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Abstract. It is proved that the moments of the width of Galton-Watson trees
of size n and with offspring variance σ2 are asymptotically given by (σ

√
n)pmp

where mp are the moments of the maximum of the local time of a standard
scaled Brownian excursion. This is done by combining a weak limit theorem

and a tightness estimate. The method is quite general and we state some

further applications.

1. Introduction

In this paper we are considering rooted trees which are family trees of a Galton-
Watson branching process conditioned to have total progeny n. These tree are also
called simply generated trees (see [35]). Without loss of generality we may assume
that the offspring distribution ξ is given by

P {ξ = k} =
τkϕk
ϕ(τ)

, (1)

where (ϕk; k ≥ 0) is a sequence of non-negative numbers such that ϕ(t) =∑
k≥0 ϕkt

k has a positive or infinite radius of convergence R and τ is an arbi-
trary positive number within the circle of convergence of ϕ(t). These conditions in
particular imply that all moments of ξ exist and that τ < R. Due to conditioning
on the total progeny and finiteness of moments it is no restriction if we confine our-
selves to studying only the critical case, that is, E ξ = 1 which equivalently means
that τ satisfies τϕ′(τ) = ϕ(τ). The variance of ξ can also be expressed in terms of
ϕ(t) and is given by

σ2 =
τ2ϕ′′(τ)
ϕ(τ)

. (2)

Note that the offspring distribution (1) can be interpreted as assigning weights
to all trees defined by

ω(T ) =
∏
k≥0

ϕ
nk(T )
k

for a tree T having n nodes, nk of which have out-degree k, k ≥ 0. Denote by |T |
the number of nodes of such a tree and let an be the (weighted) number of all trees
with n nodes, i.e.

an =
∑

T :|T |=n

ω(T ).
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Then the corresponding generating function a(z) =
∑
n≥0 anz

n satisfies the func-
tional equation

a(z) = zϕ(a(z)). (3)

Denote by (Ln(t), t ≥ 0) the sequence of the generation sizes of a Galton-Watson
tree the total progeny of which is n. For non-integer t we define Ln(t) by linear
interpolation:

Ln(t) = (btc+ 1− t)Ln(btc) + (t− btc)Ln(btc+ 1), t ≥ 0.

We are interested in the width of such a tree which is defined by

wn = max
t≥0

Ln(t).

This quantity attracted the interest of many authors. First, Odlyzko and Wilf
[37] became interested in this tree parameter when studying the bandwidth

β(T ) = min
f

(
max

(u,v)∈E(T )
|f(u)− f(v)|

)
of a tree T , where f is an assignment of distinct integers to the vertices of the tree.
They showed for a tree with n vertices and height h(T ) and width w(T ) that

n− 1
2h(T )

≤ β(T ) ≤ 2w(T )− 1

and furthermore they showed that there exist positive constants c1 and c2 such that
the estimate

c1
√
n < Ewn < c2

√
n log n (4)

holds. The exact order of magnitude was left as an open problem. Aldous conjec-
tured [1, Conj. 4] that Ln (suitably normalized) converges to Brownian excursion
local time. This was first proved in [15], later by different methods by Kersting [29]
and Pitman [38]. More precisely, set

ln(t) =
2

σ
√
n
Ln

(
2t
σ

√
n

)
and

l(t) = lim
ε→0

1
ε

1∫
0

I[t,t+ε](W (s)) ds,

where (W (s), 0 ≤ s ≤ 1) is the standard scaled Brownian excursion, then the above
described limit theorem reads as follows:

Theorem 1 ([15]). Let ϕ(t) be the GF of a family of random trees. Assume that
ϕ(t) has a positive or infinite radius of convergence R. Furthermore suppose that
the equation tϕ′(t) = ϕ(t) has a minimal positive solution τ < R. Then we have

(ln(t), t ≥ 0) w−→ (l(t), t ≥ 0)

in C[0,∞), as n→∞.

Partial results go back to [9, 22, 27, 34, 41]. A density representation was com-
puted in [25].

