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Abstract

A digital search tree (DST) – one of the most fundamental

data structure on words – is a digital tree in which keys

(strings, words) are stored directly in (internal) nodes. Such

trees find myriad of applications from the popular Lempel-

Ziv’78 data compression scheme to distributed hash tables.

The profile of a DST measures the number of nodes at the

same distance from the root; it is a function of the number

of stored strings and the distance from the root. Most

parameters of DST (e.g., height, fill-up) can be expressed

in terms of the profile. However, from the inception of

DST, the analysis of the profile has been elusive and it has

become a prominent open problem in the area of analysis

of algorithms. We make here the first, but decisive step,

towards solving this problem. We present a precise analysis

of the average profile when stored strings are generated by a

biased memoryless source. The main technical difficulty of

analyzing the profile lies in solving a sophisticated recurrence

equation. We present such a solution for the Poissonized

version of the problem (i.e., when the number of stored

strings is generated by a Poisson distribution) in the Mellin

transform domain. To accomplish it, we introduce a novel

functional operator that allows us to express the solution in

an explicit form, and then using analytic algorithmics tools

to extract asymptotic behavior of the profile. This analysis

is surprisingly demanding but once it is carried out it reveals

unusually intriguing and interesting behavior. The average

profile undergoes several phase transitions when moving

from the root to the longest path. At first, it resembles a

full tree until it abruptly starts growing polynomially and it

oscillates in this range. Our results are derived by methods

of analytic algorithmics such as generating functions, Mellin

transform, Poissonization and de-Poissonization, the saddle-

point method, singularity analysis and uniform asymptotic

analysis.
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1 Introduction

Digital trees are fundamental data structures on words
[6, 15, 17]. Among them tries and digital search trees
stand out due to a myriad of applications ranging from
data compression to distributed hash tables [9, 17]. In
a digital search trees, the subject of this paper, strings
are directly stored in nodes. More precisely, the root
contains the first string, and the next string occupies
the right or the left child of the root depending on
whether its first symbol is “0” or “1”. The remaining
strings are stored in available nodes which are directly
attached to nodes already existing in the tree. The
search for an available node follows the prefix structure
of a new string [15]. In this paper, we are concerned
with probabilistic properties of the profile defined as the
sequence of numbers each counting the number of nodes
with the same distance from the root. Throughout the
paper, we write Xn,k for the number of nodes at level
k when n strings are stored (cf. Figure 1). We study
the profile built over n binary strings generated by a
memoryless source, that is, we assume each string is a
binary i.i.d. sequence with p being the probability of a
“1” (0 < p < 1); we also use q := 1−p > p. This simple
model may seem too idealized for practical purposes,
however, the typical behaviors under such a model often
hold under more general models such as Markovian
or dynamical sources, although the technicalities are
usually more involved.

The motivation of studying the profiles is multi-
fold. First, digital search trees are used in various ap-
plications ranging from data compression (e.g., Lempel-
Ziv’78 data compression scheme∗ [4]), to telecommu-
nication (e.g., conflict resolution algorithms [17]), to
partial matching of multidimensional data [15], to dis-
tributed hash tables [9]. Second, the profile is a fine
shape measure closely connected to many other cost
measures, as discussed in some depth below. Third,
not only the analytic problems are mathematically chal-

∗In particular, Xn,k represents the number of phrases of length

k in the Lempel-Ziv’78 built over n phrases.
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Figure 1: A digital search tree built on eight strings
s1, . . . , s8 (i.e., s1 = 0 . . ., s2 = 1 . . ., s3 = 01 . . .,
s4 = 11 . . ., etc.) and its profile.

lenging, but the diverse new phenomena they exhibit
are highly interesting and unusual. Fourth, our findings
imply several new results on other shape parameters.

As we mentioned above, almost all DST parameters
can be expressed in terms of the profile Xn,k: (i) height :
the length of the longest path from the root becomes
Hn = max{j : Xn,j > 0}; (ii) fill-up (or saturation)
level : the largest full level, or Fn = max{j : Xn,j = 2j};
(iii) depth: the distance from the root to a randomly
selected node; its distribution is given by the expected
profile divided by n, [8]; (iv) total path length: the sum
of distances between nodes and the root, or equivalently,
Ln =

