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Rn ... labelled planar graphs with n vertices:
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Planar Maps

A planar map is a planar graph together with its embedding in the

plane

(usually with a rooted edge):



Maps

Tutte, Bender, Canfield, Gao, Wormald, Liskovets, Flajolet, Bousquet-

Melou, Schaeffer, Bouttier, Guitter, Di Francesco ...

The counting problem for rooted maps is relatively easy and many

things can be worked out explicitly and asymptotically.

Several statistics (including maximum degree and diameter) are known.

Some of them are very difficult to deal with.
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2-connected: one has to remove at least 2 vertices to disconnect
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Connectedness
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Connectedness

3-connected: one has to remove at least 3 vertices to disconnect
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Planar Maps vs. Planar Graphs

Whitney’s Theorem

Every 3-connected planar graph has a unique embedding into the plane.

=⇒ The counting problem of rooted 3-connected planar maps is

equivalent to the counting problem of rooted (labelled) 3-connected

planar graphs (despite of a factor (n− 1)!)
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3-Connected Maps

qijk ... number of edge-rooted 3-connected maps with

i + 1 vertices of type 1 (◦),
j + 1 vertices of type 2 (�), and with

root vertex of degree k + 1

Q(x, y, w) =
∑
i,j,k

qi,j,k · xi yj wk

Theorem [Mullin+Schellenberg, D+Gimenez+Noy]

Q(x, y, w) = xyw

(
1

1 + wy
+

1

1 + x
− 1

)
−

UV

(1 + U + V )3
·W (R, S, w)

with ...



3-Connected Maps

with algebraic function U = U(x, y), V = V (x, y) given by

U = x(V + 1)2 , V = y(U + 1)2

and

W (U, V, w) =
−w1(U, V, w) + (U − w + 1)

√
w2(U, V, w)

2(V + 1)2(V w + U2 + 2U + 1)

with polynomials w1 = w1(U, V, w) and w2 = w2(U, V, w) given by

w1 =− UV w2 + w(1 + 4V + 3UV 2 + 5V 2 + U2 + 2U + 2V 3 + 3U2V + 7UV )

+ (U + 1)2(U + 2V + 1 + V 2),

w2 =U2V 2w2 − 2wUV (2U2V + 6UV + 2V 3 + 3UV 2 + 5V 2 + U2 + 2U + 4V + 1)

+ (U + 1)2(U + 2V + 1 + V 2)2.



Random Planar Graphs

Denise, Vasconcellos, Welsh (1996)

P {e(Rn) >
3

2
n} → 1, P {e(Rn) <

5

2
n} → 1 .

e(Rn) ... number of edges in random planar graphs Rn

Note that 0 ≤ e ≤ 3n for all planar graphs.

McDiarmid, Steger, Welsh (2005)

P {H appears in Rn at least αn times} → 1

H ... any fixed planar graph, α > 0 sufficiently small.



Random Planar Graphs

Appearance of H:

H
H H H ...



Random Planar Graphs

Consequences:

P {There are ≥ αn vertices of degree k} → 1

k > 0 a given integer, α > 0 sufficiently small.

P {There are ≥ Cn automorphisms} → 1

for some C > 1.



Random Planar Graphs

Further Results:

P {Rn is connected} ≥ γ > 0

[McDiarmid+Reed]

E∆(Rn) = Θ(logn)

∆(Rn) ... maximum degree in Rn



The number of planar graphs

[Bender, Gao, Wormald (2002)]

bn ... number of 2-connected labelled planar graphs

bn ∼ c · n−
7
2 γn

2 n! , γ2 = 26.18...

[Gimenez+Noy (2005)]

gn .... number of all labelled planar graphs

gn ∼ c · n−
7
2 γn n! , γ = 27.22...



The number of planar graphs

[Gimenez+Noy (2005)]

• e(Rn) satisfies a central limit theorem:

E e(Rn) ∼ 2.21... · n, V e(Rn) ∼ c · n.

P {|e(Rn)− 2.21... · n| > εn} ≤ e−α(ε)·n

• Connectedness:

P {Rn is connected} → e−ν = 0.96...

number of components of Rn =: Cn → 1 + Po(ν).