This result implies that wn/σ
√
n weakly converges to the maximum of Brownian

excursion local time, which was proved directly by Takács [40].
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Theorem 2 ([15]). Under the assumptions of Theorem 1 we have

sup
t≥0

ln(t) w−→ sup
t≥0

l(t).

Thus this suggests (but does not imply)
√
n as correct order of magnitude in (4).

Note that the maximum of local time is well studied (cf. [28, 8, 18, 3, 34]). We
have supt≥0 l(t)

d= 2 sup0≤t≤1W (t), moreover it is theta-distributed, i.e.,

P
{

sup
0≤t≤1

l(t) ≤ x
}

= 1− 2
∑
k≥1

(x2k2 − 1)e−x
2k2/2,

and

E
[(

sup
t≥0

l(t)
)p ]

= 2p/2p(p− 1)Γ
(p

2

)
ζ(p).

The purpose of this paper is to show that we have convergence of moments for
supt≥0 ln(t), too. We formulate it in terms of the width wn = maxt≥0 Ln(t) =
(σ/2)

√
n supt≥0 ln(t).

Theorem 3. Suppose that there exists a minimal positive solution τ < R of
tϕ′(t) = ϕ(t). Then the width wn satisfies

E (wpn) = σp2−p/2p(p− 1)Γ
(p

2

)
ζ(p) · np/2 · (1 + o(1))

as n→∞.

It should be further mentioned that Chassaing and Marckert [6] used the relation
of parking functions and rooted trees as well as the strong convergence theorem of
Komlos, Major and Tusnady [33] to derive tight bounds for the moments of the
width for Cayley trees. They showed (here and throughout the whole paper, a� b
denotes a ≤ C b for some positive constant C)

Theorem 4 ([6]). If ϕ(t) = et and p ≥ 1, then∣∣∣∣E (
wn
σ
√
n

)p
−E

(
1
2

sup
t≥0

l(t)
)p∣∣∣∣ =

∣∣∣∣E (
wn
σ
√
n

)p
−E (sup

t≥0
W (t))p

∣∣∣∣ � n−p/4 log n.

Remark. In fact, Chassaing and Marckert [6] showed an even stronger result: In
some probability space there exist a sequence of copies of wn and a sequence of
theta-distributed random variables Dn such that for any p ≥ 1∣∣∣∣ 2wn

σ
√
n
−Dn

∣∣∣∣
p

= O
(
n−1/4

√
log n

)
where the O-constant depends on p.

Recently, Chassaing, Marckert, and Yor [7] have used Theorems 1 and 4 in con-
junction with results of Aldous [1] to obtain a weak limit theorem (without mo-
ments) for the joint law of height and width of simply generated trees. (For binary
trees they present an elementary proof, too.)
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2. Plan of the Proof of Theorem 3

In view of Theorem 2 the result of Theorem 3 is not unexpected. Nevertheless,
it does not follow directly from Theorem 2 since convergence of moments is not
automatically transfered via weak convergence (from Theorem 1).

In order to prove Theorem 3 we actually use the result of Theorem 1, that is,
the normalized profile of Galton-Watson trees converges weakly to Brownian ex-
cursion local time: (ln(t), t ≥ 0) w−→ (l(t), t ≥ 0). However, we need some additional
considerations: In [17] (see also [14]) Drmota and Marckert introduced the notion
of so-called polynomial convergence (that is inspired by the notion of uniform in-
tegrability). The key property for our purposes is the following one. It generalizes
the results of [17] (see also [14, Theorem 3.7]) that only apply for processes with
compact support.

Theorem 5. Let xn(t) be a sequence of stochastic processes in C[0,∞) which con-
verges weakly to x(t). Assume that for any choice of fixed positive integers p and d
there exist positive constants c0, c1, c2, c3 such that

sup
n≥0

E |xn(t)|p ≤ c0e−c1t for all t ≥ 0, (5)

and

sup
n≥0

E |xn(t+ s)− xn(t)|2d ≤ c2e−c3tsd for all s, t ≥ 0. (6)

Then xn(t) is polynomially convergent to x(t), that is, for every continuous func-
tional F : C[0,∞) → R of polynomial growth (i.e. |F (y)| � (1 + ‖y‖∞)r for some
r ≥ 0) we have

lim
n→∞

EF (xn) = EF (x).