∑

j jXn,j.
The major difference between most previous study

and the current paper is that we are dealing with
asymptotics of a bivariate recurrence, in contrast to
univariate recurrences addressed in the literature. The
main novel mathematical result concerns an explicit and
asymptotic solution of the following recurrence, never
studied in the past,

xn+1,k+1 =
∑

0≤j≤n

(

n

j

)

pj(1 − p)n−j (xj,k−1 + xn−j,k−1)

with suitable initial conditions. The Poisson generat-
ing function ∆k(z) := e−z

∑

n xn,kzn/n!, satisfies the
following functional equation

∆′
k+1(z) + ∆k+1(z) = ∆k(pz) + ∆k(qz),

with a suitable ∆0(z). This equation is still not ready
for analytical handling, therefore, one applies first the
Mellin transform, and some additional transformations
leading to the following functional-recurrence equation

Fk+1(s) − Fk+1(s − 1) = (p−s + q−s)Fk(s)

for complex s. We are able to obtain an explicit
solution of this complicated equation by introducing a

proper functional operator. Next we find the inverse of
the Mellin transform which leads to infinite number of
saddle points, a rather unexpected situation (cf. also
[12]). The final step is to invert asymptotics of the
Poisson function ∆k(z) through the so called analytic
depoissonization to recover asymptotically xn,k. The
reader is referred to [3, 17] for a detailed discussion
of the above mentioned tools that belong to analytic
algorithmics.

Digital trees have been intensively studied for the
last thirty years [6, 17], but not the profile. The closest
related quantity is the typical depth Dn that measures
the path length from the root to a randomly selected
node; it is equal to ratio of the average profile to the
number of nodes. Unfortunately, all estimations of the
depth [6, 7, 8, 16, 14] deal only with the typical depth
around most likely value, namely k = 1/h logn + O(1)
where h = −p log p−q log q is the entropy rate. External
and internal profiles of tries have been studied by Park
et. al [10, 11, 12], while the profile of the digital search
trees for unbiased source (i.e., p = q = 1/2) has been
recently obtained in [5] (cf. Section 6.3 of Knuth [6]
for preliminary studies). The profile of digital search
trees for a biased memoryless sources was left untouched
for the last thirty years, and seems to be the most
challenging problem in this area.

In this paper, we analyze precisely the expected
profile of the biased digital search tress for k ≤
(log 1

q )−1 log n and reveal unusually intriguing and in-
teresting behavior. The average profile undergoes sev-
eral phase transitions when moving from the root to
the longest path. At first it resembles a full tree until
it abruptly starts growing polynomially. Furthermore,
the expected profile is oscillating in a range where pro-
file grows polynomially. These oscillations are due to
infinite number of saddle points. Knowing the expected
profile for all values of depth k, we easily obtain (known
and unknown) results for the typical depth and width.
For example, we shall show an unusual Local Limit The-
orem for the typical depth. Furthermore, our results
are in accordance with known results on height, and fill
up level. In particular, our result shows that (biased)
digital search trees behave almost the same as (biased)
tries.

The paper is organized as follows. We first present
our main results. Then we describe a streamlined
analysis with details delayed till the last two sections.

2 Main Results

Let Xn,k denote the (random) number of nodes at level
k in a digital search tree, when n strings are generated
by a memoryless source with parameters p < q = 1− p.
It is easy to see that the probability generating function



E uXn,k satisfies the following recurrence relation

(2.1) E uXn+1,k+1 =

n
∑

ℓ=0

(

n

ℓ

)

pℓqn−ℓ
E uXn,ℓE uXn,n−ℓ ,

while the corresponding exponential generating function

Gk(z, u) =
∑

n≥0

E uXn,k
zn

n!

satisfies the following functional recurrence

(2.2)
∂

∂z
Gk+1(z, u) = Gk(pz, u)Gk(qz, u)

with initial conditions G0(z, u) = 1 + u(ez − 1) and
Gk(0, u) = 1. We are interested in the expected profile
µn,k = E Xn,k. By taking derivatives with respect to
u and setting u = 1 we obtain for the exponential
generating function

Ek(z) =
∑

n≥0

µn,k
zn

n!
=

∑

n≥0

E Xn,k
zn

n!
.

the following functional recurrence

(2.3) E′
k+1(z) = eqzEk(pz) + epzEk(qz)

with initial condition E0(z) = ez − 1 and Ek(0) = 0.
It is known that this kind of recurrence is rather

difficult to solve. In what follows we present a method
to solve equations of that kind based on a three step
procedure. We first apply the Poisson transform,
then the Mellin transform and finally another power
series representation. Each of these steps has to be
properly inverted with help of analytic techniques; we
will describe the road map of this procedure in the next
section.

In order to state our main result we need the fol-
lowing notations. For a real number α with (log 1

p )−1 <

α < (log 1
q )−1, let ρ = ρ(α) be defined by the equation

α =
p−ρ + q−ρ

p−ρ log 1
p + q−ρ log 1

q

.

