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Introduction

G.C. Rota:

,,Probability is just combinatorics divided by n.“



The Probabilistic Method

The Probabilistic Method has been initiated by Paul Erdős (1947)

in order to prove the existence of certain combinatorial objects. The

principle idea is to define a proper probability distribution on a class of

(discrete) objects and to show that the probability of a certain property

is positive. Of course this also proves that there exists such an object

with this property. We will apply this approach to various problems on

random graphs.



The Probabilistic Method

Ramsey Numbers

Definition. The Ramsey number R(k, l) is the smallest number n

such that any 2-coloring of the edges on the conplete graph Kn on n

vertices contains either a monochromatic Kk (in Kn) of the first color

or a monochromatic Kl (in Kn) of the second color.

Ramsey’s theorem: R(k, l) exists for all positive integers k and l.

Example: R(3,3) = 6.
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The Probabilistic Method

Upper bounds for the Ramsey Number

Lemma

R(k, l) ≤ R(k − 1, l) + R(k, l − 1).

R(k,1) = R(1, k) = 1.

Corollary.

R(k, l) ≤
(k + l − 2

k − 1

)
≤ 2k+l−2

=⇒ R(k, k) ≤ 4k−1



The Probabilistic Method

Proof (color 1 = blue, color 2 = red)

Consider a complete graph Kn with n = R(k− 1, l)+ R(k, l− 1) nodes.

Pick a vertex v and let M be the blue neighbors and N the red neigh-

bors.

=⇒ |M | ≥ R(k − 1, l)| or|N | ≥ R(k, l − 1).

|M | ≥ R(k − 1, l) =⇒ Kn contains a blue Kk or a red Kl.

|N | ≥ R(k, l − 1) =⇒ Kn contains a blue Kk or a red Kl.



The Probabilistic Method

Lower Bound for the Ramsey Number

Theorem

R(k, k) > 2k/2

for all k ≥ 3.

Proof

Kn ... complete graph with vertex set {1,2, . . .}

Take a random 2-coloring of the
(
n
2

)
edges

(Each edge is colored independently and with equal probability 1
2.)



The Probabilistic Method

Lower Bound for the Ramsey Number

R ⊆ {1,2, . . .}, |R| = k

AR := {the induced subgraph of R is monochromatic}

=⇒ P(AR) = 2
1

2(k
2)

= 21−(k
2)

=⇒ P{∃R ⊆ {1,2, . . .} : |R| = k, AR occurs} ≤
(n
k

)
21−(k

2).



The Probabilistic Method

Lower Bound for the Ramsey Number

n = b2k/2c (and k ≥ 3)

=⇒
(n
k

)
21−(k

2) < 2
nk

k!

1

2k2/2−k/2
≤ 2

2k/2

k!
< 1

=⇒ P{∀R ⊆ {1,2, . . .} : |R| = k, R is not monochromatic} > 0

=⇒ R(k, k) > n .



First Moment Method

Theorem

X ... discrete random variable on non-negative integers.

=⇒ P{X > 0} ≤ E X .

Proof

E X =
∑
k≥0

k P{X = k} ≥
∑
k≥1

P{X = k} = P{X > 0}.



First Moment Method

As an first application we prove R(k, k) > 2k/2 a second time:

Kn ... complete graph with vertex set {1,2, . . .}

Take a random 2-coloring of the
(
n
2

)
edges

Sn,k ... set of all subgraphs of Kn with k nodes

=⇒ Xn :=
∑

R∈Sn,k

I[R is monochromatic]

is the (random) number of monochromatic subgraphs of Kn that

are isomorphic to Kk.



First Moment Method

Xn =
∑

R∈Sn,k

I[R is monochromatic]

=⇒ E Xn =
∑

R∈Sn,k

P{R is monochromatic} =
(n
k

)
2 2−(k

2)

=⇒ P{Xn > 0} ≤
(n
k

)
21−(k

2) < 2
2k/2

k!
< 1

=⇒ P{Xn = 0} > 0 .



Random Graphs

Definition Let n be a positive integer and p a real number with 0 ≤
p ≤ 1. The random graph G(n, p) is a probability space over the set

of graphs on the vertex set {1,2, . . . , n} determined by

P{(i, j) ∈ G} = p

for all possible (undirected) edges (i, j) with 1 ≤ i, j ≤ n and i 6= j with

these events mutually independent.