We will show that ln(t) satisfies the assumptions (5) and (6) of Theorem 5 and
thus taking F (x) = supt≥0 x(t)r yields immediately Theorem 3.

The next section is devoted to the proof of Theorem 5. In sections 4 and 5
we prove (5) and (6). Finally in section 6 we provide some further applications of
Theorem 5.

3. Proof of Theorem 5

Let us start with the following two observations.

Lemma 1. Suppose that xn(t) satisfies (5). Then for every p ≥ 0 we have

E sup
j∈N
|xn(j)|p � 1

uniformly for all n.

Proof. Since E |xn(t)|p+1 � e−c1t, uniformly in n, we have

P
{

sup
j∈N
|xn(j)| ≥ A

}
≤
∑
j≥0

P {|xn(j)| ≥ A}

≤ 1
Ap+1

∑
j≥0

E |xn(j)|p+1 by Markov’s inequality

� 1
Ap+1

∑
j≥0

e−c1j � 1
Ap+1
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Thus it follows that

E
(

sup
j∈N
|xn(j)|p

)
� 1 + p

∫ ∞
1

Ap−1 1
Ap+1

dA� 1.

Lemma 2. Suppose that xn(t) satisfies (6). Then, for fixed p we have

E

(
sup
|s−t|≤δ

|xn(s)− xn(t)|p
)
� δp/2.

uniformly for δ with 0 < δ < 1 and for all n.

Proof. First we prove that for every integer d > 1 there exists a constant K > 0
such that for ε > 0 and 0 < δ < 1

P

{
sup
|s−t|≤δ

|xn(s)− xn(t)| ≥ ε

}
≤ Kδd−1

ε2d
. (7)

Arguing as in [5, pp. 95] guarantees that there exists a constant K1 > 0 such that
for all m ≥ 0

P

{
sup

|s−t|≤δ,m≤s,t≤m+2

|xn(s)− xn(t)| ≥ ε

}
≤ K1e

−c5m δ
d−1

ε2d
.

Thus

P

{
sup
|s−t|≤δ

|xn(s)− xn(t)| ≥ ε

}
≤
∞∑
m=0

K1e
−c5m δ

d−1

ε2d
≤ Kδd−1

ε2d

for some constant K > 0.
Set

Z = sup
|s−t|≤δ

|xn(s)− xn(t)|.

Then by applying (7) it follows that (if 2d ≥ p+ 1)

EZp =p
∫ ∞

0

zp−1P[Z > z] dz

=p
∫ (Kδ)(d−1)/d

0

zp−1P[Z > z] dz + p

∫ ∞
(Kδ)(d−1)/d

zp−1P[Z > z] dz

≤(Kδ)p(d−1)/d + pKδd−1

∫ ∞
(Kδ)(d−1)/d

zp−1−2d dz

�δp(d−1)/d ≤ δp/2,
which proves the Lemma.

The proof of Theorem 5 is now an easy task. Note that the results of Lemma 1
and 2 in conjunction with the triangular inequality imply

sup
n≥0

E
(

sup
t≥0
|xn(t)|r

)
<∞ for all r ≥ 0.

Thus, if F is a continous functional of polynomial growth we have for any ε > 0
we have

sup
n≥0

E |F (xn)|1+ε <∞.
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By continuity of F we also obtain F (xn) w−→ F (x) and finally, by Billingsley [4, p.
338] it directly follows that

lim
n→∞

EF (xn) = EF (x)

as desired. �

4. Moments for the Profile of Galton-Watson Trees

We start with a lemma on the growth of coefficients of powers of certain gener-
ating functions.

