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ABSTRACT. The purpose of this article is to present explicit and asymptotic
methods to count various kinds of trees. In all cases the use of generating
functions is essential. Explicit formulae are derived with help of Lagrange’s in-
version formula. On the other hand singularity analysis of generating functions
leads to asymptotic formulas.

Trees are defined as connected graphs without circles, and their properties are
basics of graph theory. For example, a connected graph is a tree if and only if the
number of edges equals the number of nodes minus 1. Furthermore, each pair of
nodes is connected by a unique path etc.

If we mark a specific node r in a tree T then it is called rooted tree. A rooted
tree may be easily described in terms of generations or levels. The root is the 0-th
generation. The neighbors of the root constitute the first generation, and in general
the nodes of distance k from the root form the k-th generation (or level). If a node
of level k has neighbors of level k+ 1 then these neighbors are also called successors.
Furthermore, if v is a node in a rooted tree T then v may be considered as the root
of a subtree T, of T that consists of all iterated successors of v. This means that
rooted trees can be constructed in a recursive way. Due to that property counting
problems on rooted trees are usually easier than on unrooted trees.

Rooted trees have also various applications in computer science. They naturally
appear as data structures, e.g. the recursive structure of foldes in any computer is
just a rooted tree. Furthermore, fundamental algorithms such as Quicksort or the
Lempel-Ziv data compression algorithm are closely related to rooted trees, namely
to binary and digital search trees which are also used to store (and search for) data.
Rooted trees even occur in information theory. For example, prefix free codes on
an alphabet of order m are easily encoded as the set of leaves in m-ary trees.

In what follows we will present methods for counting trees that are based on
the concept of generating functions. Generatings functions are quite natural in
this context since (rooted) trees have a recursive structure which translates to
recurrence relations for corresponding counting problems. And generating functions
are a proper tool for solving recurrence equations. There are lots of references in the
literature concerning tree enumeration with generating functions. We just mention
two of them, the book of Harary and Palmer [9] and the article of Vitter and Flajolet
[18].

The present article is divided into two main parts. In Section 1 we consider
several kinds of trees (binary trees, planted plane trees, simply generated trees,
unrooted trees) and show how we can obtain explicit and aymptotic formulas for
the numbers of trees of size n. Section 2 is devoted to more involved counting
problems, for example one is interested in the number of trees of size n with k leaves
etc. Both sections are followed by 2 appendices where some additional material from
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FIGURE 1. Binary tree

combinatorics and asymptotics for generating functions is collected (with proofs)
that can be applied to the above mentioned tree enumeration problems on trees.

1. CouNTING TREES WITH GENERATING FUNCTIONS
1.1. Rooted Trees.

One of the basis objects in the context of trees are binary trees. Binary trees are
rooted trees, where each node is either a leaf (that is, it has no successor) or it has
two successors. Usually these two successors are distinguishable: the left successor
and the right successor. The leaves of a binary trees are also called external nodes
and those nodes with two successors internal nodes. It is clear that a binary tree
with n internal nodes has n + 1 external nodes. Thus, the total number of nodes is
always odd.
Our first result is an explicit formula for the number of binary trees.

Theorem 1. The number b,, of binary trees with n internal nodes is given by
1 /2
by = ").
n+1\n

Proof. Suppose that a binary tree has n + 1 internal nodes. Then the left and right
subtrees are also binary trees (with k resp. n — k internal nodes, where 0 < k < n).
Thus, one directly gets the recurrence for the corresponding numbers:

b1 =Y bbp- (1)
k=0

The inital value is by = 1 (where the tree consists just of the root).
This recurrence can easily be solved with help of the generating function

B(x) = Z bnpz™.
n>0
By (1) we find the relation
B(z) =1+ 2B(z)? (2)
and consequently an explicit representation of the form
B(z) = 1-Vi-dz "1_4‘7’"_ 3)

2x
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Hencel!

O

Remark . There is also an alternate way of deriving a formula for the coefficients
with help of (2). Set B(z) = B(z) — 1. Then

B(z) = #(1 + B(x))*,
and we can use Lagrange’s inversion formula (see Theorem 9 of Appendix 1.A) with

o(z) = (1+ x)? to obtain (for n > 1)

b = ["1B(a) = " (14w

_1 2n _ 1 2n
T n\n—=1) n+1\n)/)’

By inspecting the proof of Theorem 1 one observes that the recurrence relation
(1) — together with its intial condition — is exactly a translation of a recursive
description of binary trees:

A binary trees B is either just an external node or an internal node (the
root) with two subtrees that are again binary trees.

Formally we can write this in the form
B=0O+oxBxB=0O+o0 x B2,

where we denote an external node by O and an internal node by ©. The interesting
fact — which is also the key to most of the subsequenct considerations — is that
this recursive description directly translates to a corresponding relation (2) for the
generating function:

B(z) = 1+ zB(z)*.

We will demonstrate this kind of prodecure with planted plane trees. Planted
plane trees are again rooted trees, where each node has an arbitrary number of
successors with a natural left to right order (similarly as above).

Theorem 2. The number p, of planted plane trees with n > 1 nodes is given by
_1/2n -2
Pr=t\n-1)

1For a power series a(z) = 3,5 @™ we will use the notation [z"]a(z) to denote the coeffi-

cient a, of ™.
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FIGURE 2. Planted plane tree

Proof. We directly proceed in a formal way. Let P denote the set of planted plane
trees. Then from the above description we obtain the recursive relation

P=o+oxP+oxP*+oxP®+....
With
P(x):an:c"
n>1

this translates to

P(z) =z 4+ zP(z) + zP(z)? + zP(z)® = I—LP(;U)
Hence
1-+y/1-4
P(z) = —— = B(a) (4)

and consequently

1/2n -2

Pn = bp_1 = _( )
n\n-—1

O

Remark 1. As in the case of binary trees we can also use Lagrange’s inversion
formula (with ¢(z) = 1/(1 — z) to obtain p, explicitly:

Pn = %[u"fl](l —u) "= l( -n )(_1)n1 _1 (Qn - 2)‘

n\n—1 n\n—1

Remark 2. The relation p, = b,—1 has a deeper meaning. There is a natural bijec-
tion between planted plane trees with n nodes and binary trees with n — 1 internal
nodes: the rotation correspondance. Let us start with a planted plane trees with n
nodes and apply the following procedure.