Degree Distribution

Theorem [D.+Gimenez+Noy]

Let dn,k be the probability that a random node in a random planar

graph Rn has degree k. Then the limit

dk := lim
n→∞ dn,k

exists. The probability generating function

p(w) =
∑
k≥1

dkwk

can be explicitly computed.

d1 d2 d3 d4 d5 d6

0.0367284 0.1625794 0.2354360 0.1867737 0.1295023 0.0861805



Degree Distribution

More precisely ...

• Implicit equation for D0(y, w):

1 + D0 = (1 + y w ) exp

(√
S(D0(t− 1) + t)

4(3t + 1)(D0 + 1)
−

−
D2

0(t
4 − 12t2 + 20t− 9) + D0(2t4 + 6t3 − 6t2 + 10t− 12) + t4 + 6t3 + 9t2

4(t + 3)(D0 + 1)(3t + 1)

)
,

where t = t(y) satisfies y+1 =
1 + 2t

(1 + 3t)(1− t)
exp

(
−

1

2

t2(1− t)(18 + 36t + 5t2)

(3 + t)(1 + 2t)(1 + 3t)2

)
.

and S = (D0(t− 1) + t)(D0(t− 1)3 + t(t + 3)2).

• Explicit expressions in terms of D0(y, w):

D2(y, w), D3(y, w), B0(y, w), B2(y, w), B3(y, w)

• Explict expression for p(w):

p(w) = −eB0(1,w)−B0(1,1)B2(1, w) + eB0(1,w)−B0(1,1)1 + B2(1,1)

B3(1,1)
B3(1, w)



Degree Distribution

Consequences

• Expected number Xn,k of vertices of degree k:

E Xn,k = dn,k · n ∼ dk · n , dk > 0.

• Tails of the degree distribution:

dk ∼ c · k−
1
2 qk , q = 0.79...



Degree Distribution

Conjecture for maximum degree ∆(Rn):

E∆(Rn) ∼
logn

log(1/q)

Remark.

Corresponding results on the degree distribution and the maximum

degree are known for random planar maps: [Liskovets, Gao+Wormald]



Degree Distribution

Theorem [D.+Gimenez+Noy]

Let d
(2)
n,k resp. d

(3)
n,k be the probability that a random node in a random

2-connectet resp. 3-connected planar graph with n vertices has degree

k. Then the limits

d
(2)
k := lim

n→∞ d
(2)
n,k and d

(3)
k := lim

n→∞ d
(3)
n,k

exists. The probability generating functions

p(2)(w) =
∑
k≥1

d
(2)
k wk and p(3)(w) =

∑
k≥1

d
(2)
k wk

can be explicitly computed. Asymptotically we have

d
(2)
k ∼ c · k

1
2 qk , q =

√
7− 2 and d

(3)
k ∼ c · k−

1
2 qk , q = 0.673...



Generating Functions

• gn ... all planar graphs with n vertices:

g(x) =
∑
n≥0

gn
xn

n!

• cn ... connected planar graphs with n vertices:

c(x) =
∑
n≥0

cn
xn

n!

• bn ... 2-connected planar graphs with n vertices:

b(x) =
∑
n≥0

bn
xn

n!



Generating Functions

• gn,m ... all planar graphs with n vertices and m edges:

g(x, y) =
∑

n,m≥0

gn,m
xn

n!
ym

• cn,m ... connected planar graphs with n vertices and m edges:

c(x, y) =
∑

n,m≥0

cn,m
xn

n!
ym

• bn,m ... 2-connected planar graphs with n vertices and m edges:

b(x, y) =
∑

n,m≥0

bn,m
xn

n!
ym



Generating Functions

G(x, y) = exp (C(x, y)) ,

∂C(x, y)

∂x
= exp

(
∂B

∂x

(
x
∂C(x, y)

∂x
, y

))
,

∂B(x, y)

∂y
=

x2

2

1 + D(x, y)

1 + y
,

M(x, D)

2x2D
= log

(
1 + D

1 + y

)
−

xD2

1 + xD
,

M(x, y) = x2y2
(

1

1 + xy
+

1

1 + y
− 1−

(1 + U)2(1 + V )2

(1 + U + V )3

)
,

U = xy(1 + V )2,

V = y(1 + U)2.