Similarly one also considers random graphs G(n, m), where m is also

a given integer with 0 ≤ m ≤
(
n
2

)
. Here one considers the set of all

graphs on the set of vertices {1,2, . . . , n} with exactly m (undirected)

edges where each of these graphs is equally likely. Due to the law of

large numbers G(n, m) will have very similar properties as G(n, p) with

p = m/
(
n
2

)
.
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Random Graphs

Definition The girth girth(G) of a graph G is the size of the shortest

cycle.

The chromatic number χ(G) of a graph G is the smallest number k

such that there exists a regular k-coloring of the vertices of G, that

is, a coloring of at k colors of the vertices such that adjacent vertices

have different colors.

Theorem [Erdős 1959]

For all (positive integers) k and ` there exists a graph G with

girth(G) > ` and χ(G) > k .



Random Graphs

Proof

p = nθ−1 for some 0 < θ < 1/` (n be chosen sufficiently large)

V = {1,2, . . . , n} ... vertex set of a random graph:

P{e ∈ E(G)} = p (independently)

X ...number of cycles of size ≤ `.

θ` < 1

=⇒ E X =
∑̀
i=3

(n)i

2i
pi ≤

∑̀
i=3

ni

2i
n(θ−1)i =

∑̀
i=3

nθi

2i
= o(n).



Random Graphs

E X ≥ E
(
X · I[X≥n/2]

)
≥

n

2
P{X ≥ n/2}

E X = o(n)

=⇒ P{X ≥ n/2} = o(1) .



Random Graphs

P{α(G) ≥ m} = P{∃S ⊆ {1,2, . . . , n} : |S| = m, S is independent}

≤ E

 ∑
|S|=m

I[S is independent]


=

∑
|S|=m

P{S is independent}

=
(n

m

)
(1− p)(

m
2)

≤
nm

m!
e−p(m

2)

≤ (ne−p(m−1)/2)m



Random Graphs

m = m(n) = d3p logne ∼ 3n1−θ logn

=⇒ ne−p(m−1)/2 → 0 (n →∞)

=⇒ P{α(G) ≥ m(n)} → 0 (n →∞)



Random Graphs

n sufficiently large that P{X ≥ n/2} < 1
2 and P{α(G) ≥ m(n)} < 1

2.

• Take G with X < n/2 (less than n/2 cycles of length at most `)

and α(G) < m(n) ∼ 3n1−θ logn.

• Remove from G a vertex from each cycle of length at most `.

• New graph G∗ has at least n/2 vertices, girth(G∗) > `

• α(G∗) ≤ α(G)

=⇒ χ(G∗) ≥
|G∗|
α(G)

≥
n/2

3n1−θ logn
=

nθ

6 logn
.

• n sufficiently large that nθ/(6 logn) > k =⇒ χ(G) > k .



Random Graphs

Theorem [Bollobas] We have, almost always in G(n, 1
2),

χ(G) ∼
n

2 log2 n
.

Proof (Lower bound)

Almost always there exists no complete subgraph Kb2 log2 nc in G(n, 1
2).

The same holds for the complement. Consequently almost always

there is no independent set of size b2 log2 nc.

=⇒ χ(G) ≥
n

α(G)
≥

n

2 log2 n
.

(α(G) ... independece number of G.)
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Approximation by Continuous Processes

Brownian Excursion

0 1

(e(t),0 ≤ t ≤ 1) ... Brownian motion between two zeros and scaled.



Approximation by Continuous Processes

Theorem. [Donsker’s Theorem]

(Xn(t),0 ≤ t ≤ 2n) ... process of Dyck paths (every Dyck path is

equally likely)

(e(t),0 ≤ t ≤ 1) ... Brownian excursion

=⇒ (
1
√

n
Xn(2nt), 0 ≤ t ≤ 1

)
→ (e(t),0 ≤ t ≤ 1)
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Longest Increasing Subsequence in R. P.

Sn ... the set of permutations of the numbers {1,2, . . . , n}
(We assume that every permutation in Sn is equally likely.)

For π ∈ Sn we say that π(i1), π(i2), . . . , π(ik) is an increasing subse-

quence in π if i1 < i2 < · · · < ik and π(i1) < π(i2) < · · · < π(ik).