Lemma 3. Let z0 6= 0 and ∆ = {z : |z| < z0 + η, | arg(z − z0)| > ϑ}, where η > 0
and 0 < ϑ < π/2. Suppose that f(z) and g(z) are analytic functions in ∆ which
satisfy

|f(z)| ≤ exp

(
−C

√∣∣∣∣1− z

z0

∣∣∣∣
)
, z ∈ ∆,

g(z) =1−D
√

1− z

z0
+O

(
1− z

z0

)
, z ∈ ∆,

for some positive constants C,D. Then for any fixed ` there exists a constant C ′ > 0
such that

[zn]
f(z)r

(1− g(z))`
= O

(
e−C

′r/
√
nn(`−2)/2

)
uniformly for all r, n ≥ 0 (where [zn]F (z) denotes the coefficient of zn of the func-
tion F (z)).

Proof. The only difference to [23, Lemma 3.5] is the factor 1/(1− g(z))`, but since
its behavior in ∆ is known and [21, Theorem 3] is applicable, the proof is analogous
to that of [23, Lemma 3.5].

By means of this lemma we can show

Lemma 4. For every fixed integer p > 0 there exist positive constants c0 and c1
such that

sup
n≥0

E ln(t)p ≤ c0e−c1t (8)

for all t ≥ 0.

Proof. For technical simplicity we assume that g = gcd{i ≥ 1 : ϕi > 0} = 1.
This assumption ensures that the tree function a(z) defined by (3) has only one
singularity z0 = 1/ϕ′(τ) on the circle of convergence. If g = gcd{i ≥ 0 : ϕi > 0} > 1
then we can use the substitution x = z1/g to get a(z) = xb(x) where b(x) is analytic
with only one singularity on the circle of convergence. Thus this case reduces to
the case g = 1. The other possibility is to deal with the g singularities z0e

2πij/g,
j = 0, 1, . . . , g − 1, on the circle of convergence and add all contributions.

In particular, it is also well known that (if g = 1) a(z) admits a representation
of the following kind

a(z) = τ − τ
√

2
σ

√
1− z

z0
+O

(∣∣∣∣1− z

z0

∣∣∣∣) , (9)
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that is valid for |z| < z0 + η and arg(z − z0) 6= 0, where η > 0 is suitably small,
compare with [35] and [13].

In what follows we will need the local expansion of α(z) = zϕ′(a(z)). From (9)
we immediately get

α(z) = 1− σ
√

2
√

1− z

z0
+O

(∣∣∣∣1− z

z0

∣∣∣∣) (10)

for |z| < z0 + η and arg(z − z0) 6= 0.
Due to (10) there exists a constant C > 0 such that |α(z)| ≤

exp
(
−C
√
|1− z/z0|

)
for z ∈ ∆ (with ∆ from Lemma 3). Furthermore, it follows

that

sup
z∈∆
|α(z)| = 1, (11)

where we have to choose η > 0 and 0 < ϑ < π/2 in a proper way. First, since the
power series of α(z) has only positive coefficients, we have max|z|≤z0 |α(z)| = 1. If
we assume that d = gcd{i ≥ 1 : ϕi > 0} = 1 it also follows that

max
|z|≤z0,|z−z0|≥ε

|α(z)| < 1

for every ε > 0. Now, in the vicinity of the singularity z0, that is, for |z − z0| < ε
we can again use (10) and get for z = z0(1 + teiθ )∣∣α (1 + teiθ

)∣∣ =
∣∣∣1− σ√2te±i(π−θ)/2 +O (t)

∣∣∣ , (12)

where θ > π/2. Hence we have |α(z)| ≤ 1 for |z − z0| ≤ ε and | arg(z − z0)| > θ.
Finally, for |z| ≤ z0 + η and |z − z0| ≥ ε we obtain the same inequality from (12)
by a continuity argument (for some sufficiently small η > 0). This proves (11).

Now observe that by substituting r = bt
√
nc (8) becomes

ELn(r)p ≤ c0e−c1r/
√
nnp/2. (13)

Furthermore note that it suffices to show (13) for the pth factorial moment instead
of the pth moment, which we can easily express in terms of the proper coefficient
of a generating function. Indeed we have

E [Ln(r)]p =
1
an

[zn]
(
∂

∂u

)p
yr(z, ua(z))

∣∣∣∣
u=a(z)

,

where

y0(z, u) = u

yi+1(z, u) = zϕ(yi(z, u)), i ≥ 0. (14)

In order to evaluate this coefficient we use Lemma 3 which translates the local
behavior of the function near its singularity into an asymptotic estimate for the
coefficients.