1. Delete the root and all edges going to the root.

2. If a node has successors delete all edges to these successors depite one edge
to the most left one.

3. Join all theses (previous) successors with a path (by horizontal edges).

4. Rotate all these new (horizontal) edges by 7/4 below.

5. The remaining n — 1 nodes are now considered as internal nodes of a binary
tree. Append the (missing) n + 1 external leaves.
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The result is a binary trees with n — 1 internal nodes. It is easy to verify that this
procedure is bijective.

Another kind of rooted trees where we can solve the counting problem directly
with help of generating functions are m-ary rooted trees, where m > 2 is a fixed
integer. As in the binary case (m = 2) we just take into account the number n of
internal nodes. The number of leaves is then given by (m — 1)n + 1 and the total
number of leaves by mn + 1.

Theorem 3. The number b%m) of m-ary trees with n internal nodes is given by

po) — 1 [(mn
" (m—-1Dn+1\n )’

Proof. As in the binary case, m-ary trees B,, can be formally described by
Bn=0+4+0x8.
Thus, the generating function
B, (z) = Z b g
n>0
satisfies the relation
B, (z) =14 2By, (z)™.
Setting By, (z) = By (z) — 1 we get
B (z) = z(1 + B (x))™

and by Lagrange’s inversion formula (for n > 1)

o™ = [2"]Bm(2) = ~[u" (1 +w)™"

O

A similar counting procedure applies to labeled (rooted and unrooted) trees, too.
The nodes of a labeled tree of size n are labeled with the numbers 1,2,... ,n. An
unrooted labeled tree can be also interpreted as a spanning tree on the complete
graph C,, with nodes 1,2,... ,n.

Theorem 4. The number [, of rooted labeled trees of size n is given by

l,=n""".

Consequently the number of unrooted labeled trees of size n equals n™ 2.

Proof. Let £ denote the set of labeled rooted trees. Then £ can be recursively
described as a root followed by an unordered k-tuple of labeled rooted trees for some
k > 0. Note that (for example) a pair of labeled trees (of sizes m and n) naturally
corresponds to (™*") pairs which are labeled with the numbers 1,2,... ,m + n.

m
Thus, it is appropriate to use the exponential generating function

L(z) = Z %m”

n>0
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of 1,,, since the above recursive description is then translated to

L(z)? L(z)3
@, L@
2! 3!

With help of Lagrange’s inversion formula we thus get

L(z)

L(z) =2z +2zL(z)+ = + - =ze\ Y,

n!
l, =nl[z"]|L(z) = E[u"_l]e“"
nn—l
=(n-1—— =np1
( ) (n—=1)!
Note further that the number of unrooted labeled trees of size n equals I, /n since
every node in an unrooted tree can be used as a root (and produces n different
rooted trees). O

1.2. Simply Generated Trees.

Simply generated trees have been introduced by Meir and Moon [12] and are proper
generalizations of several types of rooted trees. Let

o(x) = o + P12 + Pa2” + - --

be a power series with non-negative coefficients, in particular we assume that g > 0
and ¢; > 0 for some j > 2. We then define the weight w(T') of a finite rooted tree
T by

w@) = [,

320

where D;(T') denotes the number of nodes in T with j successors. If we set

Yn = Z w(T)

|T|=n

then the generating function

y(z) = Z Ynz"

n>1

satisfies the functional equation

y(x) = zo(y(z))-

In this context y, denotes a weighted number of trees is size n. For example, if
¢; = 1 for all j > 0 (that is, ¢(z) = 1/(1 — z)) then all rooted trees have weight
w(T) = 1 and y,, = p, is the number of planted plane trees. Another example
is p(x) = 1 + z + z? that leads to Motzkin trees. Here only rooted trees, where
all nodes have less than 3 successors get (a non-zero) weight w(T') = 1: y,, is the
number of Motzkin trees with n nodes.

Binary trees are also covered by this approach. If we set p(z) = 1 + 2z + 22 =
(1 + z)? then nodes with one successor get the weight 2. This takes into account
that binary trees (where external nodes are disregarded) have two kinds of nodes
with one successor, namely those with a left branch but no right branch and those
with a right branch but no left branch. Similarly, m-ary trees are counted with help
of p(z) = (1+z)™.
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In view of this examples it is convenient to think of simply generated trees T as
a weighted recursive structure of the form

T=00-0+p1-0OXT +@a-0xT>+---.

If all ¢; are (non-negative) integers then the weighted number y, is actually a
number of certain rooted trees of size n.

Interestingly there is an intimate relation to Galton-Watson branching processes.
Let £ be a non-negative integer valued random variable. The Galton-Watson branch-
ing process (Zj)r>0 is then given by Zy =1, and for k£ > 1 by

Zr_1

Zk = Z ggk)a
j=1

where the (fj(-k)) k,; are iid random variables distributed as .

It is clear that Galton-Watson branching processes can be represented by ordered
(finite or infinite) rooted trees T' such that the sequence Zj is just the number of
nodes at level k and }°, ., Z; (which is called the total progeny) is the number of
nodes |T'| of T. We will denote by v(T') the probability that a specific tree T' occurs.
The generating function y(z) = ), 5, ynz" of the numbers

yo =Pr|T|=n] = Y v(T)
|T|=n

satisfies the functional equation

y(x) = zp(y(z)),
where p(t) = Et* = 3 ;) with ¢; = Pr[¢ = j]. Note that

v(T) = [[o]"" = w(@).
=0
The weight of T is now the probability of T'.
By Lagrange’s inversion formula we get for all simply generated trees (and for
all Galton-Watson branching processes)

Yn = E[u"_l]so(U)"- ()

But there are only few cases where we can use this formula to obain nice explicit
expressions for y,. Nevertheless there is a quite general asymptotic result which
relies on the fact that (under certain conditions) the generating function y(z) has
a finite radius r of convergence and that y(z) has a singularity of square root type
at xo = r, that is, y(z) has a represenation of the form

y(x) = g(x) — h(z), /1— :cio =¢o + c1vVT — xo + co(x — o) + O (|x - a:0|3/2) ,

where g(z) and h(z) are analytic at zo. For binary and planted plane trees this
has been made explicit, see (3) and (4). Of course, such representations can be
used to derive asymototic expansions for the coefficients y, (for details see the
proof of Theorem 10 in the Appendix 1.B). It should be further mentioned that
formula (5) can be also used to derive asymptotics for y,, via a saddle point method
applied to the integral [(¢(u)/u)™ du, where the contour of integration is the circle
|u| = 7 (compare also with Theorem 17). Of course, one gets the same result. But
the method presented in Theorem 10 is much more general. It works for general



8 MICHAEL DRMOTA

functional equations of the form y = F(z,y) and not only for equations of the form
y = zp(y).
Theorem 5. Let R denote the radius of convergence of (t) and suppose that there

exists T with 0 < 7 < R that satisfies T7¢' (1) = (7). Set d = ged{j > 0: p; > 0}.
Then

Yn =d %%(I+O(n_l)) (n =1 mod d) (6)

and y, =0 if n Z 1 mod d.

