{X >0} < min{1,EX}|

Proof

EX =Y kP{X =k}> ) P{X =k} =P{X >0}
k>0 k>1



Maximum Degree

Upper bound: first moment method

X4 ... humber of nodes of degree > d:

— EA,= Y P{A,>d}

d>0

= Z P{Xd> O}

d>0

< > min{l,E X}

d>0

< 2

d<logon

1+n Z

P{Dy > d}
d>logon

= logon + O(1).



Second Moment Method

Theorem
X ... non-negative random variable with bounded second moment
(E X)?
— ([P{X >0} > .
S (6
Proof

EX =FE (X : 1[X>0]) < \/E(XQ)\/E(1[2X>O]) — \/E(XQ)\/]P’{X > 0}

Remark In order to apply the second moment method to obtain a
lower bound for E A, one needs estimates for E (X;)2 which can be
derived in a similar fashion as above.



Maximum Degree

Theorem [Goh+4Schmutz]

P{A, < d} = exp (-2 (4710927F1D) 4 5(1)

Remark. The limiting behaviour of A, is related the the exteme value
(= Gumbel) distribution (F(t) = e~¢ ).

T he distribution of A, is extremely concentrated around d = logon.

The proof is an analytic ‘tour de force”.



Height of Recursive Trees

Height H,

Theorem [Devroye 1987, Pittel 1994]

logn

> €

(a.s.)




Height Distribution

F(z) solution of

yF(y/et/®) = [ F(z/et)F(y = =) d

Recursive sequence of generating functions:

Vg1 (@) = ¥ | yo(z) = 0, y,(0) = 0.

Theorem [Drmota]

E H, = elogn + O(\/Iog n (log log n)).

P{H, < k} = F(n/y4(1)) + o(1)

P{{Hn —EHp| >n} <™ (c>0)



Height Distribution

Ynk --- humber of r.t.’s of size n and height < k:

P{Hn < k} = yp1/(n — 1)!

n n

Xr X
yp(z) = Y P{H, <k}—= ) Ynk
n>0 o n>0 n:

y;€+1(gp) — eyk(x)

Vi(z) = yp(z) = > P{H,41 < k}a"
n>0

Viiq(z) = Viyq(2)Yy(x)

(Y,41(0) =1)



Height Distribution
yF(y/et/®) = [ F(z/et/)F(y = =) d

W) = [ F(y)e " dy

Yi(x) = ekle  w <ek/€(1 — x))




Height Distribution

e 1-Y4(0) ~Ck(2)", V(1) =eble.

Vig1(x) = Yia1(2)Y(2)

e For every positive integer ¢ and for every real number k£ > 0 the
difference

Yy(xz) — Yi(x)

has exactly one zero (“Intersection Property” ).



Height Distribution

e Vi(z) =) Y, xz" is an entire function with coefficients
n>0

Ypr= /OOO F (’Ue_k/e> v"e Y dv

and asymptotically we have

Y,pr=F (ne_k/e) + o(1)




Height Distribution

Remark:

The functions
r -
yr(x) = /o Yi(t)dt =109Y 4 1(x)

satisfy the recurrence

Uy (z) = Vr(®)




Height Distribution

Proof idea

e Y, (z) is approximated by the auxiliary function Y, (z):

Yk(l) = ?ek(l) < er. = e-log Yk(p) ~ k.

e Vi(z) = Ye, (x) in a neighbourhood of z =1

—

P{H, <k}~ Yne, = F(n/Yk(1)> + o(1)




Plane Oriented Trees
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Plane Oriented Trees

p 1/3



Plane Oriented Trees
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Plane Oriented Trees

Remark: left-to-right order is relevant

1



Plane Oriented Trees

Number of Plane Oriented Trees:

yn = number of plane oriented trees of size n
= 1-3:5.---(2n—-3) = (2n — 3)!!
_ (2n-2)!
 2n—1(p —1)!

The node with label 5 has exactly 27 — 3 possibilities to be inserted
—yp,=1-3---(2n — 3).



Plane Oriented Trees

Generating Functions:

=Yt =Y (T = v
1

n>1 n—1

1
1 —y(x)

R:O+9+R+R + -

R R R RRR

v (2) =14 y(@) +y@)2+y@)3+ - =

A plane oriented tree can be interpreted as a root followed by an

ordered sequence of plane oriented trees. (y/'(z) = X y,4+12"/n!)
n>0



Plane Oriented Trees

Probability Model:

Process of growing trees

e [ he process starts with the root that is labeled with 1.

e At step j a new node (with label j) is attached to any previous
node of outdegree d with probability (d+ 1)/(2j — 3).

After n steps every tree (of size n) has equal probability 1/(2n — 3)!I.