By [24, p. 287, equ. (22)] we have(
∂

∂u

)p
yr(z, ua(z))

∣∣∣∣
u=a(z)

= O

(
a(z)p|α(z)r|

∣∣∣∣1− α(z)r

1− α(z)

∣∣∣∣p−1
)

(15)
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From (11) we get

max
z∈∆

∣∣∣∣1− α(z)r

1− α(z)

∣∣∣∣ ≤ r. (16)

Moreover a(z)p behaves like a constant near the singularity and α(z)r meets the
condition in Lemma 3. Hence the last factor in (15) is bounded by rp−1 and hence
contributes a factor n(p−1)/2 to the order of magnitude of E [Ln(r)]p. Applying
Lemma 3, which yields exp(−c1r/

√
n ), and normalizing by an ∼ τ/σzn0

√
2πn3 we

get the desired result.

5. Quantitative Tightness Estimates

With help of Lemma 3 we can prove the following quantitative tightness estimate.

Lemma 5. For every fixed positive integer d there exist constants c1, c2 such that
for every s, t > 0

E |ln(t+ s)− ln(t)|2d ≤ c1e−c2tsd. (17)

Proof(Sketch). Observe that (17) is equivalent to

E |Ln(r)− Ln(r + h)|2d ≤ c1e−c2r/
√
nhdnd/2 (18)

which is quite similar to [15, Theorem 6.1]. From [15] it follows that

E |Ln(r)− Ln(r + h)|2d =
1
an

[zn]Hrh(z),

in which

Hrh(z) =
(
u
∂

∂u

)2d

yr(z, uyh(z, u−1a(z)))

∣∣∣∣∣
u=1

and y(z, u) is given by (14).
Evaluation of this coefficient is again done by Lemma 3. By [15, Proposition 6.1]

it is easy to show that

Hrh(z) = α(z)r
d∑
j=0

Gj,rh(z)
(1− α(z)h)j

(1− α(z))d−1+j
, (19)

where Gj,rh(z) satisfy

max
z∈∆
|Gj,rh(z)| = O (1) .

Eventually, an application of (16), with h instead of r, and Lemma 3 to (19) yields

[zn]Hrh(z) = O

(
hdn(d−3)/2

zn0

)
and, thus, by an ∼ τ/σzn0

√
2πn3 the proof is complete.
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6. Extensions

6.1. Nodes of given degree. In [12] the number of nodes with fixed degree d
in layers of random trees was investigated. In this case also limit theorems like
Theorems 1 and 2 hold. In fact, we have

Theorem 6. Let L(d)
n (k) denote the number of nodes with degree d in layer k in a

random tree of total progeny n. Furthermore, set

l(d)
n (t) =

2
σcd
√
n
L(d)
n

(
2t
σ

√
n

)
,

where cd = ϕd−1τ
d−1/ϕ(τ). Then we have

1.

l(d)
n (t) w−→ l(t) and sup

t≥0
l(d)
n (t) w−→ sup

t≥0
l(t)

2.

E
((
w(d)
n

)p)
= E

(
sup
t≥0

l(t)
)p

(1 + o(1)),

where w(d)
n = maxk≥0 l

(d)
n (k).

Proof(Sketch).
Part 1 was proved in [12]. The proof of part 2 runs similarly to the proof of

Theorem 3. The only crucial point is to get estimates as in Lemma 4 and Lemma 5,
namely

EL(d)
n (r)p ≤ c1e−c2r/

√
nnp/2

and

E
∣∣∣L(d)
n (r)− L(d)

n (r + h)
∣∣∣2d ≤ c1e−c2r/√nhdnd/2. (20)

Both inequalities can be proved in a similar manner, so let us look at the second
one (the first is the easier one). The results in [12] imply