Proof. We apply Theorem 10 for F(z,y) = zp(y) and assume first for simplicity
that d = 1. Then all assumptions are satisfied. In particular we have z¢o = 1/¢'(7)
and yg = 7.

If d > 1 then it is easy to see that y, = 0 if n Z 1 mod d. Consequently
we have y(z) = §(x?)/z%! and (of course) p(z) = @(z?) for analytic functions
j(x) and @(x). They satisfy §(z) = z@(j(z)) and the corresponding gdec d = 1.
Thus, Theorem 10 can be directly applied to this equation and we obtain (6) in
general. O

Note that for m-ary trees and for planted plane trees this asymptotic formula
also follows from the explicit formulae for b%m) and p,, via Stirling’s formula.

1.3. Unrooted Trees.

Let 7 denote the set of unlabeled unrooted trees and 7 the set of unlabeled rooted
trees. The corresponding cardinalities of these trees (of size n) are denoted by %,
and t,, and the generating functions by

t(x) = Z tpz™ and t(z) = Z thz™.
n>1 n>1

The structure of these trees is much more difficult than that of rooted trees, where
the successors have a left to right order. It turns out that one has to apply Pdlya’s
theory of counting and an amazing observation (8) by Otter [15].

Theorem 6. The generating functions t(z) and t(zx) satisfy the functional equa-

tions
t(z) = zexp (t(:c) + %t(m2) + %t(wg) + - ) (7)
and
i(z) = g ™ = t(x) — 1(2)? + 1(%). (8)

They have a common radius of convergence p ~ 0.338219 which is given by t(p) =1,
that is, t(x) is convergent at x = p. Furthermore, they have a local expansion of the
form

tz) =1—-blp— )"/ +c(p —z) + d(p — 2)** + O ((p — 2)%)) 9)
and
() = 1+4(p%) | b = pt'(p)

5 5 (p—x) —l~bc(p—m)3/2 +O((P—$)2)) , (10)
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where b ~ 2.6811266 and ¢ = b%/3 ~ 2.3961466, and x = p is the only singularity
on the circe of convergence |x| = p. Finally, t,, and t,, are asymptotically given by

o = 322" (140 (n7)) (1)

and
3 3/2
po=r”
4/m

Remark . In 1937 Pélya [16] already discussed the generating function ¢(z) and
showed that the radius of convergence p satisfies 0 < p < 1 and that z = p is the
only singularity on the circle of convergence |z| = p. Later Otter [15] showed that
t(p) = 1 and used the representation (9) to deduce the asymptotics for ¢,. He also
calculated p = 0.338219 and b = 2.6811266. However, his main contribution was to
show (8). Consequently he derived (10) and (12).

n=%/2pm (1+0(n)). (12)

Proof. We first show (7). As in the previous cases we can think of rooted trees in a
recursive way, that is, 7 is a root followed by a set of rooted trees. However, these
rooted subtrees are not ordered from left to right and there are no labels. In other
words a subtree structure and all its permutations just count once. On the level of
generating functions this can be managed with help Pélya’s theory of counting. Let

Z(Sk; 1, %2, - ,x) denote the cycle index of the symmetric group Sy then we get
z) =2 3 Z(Sk;1(2), 1), ., ("),
k>0
Since

1 1
ZZ(Sk;:L'l,xg,...,:Uk) = exp (:L-l +§:E2 + gxg +)
k>0

we also obtain (7).

The radius of convergence p of ¢(z) surely satisfies T < p < 1. (This follows
from t, < p, and t, = o0.) Next we show that t(p) is finite (although z = pis a
singularity of ¢(z)) and that p < 1. From (7) it follows that log(t(z)/z) > t(z) for
0 < x < p. Hence,

t(z)/x

log(t(z)/x)

and consequently #(p) has to be finite. If p = 1 then t(p*) = ¢(p) for all k > 1 and
it would follow that

IN

1
T

lim ef@+5ta)+5i")+ = o
z—p—
which is impossible. Thus, p < 1 and consequently the functions t(z?), t(z?),... are

regular at © = p. Moreover, they are analytic for |z| < p + € (for some sufficiently
small ¢ > 0) and are also bounded by [t(z¥)| < C|z*| in this range. Hence, t(x)
may be considered as the solution of the functional equation y = F(x,y), where

1

F(z,y) = rexp (y + %t(mz) + gt(gg3) +- ) )
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This function satisfies the assumptions of Theorem 10. In particular, the singularity
x = p and n = t(p) satisfy the system of equations

1 1
= pexp <n+ 5t0") + 3t(P°) +) :

1 1
1= pexp (n +5t0°) + 3t(0°) +- )

that directly gives 5 = t(p) = 1. Now, by using the expansion (9) and (7) we also
get ¢ = b?/3 by comparing coefficients. So get obtain (10) and (11). Note also that
Theorem 10 implies that z = p is the only singularity on the circle of convergence
of t(x).

Next, observe that (9) and (8) imply (10) and (with help of the transfer lemma
(Lemma 1) (12). Therefore it remains to prove (8).

We consider three sets of trees, the set 7~ of rooted trees, the set 7~ of unrooted
trees and the set 7@ of (unordered) pairs {T1,T»} of rooted trees of T with
Ty # T». (It will be convenient to consider the pair {T1,T>} as a tree that is rooted
by an additional edge joining the roots of Ty and T5.) Let t%p ) denote the number
of pairs of that kind with a total number of n nodes, and let t»)(z) denote the

generating function of #P) Then by Pdélya’s theory we have (see [9])

10(2) = St(a)? — 1() (13)

We will now show that there is a bijection between 7" and 7 U 7 2 In view of
(13) such a bijection implies (8).

Recall that an arbitrary (finite) tree has either a cental node or a central edge.
The central edge e = (v,w) is called symmetry line if the two subtrees rooted at
the endpoints v and w are equal.

We first partition the set 7 into 6 subsets:

1. Let 71 denote those rooted trees that are rooted at the central node.

2. Let 7> denote those rooted trees that have a central node that is different
from the root.

3. Let 73 denote those rooted trees that have a central edge which is not a
symmetry line and where one of the two endpoints of the central edge is the
root.