Plane Oriented Trees

Depth D, of the n-th node

1 1
KDy, =Hop,_1— EHn_l = 5 logn + O(l)

1 2 1 (2
VDnp = Hpp_ 11— 5 n—1 — Hén)_l + ZHé’_)l

%Iog n+ 0(1)

Central limit theorem:

Dp — 3logn

\/%Iogn

. N(0,1)




Plane Oriented Trees

Number L, of leaves

2n — 1
ELn: ik

1 1

9 18 6(2n—1)

Central limit theorem:

— 3% L N(0,1)

O3




Plane Oriented Trees

Distribution of out-degrees

D, ... degree of a random node in a random p.o.r.t. of size n

4

A+ Dd+2)+3 oW

P{D, = d} =

4 ~ 443
(d+1)(d+2)(d+ 3)

Remark. as d — oo.



Plane Oriented Trees

Root degree R,

Fifin = ) = on—1-k(p —1_ k) \7n'

ERy, = +vmn+ O(1)



Plane Oriented Trees

Height H,

[Pittel 1994]

H 1
Z L, = =1.79556... (a.s.)
log n 2s

where s = 0.27846 ... is the positive solution of seStl = 1.

Precise results (as above) are also available ([Drmotal).



D-ary Recursive Trees




D-ary Recursive Trees
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D-ary Recursive Trees




D-ary Recursive Trees




D-ary Recursive Trees




D-ary Recursive Trees




D-ary Recursive Trees




D-ary Recursive Trees




D-ary Recursive Trees




Cutting down Recursive Trees
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Cutting down Recursive Trees
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Cutting down Recursive Trees
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Cutting down Recursive Trees
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Cutting down Recursive Trees
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Cutting down Recursive Trees
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Cutting down Recursive Trees
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Cutting down Recursive Trees
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Cutting down Recursive Trees

Xn ... number of random cuts to cut down a random r.t. of size n.

Xo= X1 =0,

Xn=Xp, +1 (n > 2),

where [, is a discrete random variable with

1 n
(n—k)(n—k+1)n—-1
that is independent of (Xg, X1,...,X,-1).

P{I, =k} = (0 <k < n)



Cutting down Recursive Trees

Lemma

The probability to that the remaining tree has size = k if we cut a
random edge in a random recursive tree of size n equals

1 n
(n—k)(n—k+1)n-1

Proof
k—D'n—k—1' & mn—j  (k—1)(n—k—1)! n
(n—1)(n—1)! jgl(n_k)_ (n—1)(n—1)! (n—k—l—l)
1 n

T -k m—k+1)n—1



Cutting down Recursive Trees

Theorem [Drmota+Iksander+Mohle4Rosler]

X, — n log I092n
logn (logn)
n ’ Y )
(logn)?

where Y is a stable random variable with characteristic function

| AY — irlog |>\|—g])\].




Cutting down Recursive Trees

Stable distributions

The distribution of random variable X is stable, if for all real a,b and
independent copies X1, Xo of X there exists ¢,d with

aX1{+bXo=cX +d

Examples: normal distribution, Cauchy distribution, Levy distribution

All stable distributions can be characterized in term of the character-
istic function E e X.
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Coalescen t Process
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Coalescent Process

Stochastic model

Let A be a measure on [0, 1].

e Continuous Markov process of partitions of {1,2...,n},
Initial partition: {{1},{2},...,{n}}.

e If £ and n are two partitions with a resp. b equivalence classes,
where b — a + 1 classes of £ are merged to obtain 7.
Then the rate de.n that & merges to n is

e { f[O,l](l — (1 — Cl?)b — bx(1 — ZU)b_l)x_Qd/\(QU) if &€ =n,
S o2 N1 — 2) YA () if &€ #n.



Coalescent Process

Kingman-coalescent

A = &,

Bolthausen-Sznitman-coalescent

A = univ[O0, 1]



Coalescent Process

Remark

The process of number of classes is also a Markov process with rates

Jpg = ( b )/[0,1] 2270711 — ) 1gn(2)

a—1
(1<a<b<n)



Coalescent Process

Bolthausen-Sznitman-coalescent

Xn ... number of collisions until there is a single block:

Xn=X; +1 (n > 2),

where I, is a discrete random variable with
1 n

(n—k(n—-k4+1)n-1

that is independent of (Xg, X1,...,X,,—1).

P{I, =k} = (0<k<mn)



Cutting down Recursive Trees

Lemma

f(s,t) = > R sn ¢

n>1
satisfies the partial differential equation

df(s,t) t 1)
ot (1 —iF log(1l —t) (1 B g)) = /(1)

with initial condition f(s,0) = 1.



Cutting down Recursive Trees

Expected Value

log log -
— g(t) = k 1 _09091—t_|_0( 1 )




T hank You!