E
∣∣∣L(d)
n (r)− L(d)

n (r + h)
∣∣∣2d =

2
σan

[zn]H(d)
2r/σ,2h/σ(z)

with

H
(d)
rh (z) =

(
u
∂

∂u

)2d

yr(z, z(u− 1)ϕd−1yh−1(z, z(u−1 − 1)ϕd−1a(z)d−1 + a(z))

yh(z, z(u−1 − 1)ϕd−1a(z)d−1 + a(z)))
∣∣∣
u=1

and since the right-hand side of this equation can be expressed in a form similar to
(19), we can easily prove (20). �

6.2. Strata of random mappings. A random mapping of size n is an element
of the set of all mappings of a set with n elements into itself equipped with the
uniform distribution. These mappings can be represented by functional digraphs
consisting of components which are cycles of trees. The set of points in distance r
from a cycle is called the rth stratum of a random mapping. This parameter was
previously studied in [2, 11, 16, 36, 39]. For general results on random mappings and
literature see [32, 20]. Let Mn(r) denote the number of nodes in the rth stratum of
a random mapping of size n. Then in [16] we proved
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Theorem 7. Let B(t) denote reflecting Brownian bridge, i.e., a process on the
interval [0, 1] which is identical in law to |W (s) − sW (1)| (W (t) is the standard
Brownian motion), and l(B)(t) its local time, i.e.,

l(B)(t) = lim
ε→0

1
ε

1∫
0

I[t,t+ε](B(s)) ds

Then we have

mn(t) =
2√
n
Mn

(
2t
√
n
) w−→ l(B)(t)

in C[0,∞), as n→∞. Thus we also have

sup
t≥0

mn(t) w−→ sup
t≥0

l(B)(t).

By means of this we can show

Theorem 8. We have

E
((

sup
t≥0

mn(t)
)p)

= E
(

sup
t≥0

l(B)(t)
)p

(1 + o(1)), (21)

Proof(Sketch). Again the crucial point is to get proper estimates. From [16] it is an
easy exercise to get

E |Mn(r)−Mn(r + h)|2d =
2n!
nn

[zn]H2r,2h(z),

in which

Hrh(z) =
(
u
∂

∂u

)2d 1
1− yr(z, uyh(z, u−1a(z)))

∣∣∣∣∣
u=1

.

This function can be written in a form similar to (19) and thus we can easily prove

E |Mn(r)−Mn(r + h)|2d ≤ c1e−c2r/
√
nhdnd/2

and then (21). The corresponding bound for the moments, obtained in the same
way, carries out even easier. �

6.3. Height of random trees. The same method can be used to re-derive the
analogue for the height hn of simply generated trees (see Flajolet and Odlyzko [19]).

Theorem 9. Suppose that there exists a minimal positive solution τ < R of
tϕ′(t) = ϕ(t). Then

E (hpn) =

(√
2n
σ

)p
p(p− 1)Γ

(p
2

)
ζ(p)(1 + o(1))

as n→∞.

hn is equal to the maximum of the traversal process Tn(r), defined to be the
distance between the root and the rth node during preorder traversal of the tree.
Obviously, the same holds when we only traverse leaves (call the corresponding
process T̂n(r)). It is well known (see [1]) that

Xn(t) =
1√
n
Tn(2tn) w−→ 2

σ
W (t)
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The height of leaves was investigated by several authors (see [30, 31, 26, 10, 23].
Here a similar limit theorem holds: With X̂n(t) = T̂n(tn)/

√
n we have (see [23])

X̂n

(
ϕ0

ϕ(τ)
t

)
w−→ 2

σ
W (t).

In addition, in [23] the tightness estimate

P{|X̂n(s)− X̂n(t)| ≥ ε} ≤ C 1
ε4|s− t|

exp

(
−D ε√

|s− t|

)
for some positive constants C and D was shown. This can be used to derive moment
estimates like in Lemma 5 and then one proceeds as in the previous section to re-
derive Flajolet and Odlyzko’s [19] result on the moments of the height.

Finally, we want to mention that it is also possible to obtain the moments of
the height of a random mapping (this was done by Flajolet and Odlyzko [20]) by
our method. One has to use the weak limit theorem by Aldous and Pitman [2] and
derive a tightness estimate in a similar fashion as has been done in [16].
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