4. Let T4 denote those rooted trees that have a central edge which is not a
symmetry line and where the root is not one of the two endpoints of the
central edge.

5. Let T5 denote those rooted trees that have a central edge which is a symmetry
line and where one of the two endpoints is the root.

6. Let Tg denote those rooted trees that have a central edge which is a symmetry
line and where the root is not one of the two endpoints of the central edge.

In a similar way we partition the unrooted trees 7T:
1. Let ’7:'1 denote those unrooted trees that have a central node.
2. Let 7> denote those unrooted trees that have a central edge, that is not a
symmetry line.
3. Let 73 denote those unrooted trees that have a symmetry line as a central
edge.

2This bijection was pointed out to me by Bernhard Gittenberger.
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Finally we partition 7(®), that we consider as trees rooted at an edge.

1. Let 7'1(” ) be the set of pairs {T1,T>} with T} # T> with the propery that if we
join the roots of 71 and T> by an edge then the resulting tree has a central
node.

2. Let 7'2(’J ) be the set of pairs {T,T>} with Ty # T5, such that the tree that
results from 77 and T» by joining the roots by an edge has a central edge that
is not a symmetry line and that is different from the edge joining 77 and T5.

3. Let 7'3(’J ) be the set of pairs {T,T>} with T # T5, such that the tree that
results from 77 and T» by joining the roots by an edge has a central edge that
is not a symmetry line and that is different from the the edge joining 77 and
Ts.

4. Let 7;(’3 ) be the set of pairs {T,T>} with T # T5, such that the tree that
results from 77 and T» by joining the roots by an edge has symmetry line as
a central edge that is different from the the edge joining 77 and T%.

Now there is a natural bijection between 77 and T:. We only have to take the

central node as the root.

Next, there is a bijection betwenn 75 and 7'1(p ). We identify the first edge from
the path connecting the root and the central node with the edge joining 77 and T5.

Next, there is a trivial bijection between sets 75 and ’7'2(” ). Furthermore, by
marking one of the two endpoints of the central edge in the trees of 73 we obtain
T3. Of course, this can be rewritten as a bijection between 73 and T3 U 7'2(” ).

Next, there is a bijection betwenn 74 and 7.3(,, ). We identify the first edge from
the path connecting the root and the central edge with the edge joining 77 and T5.
Similarly there is a bijection between 7g and 71(” ).

Finally, there is a natural bijection between 75 and 7s. O

In a similar (but easier) way one can also treat planar trees P. We already
discussed planted plane trees P and their generating function p(z) which satisfies
p(z) = z/(1 — p(z)). If p(z) denotes the generating function of the numbers p,, of
planar (unrooted) trees of size n then the following relations hold.

Theorem 7. The generating functions p(z) is given by
. 1 1
Pe) = 2 30 Z(Cuipla). pla”), ... pla¥)) — 2p(@) + gp®),  (14)
£>0
where Z(Cr; 1,22, ... ,2k) = 7 2 dlk cp(d):cg/d denotes the cycle index of the cyclic

group Cy of k elements. The numbers p, of planar (unrooted) trees of size n are
asymptotically given by

_ 1 _ _
Pn = mél"n 2 (140 (n7h)). (15)
Proof. First of all, the generating function r(z) of rooted planar trees is given by
r(z) =2 Z(Cr;p(z),p(x%), ..., p(z*)).
E>0

This is due to the fact that the subtrees of the root in planted plane trees have a
left-to-right order but rotations around the root are not allowed. Second, as in the
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proof of Theorem 6 one has

1 1

Pa) = r(@) = 5p(@)* + 5p(s?).

Consequently p(z) has a local expansion of the form
1
Pe) = (1 —42)"? -
which gives (15) with help of the transfer lemma (Lemma 1). O

1.4. Other Types of Trees.

We just want to mention that there are several other types of trees, for expample
recursice trees, binary search trees, digital search trees, tries, quad-trees etc. that
will not be discussed in this paper. Nevertheless, in all these cases the concept of
generating functions can be used to rephrase the counting problem into this more
analytic language (for details see Flajolet et al. [7] and Sedgewick and Flajolet [17]).

Appendix 1.A: Lagrange Inversion Formula.

Let a(z) = ) anz™ be a power series with ap = 0 and a; # 0. The Lagrange
n>0

inversion formula provides an expicit representation of the coefficients of inverse

power series al~!(z) which is defined by a(al~!(z)) = al"(a(z)) = =.

Theorem 8. Leta(z) = > anz™ be a formal power series with ag = 0 and a; # 0.
n>0

Let b(z) = al="(z) be the inverse power series and g(x) an arbitrary power series.
Then the n-th coefficient of g(b(x)) is given by

u

—)>n (n>1).

a(u

"l 0e) = 1 19 )

In tree enumeration problems the following variant is more appropriate. Note
that Theorems 8 and 9 are equivalent. If a(z) = z/¢(x) then al~U(z) = y(z),
where y(z) satisfies the equation y(z) = z¢(y(z)).

Theorem 9. Let ¢(x) be a power series with ¢(0) # 0 and y(z) the (unique) power
series solution of the equation

y(z) = zd(y(x))-

Then y(z) is invertible and the n-th coefficient of g(y(x)) (where g(z) is an arbitrary
power series) is given by

e"lgy(@) = ~ [y @gw)” (> 1)

Proof. Since Theorems 8 and 9 are equivalent we only have to prove Theorems 8.
We also present an analytic proof for complex coefficients. Of course, the resulting
analytic identities are formal ones, too.

We start with Cauchy’s formula and use the substitution u = b(z). Note that if
~v is a contour with winding number 1 around the origin the ' = b(y) has the same
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property:
"g(be) = 5 [ LD o
Y
1 ')
= 50t | 90
Since
1\, 1 !
(900 7hr ) =t —ma) 2

it follows that

and consequently

- L ()

Appendix 1.B: Functional Equations.

Let y(z) be a power series that is the solution of a funtional equation of the form
y = F(z,y), where F' is function with certain properties. In this section we show
how we can obtain asymptotic expansions for the coefficients of y(z). One major
ingredience of the proof of Theorem 10 is the transfer lemma of Flajolet and Odlyzko

[8]-

Lemma 1. Let

Az) = Z anz"”

n>0
be analytic in a region
A ={z:|z[ <z +n, |arg(x — z0)| > d},

in which xo and n are positive real numbers and 0 < § < w/2. Furthermore suppose
that there exists a real number a such that

A(z) =0 (1 — z/20)™%) (z € A).
Then
an =0 (zg"n* ).
Proof. One uses Cauchy’s formula

1 A(z)
an = 2 . ,n+1 )
e Y z
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where 7 is a suitable chosen path of integration around the origin. In particular one
can use v = 1 U~y2 Uz U4, where

’yl:{x:x0+i:|z|:1, 6§|arg(z)|§7r},
n

S|

72={w=xo+w“: stSU},

73:{m=m0+tei5:%§t§n},
Y4 = {z : |z = |zo + €”n|, arg (zo + €n) < |argz| < w}.