Furthermore, we set

β(ρ) =
p−ρq−ρ log(p/q)2

(p−ρ + q−ρ)2
, α0 =

2

log 1
p + log 1

q

.

In this paper, we prove the following main findings.

Theorem 2.1. Let E Xn,k denote the expected profile
in (asymmetric) digital search trees with underlying
probabilities 0 < p < q = 1 − p. Let k and n be

positive integers such that k/ logn satisfies (log 1
p )−1 <

k/ logn < (log 1
q )−1. Then:

(i) If 1
log 1

p

+ ε ≤ k
log n ≤ α0 − ε (for some ε > 0), then

we have uniformly

E Xn,k = 2k − G
(

ρn,k, logp/q pkn
)

· (p
−ρn,k + q−ρn,k)kn−ρn,k

√

2πβ(ρn,k)k

·
(

1 + O

(

1

log n

))

,

where G(ρ, x) is a non-zero periodic function with period
1 and small amplitude (cf. Figure 2).

(ii) If k = α0

(

log n + ξ
√

α0β(0) log n
)

, where ξ =

o((log n)
1
6 ), then

E Xn,k = 2kΦ(−ξ)

(

1 + O

(

1 + |ξ|3√
log n

))

,

where Φ(x) denotes the normal distribution function.

(iii) If α0 + ε ≤ k
log n ≤ 1

log 1
q

− ε (for some ε > 0), then

uniformly

E Xn,k = G
(

ρn,k, logp/q pkn
) (p−ρn,k + q−ρn,k)kn−ρn,k

√

2πβ(ρn,k)k

·
(

1 + O

(

1

log n

))

with G(ρ, x) as above in (i).

Note that if we set α = k/ logn then we can

rewrite (p−ρ + q−ρ)kn−ρ = nα log(p−ρ+q−ρ)−ρ. Thus,
the behavior of E Xn,k is governed by a power of n
depending on the ratio α = k/ log n: Up to level
k = α0 log n, the digital search tree is almost full (i.e.,
has almost 2k nodes) with some fluctuation contributing
to the second order term. A phase transition occurs
around α = α0 + O(1/

√
log), and for α > α0 the profile

grows polynomially oscillating around nα log(p−ρ+q−ρ)−ρ.
More interestingly, the average profile allows us

to deriving several new and old results in a uniform
manner. Let us start with the typical depth Dn which
is given by P (Dn = k) = µn,k/n. Using Theorem 2.1(ii)
around k = 1/h logn+cx

√
log n we obtain the following

surprising variant of the Local Limit Theorem for the
depth.

For k = (1/h) logn + x
√

c log n we have

P (Dn = k) = G1

(

−1; logp/q pkn
) e−x2/2

√
2πc log n
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Figure 2: The fluctuating part of the periodic function
G1(−1; x) for p = 0.55, 0.65, . . . , 0.95 and for x in the
unit interval; its amplitude tends to zero when p → 0.5+.

·
(

1 + O

(

1 + |x|3√
log n

))

,

where

c =
β(−1)

h
=

pq log(p/q)2

p log 1
p + q log 1

q

.

As a further corollary to the above finding we
observe that the width Wn (defined as maxk Xn,k)
satisfies

E Wn ≥ max
k

E Xn,k = Ω

(

n

log n

)

.

In order to obtain a corresponding upper bound (one
expects that the order of magnitude of the lower bound
is the correct one) we would need some information on
the second moment E X2

n,k, compare with [2].

3 Road Map of the Proof

As already mentioned, the proof of Theorem 2.1 consists
of three steps:
(i) The starting point is the recurrence
(3.4)

E Xn+1,k+1 =

n
∑

ℓ=0

(

n

ℓ

)

pℓqn−ℓ(E Xℓ,k+E Xn−ℓ,k) (n, k ≥ 0)

for the expected values µn,k = E Xn,k. We recall the
initial conditions

E Xn,0 =

{

0 for n = 0,
1 for n ≥ 1.

(ii) The first step is to consider the Poisson transform

∆k(z) =
∑

n≥0

E Xn,k e−z zn

n!
= Ek(z)e−z (k ≥ 0)

that can be considered as the expected number of nodes
at level k if the number n of total nodes follows a Poisson
distribution with parameter z. It is clear that the above
recurrence translates to
(3.5)

∆k+1(z) + ∆′
k+1(z) = ∆k(pz) + ∆k(qz) (k ≥ 0).

with initial conditions ∆0(z) = 1 − e−z. It is easy
to prove by induction that ∆k(z) can be represented
as a finite linear combination of function of the form
e−pℓ1qℓ2z with ℓ1, ℓ2 ≥ 0 and ℓ1 + ℓ2 ≤ k. We will use
this observation in the sequel.
(iii) The second step is to use the Mellin transform

Mk(s) = M(∆k(z)) =

∫ ∞

0

∆k(z)zs−1 dz.