Generating Functions

G(x, y) = exp (C(x, y))

G

C

C
C

C
C



Generating Functions

∂C(x, y)

∂x
= exp

(
∂B

∂x

(
x
∂C(x, y)

∂x
, y

))

B° B°

B°

xC°
xC°

xC°xC°

xC°

xC°

xC°



Generating Functions

C• = ∂C
∂x ... GF, where one vertex is marked but not counted

w ... additional variable that counts the degree of the marked vertex

Generating functions:

G•(x, y, w) all rooted planar graphs

C•(x, y, w) connected rooted planar graphs

B•(x, y, w) 2-connected rooted planar graphs

T •(x, y, w) 3-connected rooted planar graphs

Note that G•(x, y,1) =
∂G

∂x
(x, y) etc.



Generating Functions

G•(x, y, w) = exp (C(x, y,1))C•(x, y, w),

C•(x, y, w) = exp
(
B• (xC•(x, y,1), y, w

))
,

w
∂B•(x, y, w)

∂w
= xyw exp

(
S(x, y, w) +

1

x2D(x, y, w)
T •

(
x, D(x, y,1),

D(x, y, w)

D(x, y,1)

))

D(x, y, w) = (1 + yw) exp

(
S(x, y, w) +

1

x2D(x, y, w)
×

× T •
(

x, D(x, y,1),
D(x, y, w)

D(x, y,1)

))
− 1

S(x, y, w) = xD(x, y,1) (D(x, y, w)− S(x, y, w)) ,

T •(x, y, w) =
x2y2w2

2

(
1

1 + wy
+

1

1 + xy
− 1−

−
(u + 1)2

(
−w1(u, v, w) + (u− w + 1)

√
w2(u, v, w)

)
2w(vw + u2 + 2u + 1)(1 + u + v)3

 ,

u(x, y) = xy(1 + v(x, y))2, v(x, y) = y(1 + u(x, y))2.



Asymptotics for Generating Functions

Singularity analysis

Suppose that

f(z) =
∑
n≥0

an zn = A0 + A2Z2 + A3Z3 + O(Z4),

with

Z =

√
1−

z

ρ

(plus some technical conditions).

=⇒ an =
3A3

4
√

π
ρ−nn−5/2 + O(ρ−nn−3)



Asymptotics for Generating Functions

3-connected planar graphs

ũ0(y) = −
1

3
+

√
4

9
+

1

3y

r(y) =
ũ0(y)

y(1 + y(1 + ũ0(y))2)2
,

X̃ =

√
1−

x

r(y)

=⇒ T •(x, y, w) = T̃0(y, w) + T̃2(y, w)X̃2 + T̃3(y, w)X̃3 + O(X̃4)



Asymptotics for Generating Functions

2-connected planar graphs

τ(x) ... inverse function of r(y)

D(R(y), y,1) = τ(R(y))

X =

√
1−

x

R(y)

=⇒ D(x, y, w) = D0(y, w) + D2(y, w)X2 + D3(y, w)X3 + O(X4) ,

=⇒ B•(x, y, w) = B0(y, w) + B2(y, w)X2 + B3(y, w)X3 + O(X4)



Asymptotics for Generating Functions

Lemma

f(x) =
∑
n≥0

an
xn

n!
= f0 + f2X2 + f3 X3 +O(X4), X =

√
1−

x

ρ
,

H(x, z, w) = h0(x, w) + h2(x, w)Z2 + h3(x, w) Z3 +O(Z4),

Z =

√√√√1−
z

f(ρ)
,

fH(x) = H(x, f(x) , w) =
∑
n≥0

bn(w)
xn

n!

=⇒ lim
n→∞

bn(w)

an
= −

h2(ρ, w)

f0
+

h3(ρ, w)

f3

(
−

f2
f0

)3/2

.



Asymptotics for Generating Functions

connected planar graphs

C•(x,1, w) = exp
(
B•

(
xC′(x),1, w

))

Application of the lemma with

f(x) = xC′(x)

and

H(x, z, w) = xeB•(z,1,w).



Thank You