It is easy to show that the bound |A(z)| < C|1 — z/xo|~* directly proves that

A
/ n(f_z dz‘ =0 (zy"n*71),
Y1Uy2Uvs #

whereas the integal over 74 is exponentially smaller: O ((zg + 7)™ "). O

Remark . Suppose that a function is analytic in a region of the form A and that
it has an expansion of the form

o(z) =c(1—§—0)a+0<(1—m10>6> (@ € A),

where < a. Then we have

an = [z"]a(z) = C’na_1

-n —n, max{a—2,—1}
T(a) zy "+ O (370 n ) . (16)

This is due to the fact that

(1) (_a) = ’;(Z;; +0 (n*2).

n

Theorem 10. Suppose that F(x,y) is an analytic function in x,y around z =y =
0 such that F(0,y) = 0 and that all Taylor coefficients of F' around 0 are real and
non-negative. Then there exists a unique analytic solutiony = y(x) of the functional
equation

y=F(z,y) (17)

with y(0) = 0 that has non-negative Taylor coefficients around 0.
If the region of convergence of F(x,y) is large enough such that there exist pos-
itive solutions x = xg and y = yo of the system of equations

y=F(z,y),
1= Fy(z,y).
with Fy(0,Y0) # 0 and Fyy(20,Y0) # 0 then y(x) is analytic for |x| < xo and there

exist functions g(x), h(z) that are analytic around x = xo such that y(x) has a
representation of the form

y(z) = g(z) — h(z){ /1 - — (18)
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locally around x = zq. We have g(xo) = y(z0), and

220 F; (w0, Yo)
Fyy (xO; yO)

Moreover, (18) provides a local analytic continuation of y(z) (for arg(x — xo) #0).

If we further assume that [z"]y(x) > 0 for n > ng then x = x¢ is the only
singularity of y(z) on the circle |x| = xy and we obtain an asymptotic expansion
for [z™]y(z) of the form

h(zo) =

-'EOFz(-TO;yO) —n,_—3/2 —1

"y(z) = || —=——5x5'N 1+0(n . 19

" 0(w) = || e (140 () (19)
Remark 3. Note that the assumptions Fy(20,y0) # 0 and Fyy (2o, y0) # 0 are really
necessary to obtain a representation of the form (18). If Fy(x,y0) = 0 then F(z,y)
(and y(z)) would not depend on z. Furthermore, if F,, (29, yo) = 0 then F is linear
in y:

F(z,y) = yFi(z) + Fa(z), (20)
and consequently
_ B

is explicit and surely not of the form (18). However, a representation of the form
(21) (where Fi(z) # 0) usually leads to almost the asymptotic expansions for the
coefficients of y(x) in the case covered by Theorem 10. Suppose that the radius r
of convergence of Fj(x) is large enough that there is 0 < zg < r with Fy(zo) = 1
and that [z"]y(z) > 0 for n > no then zo is the only singularity on the circle of
convergence |z| = zo of y(z) and one gets

n _ Fa(mo)
[2"]y(z) = 2o F" (o)

(21)

z,"+ 0O ((wo + n)_") .

for some 5 > 0.

Proof. Firstly, we show that there exists a unique (analytic) solution y = y(z) of
y = F(z,y) with y(0) = 0. Since F(0,y) = 0 it follows that the functional mapping

y(z) = F(z,y(z))

is a contraction for small z. Thus the iteratively defined functions yo(z) = 0 and

ymt1(z) = F(z,ym(z))  (n>0)
converge uniformly to a limit function y(z) which is the unique solution of (17). By
definition it is clear that y,,(z) is an analytic function around 0 and has real and
non-negative Taylor coefficients. Consequently, the uniform limit y(z) is analytic,
too, with non-negative Taylor coefficients.
It is also possible to use the implicit function theorem. Since

F,(0,0)=0#1.

there exists a solution y = y(z) of (17) which is analytic around 0.

However, it is useful to know that all Taylor coefficients of y(z) are non-negative.
Namely, it follows that if y(z) is regular at ' (which is real and positive) then y(x)
is regular for all z with |z| < 2'.
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Let 2o denote the radius of convergence of y(x). Then z is a singularity of y(z).
The mapping

z = Fy(2,y(x))

is strictly increasing for real and non-negative z as long as y(z) is regular. Note

that F,(0,y(0)) = 0. As long as Fy(z,y(x)) < 1 it follows from the implicit function

theorem that y(z) is regular even in a neighbourhood of z. Hence there exists a

finite limit point zo such that zErzn y(z) = yo is finite and satisfies Fy(zo,yo) = 1.
o0

If y(z) were regular at x = o then

y'(20) = Fy(w0,y(2)) + Fy(z0, y(20))y' (z0)
would imply Fy(zg,y(x0)) = 0 which is surely not true. Thus, y(z) is singular at
x = o (that is, 2o is the radius of convergence) and y(xo) is finite.

Now, let us consider the equation y — F(z,y) = 0 around z = z¢ and y = yo. We
have 1— Fy(xo,yo) = 0 but —Fy,(zo,y0) # 0. Hence by the Weierstrass preparation
theorem (see [11]) there exist functions H (z,y), p(z), g(z) which are analytic around
x =z and y = yo and satisfy H (zo,yo) # 1, p(xe) = q(z¢) = 0 and

y— F(z,y) = H(z,y)((y — y0)* + p()(y — yo) + ¢(2))
locally around z = z¢ and y = yo. Since F,(zg,yo) 7 0 we also have g, (zq) # 0.

This means that any analytic function y = y(x) which satisfies y(z) = F(z,y(z))
in a subset of a neighbourhood of z = zy with z¢ on its boundary and is given by

x x)2
y(x) =yo — 1% + I% —q(z).