Since E Xn,k ≤ 2k it is clear that Mk(s) can only exist
for s with ℜ(s) < 0. Furthermore, Xn,k = 0 for n ≤ k.
Thus, Ek(z) = O(zk+1) for z → 0 which ensures that
Mk(s) exists for s with ℜ(x) > −k − 1. Consequently
Mk(s) exists for −k − 1 < ℜ(s) < 0. Since ∆k(z) can
be represented as a finite linear combination of function

of the form e−pℓ1qℓ2z with ℓ1, ℓ2 ≥ 0 and ℓ1 + ℓ2 ≤ k we
can rewrite Mk(s) as

Mk(s) = −Γ(s)Fk(s),

where Γ(s) is the Euler gamma function. Observe that
Fk(s) is now a finite linear combination of functions of
the form p−ℓ1sq−ℓ2s with ℓ1, ℓ2 ≥ 0 and ℓ1 + ℓ2 ≤ k.
Thus, Fk(s) can be considered as an entire function.
Further, the relation (3.5) now translates to
(3.6)
Fk+1(s) − Fk+1(s − 1) = (p−s + q−s)Fk(s) (k ≥ 0)

with initial condition F0(s) = 1. Note that the relation
(3.6) holds not only for −k − 1 < ℜ(s) < 0 where
the Mellin transform exists. Since Fk(s) analytically
continues to an entire function (3.6) holds for all s.
(iv) The third step is to consider the power series

f(x, s) =
∑

k≥0

Fk(s)xs.

It turns out that f(x, s) can we rewritten (see
Lemma 4.1) as

f(x, s) =
g(x, s)

g(x,−1)
,

where g(x, s) satisfies the following relation

(3.7) g(x, s) = 1 + x
∑

j≥0

g(x, s − j)(p−s+j + q−s+j).

Granted the above, an asymptotic analysis follows.
We start with a singularity analysis of g(x, s), in par-
ticular we will show (see Lemma 4.3) that g(x, s) has
(usually) a polar singularity at x = 1/(p−s+q−s). Thus
it will be possible to get proper asymptotics for Fk(s).
In fact we get Fk(s) ∼ f(s)(p−s + q−s)k (for s in the in-
teresting range). This resembles an exact expression for



tries of the form (p−s + q−s)k as discussed in [12]. This
is the reason why the overall behaviour of the profile of
biased tries and biased digital search trees is almost of
the same form. Only the periodic functions are slightly
different.

Thus, the final two steps (inverting the Mellin
transform and depoissonization) are almost identical to
the methods presented in [12]. First one has to invert
the Mellin transform with help of the analytic formula
(through an application of the saddle point method)

(3.8) ∆k(z) = − 1

2πi

∫ ρ+i∞

ρ−i∞

Γ(s)Fk(s)z−s ds,

where −k − 1 < ρ < 0 and where we assume that
z in cone around the real axis. Finally, one has to
apply analytic depoissonization to ∆k(z) which gives
E Xn,k ∼ ∆k(n) Thus, for our final result we have to
set z = n.

4 Singularity Analysis

Before we study the generating function f(x, s) =
∑

k≥0 Fk(s)xk, we will collect some basic properties of
Fk(s). We recall that Fk(s) can be considered as entire
functions.

Let A be an functional operator that is defined by

(4.9) A[f ](s) =
∑

j≥0

f(s − j)T (s − j),

where

(4.10) T (s) = p−s + q−s.

In the next lemma, proved in Appendix A, we find
an explicit representation of Fk(z) through the operator
A.

Lemma 4.1. The functions Fk(s) are recursively given
by

(4.11) Fk+1(s) = A[Fk](s) − A[Fk](−1) (k ≥ 0).

Furthermore if we set Rk(s) = Ak[1](x), then we have
the formal identity

(4.12)
∑

k≥0

Fk(s)xk =

∑

ℓ≥0 Rℓ(s)x
ℓ

∑

ℓ≥0 Rℓ(−1)xℓ

with initial function F0(s) = 1. Finally for k ≥ 1 we
have Fk(−ℓ) = 0 for ℓ = 1, 2, . . . , k.

Remark 4.1. Note that if f is a finite linear combina-
tion of functions of the form p−ℓ1sq−ℓ2s then A[f ](s) = 0
implies f(s) = 0. This follows from the observation that
(4.13)

A[p−ℓ1sq−ℓ2s] =
p−(ℓ1+1)sq−ℓ2s

1 − pℓ1+1qℓ2
+

p−ℓ1sq−(ℓ2+1)s

1 − pℓ1qℓ2+1
.