Ln = Ln(π) . . . length of the longest increasing subsequence.

Ulam’s Problem: E Ln ∼ ?

Ulam’s conjecture: E Ln ∼ c
√

n for some constant c > 0.



Longest Increasing Subsequence in R. P.

Erdős Szekeres 1935: c ≥ 1
2

Logan and Shepp 1977: c ≥ 2

Vershik and Kerov 1977: c = 2 .

(Alternate proofs are due to Aldous and Diaconis, Seppäläinen, and

Johansson).

Frieze 1991: Ln is concentrated

Bollobás and Brightwell 1992, Talagrand 1995: V Ln = O(
√

n).

Odlyzko and Rains 2000: order of V Ln should be n1/3.

Baik, Deift, and Johansson 1999: complete solution.



Longest Increasing Subsequence in R. P.

Theorem (Baik, Deift, and Johansson 1999)

Let Sn be the group of permutations of n numbers with uniform distri-

bution and Ln the longest increasing subsequence. Then there exists

a random variable Y such that

Ln − 2
√

n

n1/6
d−→ Y.

Furthermore, we have convergence of all moments.

Remark.

The limiting distribution Y is exactly the same at the limiting distribu-

tion of the largest eigenvalue in random Hermitian matrices. However,

it seems that there is no direct connection between these two problems.



Longest Increasing Subsequence in R. P.

Tracy-Widom distribution: F (t) = P{Y ≤ t}

u(x) ... solution of the Painlevé II equation

u′′ = 2u3 + xu, u(x) ∼ Ai(x) (as x →∞),

where Ai(x) denotes the Airy function.

Then

F (t) = exp
(∫ ∞

t
(x− t)2u(x)2 dx

)



Longest Increasing Subsequence in R. P.

Proof Method

Basically one determines the asymptotic behaviour of the Poisson

transform

φk(λ) =
∞∑

n=0

e−λλn

n!
P{Ln ≤ k}

that can be represented as

φk(λ) =
e−λ

(2π)kk!

∫
[−π,π]k

exp

2
√

λ
k∑

j=1

θj

 ∏
1≤j<`≤k

∣∣∣eiθj − eiθ`
∣∣∣ dθ1 · · · dθk.

One has to use the theory of orthogonal polynomials on the unit circle,

sophisticated Riemann-Hilbert problem techniques and certain proper-

ties on eigenvalues of random matrices.
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Travelling Salesman Problem

X = (X1, X2, . . . , Xn) ... n-tuple of random point selected uniformly

and independently in the unit square [0,1]2

Length of the minimum (travelling salesman) tour:

TSP(X) = min
π∈Sn

n∑
j=1

∣∣∣Xπ(j) −Xπ(j+1)

∣∣∣

Theorem (Beardwood, Halton and Hammersley 1959)

TSP(X)
√

n
→ β2 in prob.

for some β2 > 0.

Remark: Up to now there is no known analytic expression for β2.



Travelling Salesman Problem

Notation: M(Y ) ... median of r.v. Y

Theorem (Rhee and Talagrand)

P {|TSP(X)−M(TSP(X))| ≥ t} < 4e−t2/c.

for some constant c > 0.

Corollary. All central moments of TSP(X) are bounded.

(However, the exact location of the mean is unknown.)



Travelling Salesman Problem

Talagrand’s Inequality

Ω1,Ω2, . . . ,Ωn... probability spaces, Ω = Ω1 × · · · ×Ωn

X = (X1, X2, . . . , Xn) ... independent random variables, Xk taking

values in Ωk.

Weighted Hamming distance related to α = (α1, . . . , αn) with αk ≥ 0:

dα(x,y) =
∑

xi 6=yi

αi

Talagrand’s convex distance

dT (x, A) = sup
α≥0,‖α‖=1

inf
y∈A

dα(x,y)

between x ∈ Ω and A ⊂ Ω.



Travelling Salesman Problem

Talagrand’s Inequality

P{X ∈ A} · P{dT (X, A) ≥ t} < e−t2/4.



Travelling Salesman Problem

Theorem

f ... real valued function on Ω = Ω1 × · · · ×Ωn

For every x ∈ Ω there exists a non-negative unit n-vector α and a

constant c > 0 such that for all y ∈ Ω

f(x) ≤ f(y) + c dα(x,y).