Since p(zg) = 0 and ¢, (x¢) # 0 we have

9 (p(.%')2 )

a.. - q(.’lf) # 0;

ox 4 e=zq
too. Thus there exist an analytic function K (z) such that K (zo) # 0 and

2
x
P 4(a) = K@) (o~ 20)

locally around z = zo. This finally leads to a local representation of y = y(z) of

the kind
y(@) = g(z) — h(@), /1 - m— (22)

in which g(x) and h(z) are analytic around z = x¢ and satisfy g(z¢) = yo and
h(ib'o) < 0.
In order to calculate h(xg) we use Taylor’s theorem
0= F(z,y(z))
1
= Fa(w0,90)(w — 70) + 5 Fyy (%0, %0)(y(7) — 0)” + - -- (23)

1
= Fu(w0,90) (2 — 7o) + 5 Fyy (70, y0)(w0)* (1 — #/70) + O(|z — wo[*/?).
By comparing the coefficients of (x — z¢) we immediately obtain

220 F; (w0, yo0)

hleo) = Fyy(mmyo) -
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We now want to apply the transfer lemma (Lemma 1). For this purpose we have
to show that y(z) can be analytically continued to a region of the form A. The
representation (22) provides such an analytic continuation for z in a neighborhood
of zg. Now suppose that |z1| = 2o and |arg(z;)| > 4. Then the assumption y,, > 0
for n > ng implies that |y(z1)| < y(|z1|) = y(x0) and consequently

|Fy (21, y(21))] < Fy(lal, ly(e1)]) < Fy(lzal y(|21])) = Fy (w0, 90) = 1.

Thus, Fy(z1,y(z1)) # 1 and the implicit function theorem shows that there exists
an analytic solution y = y(z) in a neighborhood of z;. For |z| < zo this solution
equals the power series y(z) and for |z| > x¢ it provides an analytic continuation
to a region of the form A (by compactness it is sufficient to consider finitely many
x1 with |z1| = 2o and |arg(z1)| > §). So finally we can apply Lemma 1 (resp. (16)
with o = —1/2 and § = —3/2; the analytic part of g(z) provides exponentially
smaller contributions.) This completes the proof of (19). O

2. PARAMETERS IN TREES

2.1. The Number of Leaves.

In this section we will treat more involved enumeration problems. As an introduc-
tory example we consider the numbers p, ; of planted plane trees of size n with
exactly k leaves. Again the concept of generating functions is a valuable tool for
deriving explicit and asymptotic results.

Theorem 11. The numbers p, . of planted plane trees of size n with exactly k

leaves are given by
_ 1 n\ n—1
Prk=0\k)\ & )

Proof. Let p(x,u) =3, ; Pn.kx"2¥ denote the bivariate generating function of the
numbers p,, . Then following the recursive description of planten plane trees one
gets

zp(z,u)

plo) = ot gl =k

E>1

For a moment, let 2 be considered as a parameter. Then we have

u

(zu) = —F—
plx,u x(l—%)

and consequently

[ ]p () = = [o* ] (L> k
) k 1—-2

1—v
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Finally this implies

Pk = [xnuk]p(x’ u)

o))
(h 1) =y e
()%
=G0

By using Stirling’s formula we directly obtain bivariate asymptotic expansions
for py, 1, of the form

i () () (0 (i) vo (1))
2k 2n
2W1n2_%_<1—%%> .(1_1%> .(1+0<%)+0(nik)>. (24)

In particular, if we fix n then p,; is maximal if k¥ ~ n/2 and we locally get a

behaviour of the kind
4n n — 2k)?2
s e (L2, -
™ n

I
—

= F = =

O

This approximation has several implications. First, it shows that it is most likely
that a typical tree of size n has approximately n/2 leaves and the distribution of
the number of leaves around n/2 looks like a Gaussian distribution.

We can make this observation precisely. Let n be given and assume that each of
the p, planted plane trees of size n is equally likely. Then the number of leaves is
a random variable on this set of trees which we will denote by X,,. More precisely,
we have

Pr[X, = k] = 2ok
Pn
Then it turns out that EX,, = n/2+ O (1) and Var X,, = n/8 + O (1), and (25)
can restated in a way that the normalized random variable

X,—-EX,
+v/Var X,

converges weakly to the normal distribution N (0, 1).

Interestingly, both observed properties, the bivariate asmyptotic expansion (24)
and the Gaussian limiting distribution are intrinsic properties of a functional equa-
tion of the form y = F(z,y,u) (for the unknown function y = y(x,u)), compare
with Theorem 15, 16 and 17.)

In particular, we get the following general result for simply generated trees.
For the sake of brevity we just state the central limit law and not the bivariate
asymptotic expansion for y, , (compare with the Remark following Theorem 12).
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Theorem 12. Let R denote the radius of convergence of ¢(t) and suppose that
there ezists T with 0 < 7 < R that satisfies 7¢'(T) = p(7). Let X, be that random
variables describing the number of leaves in trees of size n, that is

PrX, = k] = Y2¢
Yn

where yYn = > w(T). Then EX, = un+ O (1) and Var X,, = 0% n +
(T |=n, Do (T)=k
O (1), where = @o/p(T) and

7

2_ %0 _ @y o3
e(r)  w(r)?  T2p(r)p"(7)
Furthermore, X,, satisfies a (weak) central limit theorem of the form
X,-EX,
———— 5 N(0,1).
v/ Var X, 0,1)

Proof. Set
y(z,u) = Zyn,ka:"uk.
n,k

Then y(x,u) satisfies the functional equation

y(@,u) = pox(u —1) + zp(y(z,u)).
Thus, we just have to apply Theorem 15 and 16 of Appendix 2.A. O
Remark . Suppose that d = ged{j > 0: ¢; > 0} = 1. Then we can apply Theo-
rem 15 and 17 to get bivariate asymptotic expansions for y, x, too. We will demon-

strate this for the case of planted plane trees, that is p(z) = 1/(1 — z).
From Theorem 15 we get

Yn(u) = ,/%-(\/{H 1)2n .32, (1+0(%>).

Hence, in terms of Theorem 17 we have A(u) = (Vu + 1)%, p(u) = Vu/(Vu +
1), 0*(u) = Vu/2(u +1)%), h(y) = (y/(1 —y))* and A(h(y)) = 1/(1 - y)*.

Consequently, Theorem 17 provides the same asymptotic expansion as (24).
2.2. Additive Parameters.