Thus, the largest non-zero term of f (for s → ∞) will
be mapped into two non-zero term that contains the
largest one of A[f ].

Remark 4.2. Observe further that the proof of (4.11)
(and consequently that of (4.12)) makes use of the fact
that Fk(−1) = 0 for k ≥ 1. However, we also have
Fk(−r) = 0 for k ≥ r. In particular, if we set s = −r in
(4.12) we get

r−1
∑

k=0

Fk(−r)xr =

∑

ℓ≥0 Rk(−r)xk

∑

ℓ≥0 Rk(−1)xk

and consequently

(4.14)
∑

k≥0

Fk(s)xk =

∑

ℓ≥0 Rk(s)xk

∑

ℓ≥0 Rk(−r)xk

r−1
∑

k=0

Fk(−r)xr .

Furthermore, since Fk(0) = 2k we similarly we find

(4.15)
∑

k≥0

Fk(s)xk =

∑

ℓ≥0 Rk(s)xk

∑

ℓ≥0 Rk(0)xk

1

1 − 2x
.

Our next goal is to study the function g(x, s) =
∑

ℓ≥0 Rℓ(s)x
ℓ, where we now consider x as a complex

variable, too. Note that g(x, s) satisfies the (at the
moment formal) identity
(4.16)

g(x, s) = 1+xA[g(x, ·)](s) = 1+
∑

j≥1

g(x, s− j)T (s− j).

In the next lemma, proved in Appendix B, we establish
a crucial property of g(x, s).

Lemma 4.2. There exists a function h(x, s) that is
analytic for all x and s for which

xT (s − m) 6= 1 for all m ≥ 1.

such that

(4.17) g(x, s) =
h(x, s)

1 − xT (s)
.

Thus, g(x, s) has a meromorphic continuation where
x0 = 1/T (s) is a polar singularity.

Finally, we are in position to derive an asymptotic
representation for Fk(s).

Lemma 4.3. For every real interval [a, b] there exist k0,
η > 0 and ε > 0 such that

(4.18) Fk(s) = f(s)T (s)k
(

1 + O
(

e−ηk)
))

uniformly for all s with ℜ(s) ∈ [a, b], |ℑ(s) −
2ℓπ log(q/p)| ≤ ε for some integer ℓ and k ≥ k0, where



f(s) is an analytic function that satisfies f(−r) = 0 for
r = 1, 2, . . ..

Furthermore, if |ℑ(s)− 2ℓπ log(q/p)| > ε for for all
integers ℓ then we have

(4.19) Fk(s) = O
(

T (σ)k e−ηk)
)

.

uniformly for ℜ(s) ∈ [a, b].

Proof. Suppose first that s is a real number with −r −
1 < s < −r for some integer r ≥ 0. Here we use the
representation

f(x, s) =

r
∑

k=0

Fk(−r − 1)xk g(s, x)

g(−r − 1, x)

=

r
∑

k=0

Fk(−r − 1)xk h(s, x)

h(−r − 1, x)

1 − xT (−r − 1)

1 − xT (s)
.

By Lemma 4.2 there exist η > 0 such that h(s, x) is
analytic for |x| ≤ eη/T (s). Since T (−r − 1) < T (s)
it also follows that h(−r − 1, x) is analytic in that
region. Furthermore, since h(−r − 1, x) is non-zero for
positive real x < 1/T (−r − 2) (compare with (5.26))
we obtain that the radius of convergence of the series
∑

k≥0 Fk(s)xk equals x0 = 1/T (s).
With help of this observation we can also deduce

that the function f(x, s) has no other singularities on
the circle |x| = 1/T (s). Suppose that h(−r−1, x) has a
zero x1 with |x1| < 1/T (s). If

∑r
k=0 Fk(−r − 1)xk

1 6= 0
then x1 has to be a zero of h(x, s), too: h(x1, s) =
0. However, if we slightly decrease s, then certainly
h(x1, s− η) 6= 0. In this case the function f(x, s) would
be singular for x = x1 although its radius of convergence
is 1/T (s − η) > 1/T (s) > |x1|. This is, of course, a
contradiction and, thus,

∑r
k=0 Fk(−r − 1)xk

1 = 0, too.
Actually, it also follows that the order of the zeroes
are the same. Furthermore, by a slight variation of
the above argument, we also deduce that f(x, s) has
no singularities on the circle |x| = 1/T (s) other than
x0 = 1/T (s), as proposed.