Then, for every random n-tuple X = (X1, . . . , Xn) of independent ran-

dom variables Xk taking values in Ωk we have

P{|f(X)−M(f(X))| ≥ t} ≤ 4 e−t2/(4c2).



Travelling Salesman Problem

Lemma

For every x ∈ ([0,1]2)n there exists non-negative unit vector α and a

constant c > 0 such that for all y ∈ ([0,1]2)n

TSP(x) ≤ TSP(y) + c dα(x,y).

(Elementary proof that uses an approximate minumum tour to con-

struct α.)

Remark

This method can be applied to several other problem, for example to

the minimal Steiner tree problem etc.
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Quicksort

Probabilistic Model

Every permutation of the input data {1,2, . . . , n} is equally likely.

Number of Comparisions

Ln ... number of comparisions that are needed to sort a random

permutation of {1,2, . . . , n} with Quicksort.

L(Ln) = L
(
LZn−1 + Ln−Zn + n− 1

)
, n ≥ 2,

where L0 = L1 = 0, L2 = 1, Zn is uniformly distributed on {1,2, . . . , n},
L(Lj) = L(Lj), and Zn, Lj, Lj (1 ≤ j ≤ n) are independent.

L(X) ... distribution of X.



Quicksort

Expected Number of Comparisions

E Ln = n− 1 +
1

n

n∑
j=1

(
E Lj−1 + E Ln−j

)

=⇒

E Ln = 2(n + 1)
n+1∑
h=1

1

h
− 4(n + 1) + 2

= 2n logn + n(2γ − 4) + 2 logn + 2γ + 1 +O ((logn)/n)

with γ = 0.57721... being Euler’s constant.



Quicksort

Theorem. [Régnier, Rösler]

The normalized number of comparisions

Yn =
Ln − E Ln

n

converges weakly to a random variable Y :

Yn → Y ,

which is defined by the fixed point equation

L(Y ) = L
(
UY + (1− U)Y + c(U)

)
,

where U is uniformly distributed on [0,1], L(Y ) = L(Y ), U, Y , Y are

independent, and

c(x) = 2x logx + 2(1− x) log(1− x) + 1.



Quicksort

Wasserstein metric d2

D ... space of distribution functions with finite second moment and

zero first moment.

d2(F, G) = inf
L(X)=F,L(Y )=G

‖X − Y ‖2 ,

(D, d2) constitutes a Polish space.

A sequence Fn converges to F in D if and only if Fn converges weakly

to F and if the second moments of Fn converge to the second moment

of F .



Quicksort

Yn = (Ln − E Ln)/n =⇒

L(Yn) = L
(
YZn−1

Zn − 1

n
+ Y n−Zn

n− Zn

n
+ cn(Zn)

)
, n ≥ 2,

where Y0 = Y1 = 0, Zn is uniformly distributed on {1,2, . . . , n}, and

L(Yj) = L(Y j), and Zn, Yj, Y j (1 ≤ j ≤ n) are independent, and

cn(j) =
n− 1

n
+

1

n

(
E Lj−1 + E Ln−j − E Ln

)
.

If Yn has a limiting distribution Y then

L(Y ) = L
(
UY + (1− U)Y + c(U)

)
.



Quicksort

Lemma

Let S : D → D be a map defined by

S(F ) := L(UX + (1− U)X + c(U)) ,

where X, X, U are independent, L(X) = L(X) = F , and U is uniformly

distributed on [0,1].

Then S is a contraction with respect to the Wasserstein metric d2

and, thus, there is a unique fixed point F ∈ D with S(F ) = F .



Quicksort

Proof

F, G ∈ D, L(X) = L(X) = F , L(Y ) = L(Y ) = G, U u.d. on [0,1],

U, X, X and U, Y , Y are independent.

S(F ) = L(UX + (1− U)X + c(U)),

S(G) = L(UY + (1− U)Y + c(U))

=⇒

d2
2(S(F ), S(G)) ≤ ‖UX + (1− U)X − UY − (1− U)Y ‖22

= ‖U(X − Y ) + (1− U)(X − Y )‖22
= E (X − Y )2 · E U2 + E (X − Y )2 · E (1− U)2

=
2

3
E (X − Y )2.

=⇒

d2(S(F ), S(G)) ≤
√

2

3
· d2(F, G),
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