The above concept easily generalizes to so-called additive parameters. Let v(T)
denote the value of a parameter of a rooted trees T'. We call it additive if

’U(T):'l)(OXTl x Ty X ---XTk):Ck-i-’l}(Tl)+’U(T2)+"'+'U(Tk),

where T1, ... , T denote the subtrees of the root of T that are rooted at the suc-
cessors of the root and ¢y, is a given sequence of real numbers. Equivalently

U(T) = Z Cij(T).
320
For example, if ¢o = 1 and ¢; = 0 for j > 0 then v(T') is just the number of leaves.
For n > 1 we now set

ya(u) = D w(T)u’™

IT|=n
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and

Of course, the definition of v(T) and the recursive structure of simply generated
trees implies that y(z,u) satisfies the functional equation

y(@,u) =2y oruy(w,u)k.
k>0

If ¢j, are non-negative integers then yy(u) may be interpreted as

y"(u) = Z yn,kuka

k>0

where y, 1 denotes the (weighted) number of trees T of size n with v(T') = k. It is
convenient now to consider the random variables X, defined by

EuX = —yz(“), (26)

that is, X, describes the distribution of v(T") on the set of trees of size n, where
these trees are distributed according to their weights w(7T'). In particular, if ¢; are
non-negative integers then

Pr[X, = k] = y;—’“

As above, the distribution of X, is (usually) Gaussian with mean value and variance
of order n.

Theorem 13. Let R denote the radius of convergence of p(t) and suppose that
there exists T with 0 < 7 < R that satisfies T¢'(T) = (7). Furthermore, let ¢y,
(k > 0) be a sequence of real numbers such that the function

F(z,y,u) =2y pruy*
£>0

is analytic at x = xg = 1/¢' (1), y = yo = 7, u = 1. Then the random wvariable
X, defined by (26) has expected value E X,, = un + O (1) and variance Var X,, =
o?n+ O (1), where p = Y 150 ckpr™* /(1) and 0 > 0. Furthermore, if % > 0
then X,, satisfies a (weak) central limit theorem of the form
X, -EX,
v/ Var X,

Proof. We just have to apply Theorem 15 and 16 of Appendix 2.A. [l

— N(0,1).

Remark . With help of the Remark following Theorem 16 it would have been pos-
sible to provide an explicit formula for o2 that is not really elegant. Note also that
there are cases with 02 = 0. For example, if ¢, = 1 for all k£ > 0 then v(T) = |T|
and consequently X, is concentrated at n.
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2.3. Unrooted Trees.

It is also intersting to consider the class 7~ of unrooted trees and define a additive
parameter v by

o) = 3 ¢;D (D), (27)

where D;(T) denotes the number of nodes in T of degree j. For example, if ¢y = 1

for some k > 1 and ¢; = 0 for j # k then v(T') is just the number of nodes of degree
k (see [6]).

In order to tackle v(T") we also have to consider the class 7 of rooted trees and
use the two generating functions

t(z,u) =Y 2Tl = (Y W | gn

TeT n>1 \|T|=n

and

fz,u)= 3 2 Tht@ =3 | 3 @ | o7

Fet n>1 \|T|=n
where v’ is the proper version of v for rooted trees T
V(T) =" ¢j1 Di(T).
j20

Following the combinatorial constructions of section 1.3 we obtain the following
system of functional equations:

to,u) =@ Y u Zu(Sis Ha,u), 1@®, u), ., 1zt ub)), (28)
k>0
tx,u)=z+= Zuc’“Zk(Sk;t(x,u),t(mz,u2), o t(xR uk)) — %t(x,u)2 + %t($2,u2).
k>1
(29)

Finally, we introduce the random variable X,, (describing the distribution of v on
trees of size n) in the usual way:

1 ~
EuX = = Z @), (30)

" | T|=n
The following theorem is a generalization of [6].

Theorem 14. Let (cx)r>1 be a bounded sequence of real numbers, and let v(T)
and X, be defined by (27) and (30). Then there exist pu and o> > 0 with E X,, =
un+ O (1) and Var X,, = 62 n + O (1). Furthermore, if 02 > 0 then X,, satisfies a
(weak) central limit theorem of the form

X, -EX,

Nar X, — N(0,1).
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Proof. The plan of the proof is the following one. First, we apply Theorem 15 to
(28) which implies that #(z, ) has a square root singularity of the kind (35). Second,
we use this representation and (29) to get an expansion for #(z,u) of the form

s \3/2
t(x,u) = g(z,u) — h(z,u) (1 - m) . (31)

Then we apply the transfer lemma (Lemma 1) to obtain an asymptotic expansion
for £,(u), and finally we use the quasi power theorem (Theorem 16). The last two
steps are direct applications. So we just have to look at the first two steps.

In order to apply Theorem 15 we just have to ensure that the functions
t(x?,u?),t(x®,u?),... are analytic if = is close to p and u is close to 1. Since the
sequence ¢, is bounded we have |c;| < M for some M > 0 and thus |[o'(T)| < M |T|.
Hence, if [u| > 1 and |zu™| < p then we have

[tz w) < Y talul ™ z]" = t(|eu],1).
n>1

In particular if |z| < p+n and |u| < (/p/(p+n))"/M (where n > 0 is small enough
that (,/p/(p +n))*/M > 1) we get for k > 2

|t(a*, ub)| < t(lzu™|F,1) <H(p*7,1) < Cp*2.
Thus, we can apply Theorem 15 with

F(:E:yau) = xzu6k+1zk(sk;y7t(x27u2)a s Jt(xkauk))
k>0

and obtain an representation of the form
t($7u) =g(:c,u) —h(.’L‘,U) 1-——= (32)

where g1 = g(f(u),u) satisfies the relation

91 = f(u) ZuCk+1Zk(Sk;glat(f(u)2=u2)= - Jt(f(u)kauk))'

k>0
Consequently, from (33) and (29) we obtain a representation for £(x,u) of the form

~ T
t(:c,u) - 92('7:3“) - h2(mau) 1- m: (33)

where

ha(z,u) = h(z,u) (mZuC’“ailek(Sk;g(m,u),t(mz,u2), . ,t(xk,uk))

E>1
—9(z,u) + (¢ - f(U))H(w,U)>
in which H(z,u) denotes an analytic function in z and u. Note that

0
6—Zk(5k;1'1,... ,:Ek) = Zkfl(Skfl,:El,... ,:L'kfl)
1
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This implies that

ha(f(u),u) = h(f(u),u) f(u) Zuckaixlzk(skhgla ) = DU Z(Ski g )

k>1 k>0
=0.

Hence, ha(z,u) can be represented as
ho(z,u) = h(z,u) (1 - L)
f(u)
Of course, this implies (31) and completes the proof of Theorem 14. O

Appendix 2.A: Asymptotic Normality.

We start with a slight extension of Theorem 10, where we add an additional pa-
rameter u (see [5]).