Hence, by using a contour integration on the circle
|x| = eη/T (s) and the residue theorem [3, 17] it follows
that

Fk(s) = f(s)T (s)k + O
(

|T (s)e−η|k
)

,

where

f(s) =
r

∑

k=0

Fk(−r − 1)T (s)−k h(s, 1/T (s))

h(−r − 1, 1/T (s))

·
(

1 − T (−r − 1)

T (s)

)

These estimates are uniform for s ∈ [a, b], where
−r − 1 < a < b < r. Furthermore, we get the same

result if s is sufficiently close to the real axis. Thus, if
a ≤ ℜ(s) ≤ b and |ℑ(s)| ≤ ε for some sufficiently small
ε > 0 then we obtain (4.18), too.

Next, suppose that s is real (or sufficiently close to
the real axis) and close to a negative integer −r, say
−r − η ≤ s ≤ −r + η (for some η > 0). Here we use the
representation

∑

k≥0

Fk(s)xk =

r−1
∑

k=0

Fk(−r)xk g(s, x)

g(−r, x)

=

r−1
∑

k=0

Fk(−r)xk h(s, x)

h(−r, x)

1 − xT (−r)

1 − xT (s)

=

r−1
∑

k=0

Fk(−r)xk h(s, x) − h(−r, x)

h(−r, x)

1 − xT (−r)

1 − xT (s)

+

r−1
∑

k=0

Fk(−r)xk +

r−1
∑

k=0

Fk(−r)xk+1 T (s) − T (−r)

1 − xT (s)

Now if we substract the finite sum
∑r−1

k=0 Fk(−r), then
we can safely multiply by Γ(s) (that is singular at
s = −r) and obtain a function of the form

r−1
∑

k=0

Fk(−r)xk Γ(s)(h(s, x) − h(−r, x))

h(−r, x)

1 − xT (−r)

1 − xT (s)

+

r−1
∑

k=0

Fk(−r)xk+1 Γ(s)(T (s) − T (−r))

1 − xT (s)

which we can now handle in the same way as above.
Thus, we actually prove (4.18) for k ≥ r with f(−r) = 0.

If s is close to 0 then we argue similarly. Here we
can use the representation (4.15) to obtain

(4.20)
∑

k≥0

Fk(s)xk =
h(s, x)

h(0, x)

1

1 − xT (s)

and (4.18) follows, too.
Finally, if ℜ(s) is positive (and ℑ(s) sufficiently

close to 2ℓπ/ log(q/p) for some integer ℓ), then we can
also use (4.20) and obtain the proposed result. (Note
that h(0, x) is analytic for |x| < 1/T (−1) < eη|1/T (s)|.)

Next suppose that s = σ + it, where t is not
necessarily small. Then

T (s) = eit log p
(

p−σ + q−σeit log(q/p)
)

.

Consequently |T (s)| = T (ρ) if and only if t =
2kπ/ log(q/p) for some integer k. Hence, if |t −
2kπ/ log(q/p)| ≤ ε for some integer k we can do the
same contour integration as above and get again (4.18).



Finally, if |t− 2ℓπ/ log(q/p)| > ε for some integer ℓ,
then we estimate Fk(s) trivially by

|Fk(s)| ≤ ρ−k · max
|x|=ρ

|g(x, s)|,

where R is chosen in a way that g(x, s) is analytic for
|x| ≤ R. Since there is η > 0 with

|T (s−m)| = |p−σ+m+eit log(q/pq−σ+m| ≤ e−2ηT (σ−m)

it follows that h(x, s) exists for |x| ≤ eη/T (σ). Hence,
we can actually set R = eη/T (σ) and obtain (4.19).
In order to complete the proof note that Mk(s) =
−Γ(s)Fk(s) exists for −k − 1 < ℜ(s) < 0 and that
Fk(−r) = 0 for r = 1, 2, . . . and k ≥ r. Thus, f(−r) = 0,
too.

5 Saddle Point Method

By the above discussion, we know that Fk(s) behaves
asymptotically as T (s)k. Therefore, the saddle point
analysis as well as the depoissonization, is similar to
those given in [12]. Thus, we will only give a very short
outline of the proof. We also make a simplification that
we only consider the case z = n.

First, for inverting the Mellin transform with (3.8)
at z = n it is natural to choose ρ = ρn,k as the saddle
point of the function

T (s)kn−s = ek log T (s)−s log n

that is given by the relation

k

log n
=

p−ρ + q−ρ

p−ρ log 1
p + q−ρ log 1

q

.

Note also that on the line ℜ(s) = ρ there will be
infinitely many saddle points

sk = ρ +
2πik

log p
q

since T (sk) = e−2πik(log p)/(log p/q)T (ρ) and conse-
quently the behavior of T (s)kz−s around s = sk is
almost the same as that of T (s)kz−s around s = ρ.
This phenomenon gives a periodic leading factor in the
asymptotics of µn,k = E Xn,k.

We now set α = αn,k = k/ log n. Recall that our
goal is to derive asymptotics of E Xn,k for

1

log 1
p

< α <
1

log 1
q

.

In particular we distinguish between several ranges:

Range 1: 1
log 1

p

< α < 2
log 1

p
+log 1

q

.

In order to cover this range we have to shift the line

of integration in (3.8) to the saddle point ρ > 0.
By doing this we get a contribution of 2k from the
polar singularity of Fk(s)Γ(s) (note that Fk(0) = 2k)
which is in fact the leading term. The remaining part
comes from a saddle point method that evaluates (3.8)
asymptotically. Note that the digital search tree is
almost a complete tree in this range since the term 2k

dominates.

Range 2: α = 2
log 1

p
+log 1

q

.

Here a phase transition occurs. Technically, a polar
singularity (of Γ(s)) and the saddle point Fk(s)n−s

coalesce at s = 0.

Range 3: 2
log 1

p
+log 1

q

< α < 1
log 1

q

.

This is the most significant range. Almost all nodes
are concentrated around the level α = 1/h, where
h = p log 1

p + q log 1
q denotes the entropy of the source.

This range corresponds to saddle points ρ < 0. Here
we have to be a little bit more careful due to the
polar singularities of Γ(s) for negative integers s. But
Lemma 4.3 has already taken care of that problem.

We already mentioned that the two levels α =
(log 1

p )−1 and α = (log 1
q )−1 correspond to the fill-up-

level resp. to the height of the digital search tree. The
precise analysis of these parameters are subtle since
there is usual a log log-term involved, too. We will not
discuss the details of these ranges. Technically we would
have to study Fk(s) for s → ∞ and s → −∞.

For example, if we apply the above mentioned
procedure we obtain for ∆k(n) (in the Range 3) the
asymptotic representation

∆k(n) = G
(

ρn,k, logp/q pkn
) (p−ρn,k + q−ρn,k)kn−ρn,k

√

2πβ(ρn,k)k

·
(

1 + O

(

1

log n

))

,

where G(ρ, x) is a periodic function and collects all
contributions from the (infinitely many) saddle points.

Finally, we need to depoissonize our results. Using
the depoissonzaition lemma of Jacquet-Szpankowski
[3, 17] we find EXn,k ∼ ∆k(n), which completes the
proof.
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Appendix A: Proof of Lemma 4.1

Proof. Set F̃k(s) = 1 and recursively

F̃k+1(s) = A[F̃k](s) − A[F̃k](−1) (k ≥ 0).

It is easy to see that F̃k(s) are well defined entire
functions. In particular it follows that F̃k(s) is (as it is
for Fk(s)) a finite linear combination of function of the
form p−ℓ1sq−ℓ2s with ℓ1, ℓ2 ≥ 0 and ℓ1+ℓ2 ≤ k. Further
(by definition) these functions satisfy F̃k(−1) = 0 (for

k ≥ 1) and fulfill the relation

F̃k+1(s) − F̃k+1(s − 1) = T (s)F̃k(s)

for k ≥ 0 and all s.
Now we can proceed by induction to show that

Fk(s) = F̃k(s). By definition we have F0(s) = F̃0(s).
Now suppose that Fk(s) = F̃k(s) holds for some k ≥ 0.
Then with help of the above considerations it follows
that Fk+1(s) = F̃k+1(s) + G(s), where G(s) satisfies
(5.21)
G(−1) = 0 and G(s)−G(s−1) = 0 (−k−1 < ℜ(s) < 0).

By the above observations G(s) has to be a finite
linear combination of function of the form p−ℓ1sq−ℓ2s.
However, the only periodic function of this form that
meets conditions (5.21) is the zero function. Hence,
Fk+1(s) = F̃k+1(s).

Now we prove (4.12). First, (4.12) is equivalent to

k
∑

ℓ=0

Fℓ(s)Rk−ℓ(−1) = Rk(s) (k ≥ 0)

resp. to

Fk(s) = Rk(s) −
k−1
∑

ℓ=0

Fℓ(s)Rk−ℓ(−1) (k ≥ 0).