Theorem 15. Suppose that F(z,y,u) =3, . Fom(u)z"y™ is an analytic func-
tion in x, y around 0 and u around O such that F(0,y,u) =0, that F(z,0,u) Z 0,
and that all coefficients Fy, (1) of F(x,y,1) are real and non-negative. Then the
unique solution y = y(x,u) =Y yn(u)x™ of the functional equation

y=F(z,y,u) (34)
with y(0,u) = 0 is analytic around 0 and has non-negative coefficients y, (1) for
u=1.

Furthermore, if the region of convergence of F(x,y,u) is large enough such that
there exist non-negative solutions x = xo and y = yo of the system of equations

y=F(z,y,1),
1= Fy(z,y,1).
with Fy(20,y0,1) # 0 and Fyy(xo,yo,1) # 0 then there exist functions f(u), g(z,u),

h(z,u) which are analytic around x = g, uw = 1 such that y(z,u) is analytic for
|z| < zo and |u — 1| < e (for some e < 0) and has a representation of the form

y(z,u) = g(z,u) — h(z,u), /1 — — 35
(z,u) = g(z,u) — h(z,u) ) (35)
locally around x = xp, u = 1.

If yn (1) > 0 for n > 0 then we also get

)= \/’;ﬁj‘}fﬁ((f(%)’f((f(%)ﬁ)’ﬁf @A +o@™). @0

uniformly for |u — 1] < e.

Proof. The proof is completely the same as that of Theorem 10. We just have to
take care of the additional analytic parameter u. O

Interestingly there is a strong relation to random variables that are asymptoti-
cally Gaussian. We state here a slightly modified version of a quite general theorem
due to H.-K. Hwang [10] that usually referred as the Quasi Power Theorem. (Similar
theorems can be found in [1, 2]).
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Theorem 16. Let X,, be a random variable with the property that

EuXn = hno(w)+b(u) (1 ) (i))
¢n))’

holds uniformly in a complex neighborhoud of u = lwhere \, and ¢, are sequences
of positive real numbers with A, — 0o and ¢, — 00, and a(u) and b(u) are analytic
functions in this neighborhood of w = 1 with a(l) = b(1) = 0. Then EX,, =
pAn + O (1+ N\, /d,) and Var X,, = 02X\, + O (1 + \,/¢n), where p = a'(1) and
0? = a'(1)+a"(1). Furthermore, if 0> > 0 then X,, satisfies a central limit theorem
of the form

X, -EX,

VVar X,

Proof. By assumption we obtain for ¢ in a neighborhood of t = 0

EeitXn — eitxnuf%t2>\n02+0(>\nt3)+0(t) (1 +0 (i .
)

n

— N(0,1).

Set YV, = (X, — A\upt) /v Ano? when o2 > 0. Then by replacing t by t/v/A\,02 one
directly gets

Eeittn — o 5°+0(8*/VAL)+0(t/VAn) (1 +0 (%)) )

Thus, Y, is asymptotically normal since A\, — o0 and ¢, — 0.
Next set f,(u) = Eu*X. Then f! (1) = E X,,. One the other hand, by Cauchy’s

formula we also have
1 fn(u)
(1) = — .

lu—1|=p

In particular, we use the circle |u — 1| = 1/A, as the path of integration and get

EX, =

1+ (Ma'(1)+0'(1 — 1)+ 0 (M(u—1)>2
1 + And’ @) + VAN =D+ O Mn(w=17) (1 (1)) 4,
2mi (u—1)2 On
[u—1]=1/An
/ An
Similarly, we can treat the variance. Set gn(u) = fn(u)u=*»o' D=1 Then

Var X, = ¢'(1) + ¢"(1) + O (1 + A/ ¢n). By using the same kind of complex inte-
gration on the circle |u — 1| = 1/, and the approximation
exp (A\n(a(u) — a'(1)logu) + (b(u) — b'(1) logu)
(u—1)°
2

=1+ (An(a"(1) +a'(1)) + (b"(1) + (1))
one obtains

Var X, = A\, (a"(1) +a’'(1)) + O (1 + %) .

n
Finally note that Y, and (X,, — E X,,)/+/Var X,, have the same limiting distri-
bution (if o > 0). This completes the proof of Theorem 16. O
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Remark . In particular, if F(z,y,u) satisfies the assumptions of Theorem 15
and y(z,u) is the solution of y = F(z,y,u). Then X,, defined by Eu*~ =
[2")y(z,uw)/[z™]y(z, 1), is asymptotically normal. We have a(u) = —log(f(u)/z0),
where f(u) = z(u) (and y(u)) are the solutions of the system

y =F(z,y,u),
1=Fy(z,y,u).
p and o? are then given by
! 1 " 1
,uz—m ) and 02=p+,u2—$—().
Zo Zo

By implicit differentiation one gets (after some algebra)

x/(l):_Fu('ranOv]') :_ﬂ
Fz($07y071) Fz
and

1
(1) = 5 (Fpox'(1)* 4 2F,ya' (1)y' (1) + Fyyy' (1) + 2Fu02' (1) 4+ 2F,yy' (1) + Fuu) ,

x
where

F,,x' (1) + F,

yl(].) — _ %y ;) uy.
yy

Thus, it is possible to calculate x4 and o2 explicitly.

Appendix 2.B: Bivariate Asymptotic Expansions.

The next theorem shows how the k-th coefficient of the n-th powers of functions
behaves if n and k are proportional (see [3, 4]).

Theorem 17. Suppose that a sequence of generating function y,(u) is asymptoti-

cally given by
) = o) A"+ (1+0(3))

uniformly for a < |u| < b and |arg(u)| < 0 (for some 0 <a<band 0 <6 < w/2)
and bounded by

lym ()] < C A(Ju)E—m7

fora < |u| <band @ < |arg(u)] < m and some np > 0, where g(u) and A(u) are
analytic in a region containing the range a < |u| < b, |arg(u)| < 6.
Set
rA(r)
,LL(T) - )\(7‘)

and suppose that

ain s TA(P) PN () PN (r)?
o’ (r) =ry'(r) = G + O OE >0
for a <r <b. Let h(y) denote the inverse function of u(r).
Then we have

s )
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uniformly for n, k with u(a) < k/n < u(b).

Proof. We use Cauchy’s formula

a0 = g [ B

where r is defined by

that is, r = h (%) Note that r is exactly the saddle point of the function

)\(u)nufk —e" log A(u)—k log u

Now a standard saddle point method (see [4] or [14]) yields

(1]

4] () = — g (A ()" - (1 Lo (l>) .

2mno?(r) n
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