We will prove this relation by induction. Of course, it is
satisfied for k = 0. Now suppose that is holds for some
k ≥ 0. Then from (4.11) we find

Fk+1(s) = A[Fk](s) − A[Fk](−1)

= A[Rk](s) − A[Rk](−1)

−
k−1
∑

ℓ=0

(A[Fℓ](s) − A[Fℓ](−1))Rk−ℓ(−1)

= Rk+1(s) − Rk+1(−1) −
k−1
∑

ℓ=0

Fℓ+1(s)Rk−ℓ(−1)

= Rk+1(s) −
k

∑

ℓ=0

Fℓ(s)Rk+1−ℓ(−1).

This completes the induction proof.
Finally, since Fk(s) = −Mk(s)/Γ(s) is analytic for s

with −k−1 < ℜ(s) < 0 and 1/Γ(−ℓ) = 0 it also follows
that Fk(−ℓ) = 0 for ℓ = 1, 2, . . . , k.

Appendix B: Proof of Lemma 4.2

Proof. We recall that Rk(s) = Ak[1](s). In particular
the first few functions Rk(s) are given by

R0(s) = 1,



R1(s) =
p−s

1 − p
+

q−s

1 − q
,

R2(s) =
p−2s

(1 − p)(1 − p2)
+

p−sq−s

(1 − p)(1 − pq)

+
p−sq−s

(1 − q)(1 − pq)
+

q−2s

(1 − q)(1 − q2)
.

With help of (4.13) we derive corresponding representa-
tions for general k. Recall, too, that we have assumed
that p < q. Hence, it follows that

|Rk(s)| ≤ 1
∏

j≥1(1 − qj)
(p−ℜ(s) + q−ℜ(s))k.

Thus, if |x| < T (ℜ(s))−1, then the series

(5.22) g(x, s) =
∑

ℓ≥0

Rℓ(s)x
ℓ =





∑

ℓ≥0

xℓAℓ



 [1](s)

converges absolutely and represents an analytic func-
tion. We can rewrite (5.22) as

g(x, s) = (I − xA)−1[1](s)

or as
(5.23)

(I−xA)[g(x, ·)](s) = g(x, s)−x
∑

j≥0

g(x, s−j)T (s−j) = 1,

which is the same as (4.16).
By substituting g(x, s) by

g(s, x) =
h(x, s)

1 − xT (s)

in (5.23) we get a relation for h(x, s) of the form

(5.24) h(x, s) = 1 +
∑

j≥1

h(x, s − j)
xT (s − j)

1 − xT (s − j)
.

Recall that we already know that h(x, s) exists for
|x| < T (ℜ(s))−1. We will now use (5.24) to show
that h(x, s) can be analytically continued to the range
|x| < T (ℜ(s) − 1)−1 (and even to the range where
xT (s − m) 6= 1) so that we also get a meromorphic
continuation as proposed.

For this purpose we introduce another operator B

by

(5.25) B[f ](s) =
∑

j≥1

f(x, s − j)
xT (s − j)

1 − xT (s − j)
.

For convenience set U(x, s) = xT (s)/(1 − xT (s)). By
induction it follows that

Bk[1](s) =
∑

i1≥1

∑

i2≥1

· · ·
∑

ik≥1

U(x, s − i1)U(x, s − i1 − i1)

· · ·U(x, s − i1 − i2 − · · · − ik)

=
∑

mk≥k

mk−1
∑

mk−1=k−1

mk−1−1
∑

mk−2=k−2

· · ·
m2−1
∑

m1=1

U(x, s − m1)U(x, s − m2) · · ·U(x, s − mk).

Hence, we get the upper bound

|Bk[1](s)| ≤
∑

mk≥k

∑

mk−1≥k−1

· · ·

∑

m1≥1

|U(x, s − m1)U(x, s − m2) · · ·U(x, s − mk)|

=
∑

m1≥1

|U(x, s − m1)| ·
∑

m2≥2

|U(x, s − m2)|

· · ·
∑

mk≥k

|U(x, s − mk)|.

It is clear that the series

S :=
∑

m≥1

|U(x, s − m)| =
∑

m≥1

|xT (s − m)|
|1 − xT (s − m)|

converges if xT (s − m) 6= 1 for all m ≥ 1. Note that
T (s−m) = O(qm). Thus for any choice of x and s there
are only finitely many exceptions where xT (s−m) = 1.
Let k0 be any value with

∑

m≥k0

|U(x, s − m)| ≤ 1

2
.

Then we have for all k ≥ k0

|Bk[1](s)| ≤ Sk02−(k−k0) = (2S)k02−k.

Hence, we can set

(5.26) h(x, s) =
∑

k≥0

Bk[1](s)

which obviously satisfies (5.24). Furthermore we have
the upper bound |h(x, s)| ≤ 2(2S)k0 .


