Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size?

Shelah's 80th!

John 1. Baldwin University o Illinois at Chicago

Historical Background

The $L_{\omega_1,\omega}$ case

Syntax and Semantics Getting Models the continuum

 $(2\operatorname{stability})^+$ implies

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size? Shelah's 80th!

John T. Baldwin University of Illinois at Chicago

July 16, 2025

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size? Shelah's 80th!

John T. Baldwin

Historical Backgroun

The $L_{\omega_1,\omega}$ case

Semantics
Getting Models in the continuum

 $\kappa_{(2}\aleph_0)^+$ \gg implies ω -stability

1 Historical Background

- 2 The $L_{\omega_1,\omega}$ case
 - Syntax and Semantics
 - Getting Models in the continuum
 - $K_{(2^{\aleph_0})^+ \neq \emptyset}$ implies ω -stability

Historical Background

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size?

Shelah's 80th!

John 1. Baldwin

Historical Background

The $L_{\omega_1,\omega}$

Syntax and Semantics

Getting Models in the continuum

3 / 37

What does categoricity in power mean?

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size? Shelah's 80th!

John T. Baldwin

Historical Background

The $L_{\omega_1,\omega}$ case

Syntax and Semantics Getting Models in

 $K_{(2\aleph_0)^+}$ implies

- I [Mor65] A theory, T, (formalized in the first order predicate calculus) is categorical in power κ if it has exactly one isomorphism type of models of power κ .
- **2** [Kei71] A class of models K for a language L is categorical in κ if any two models A, B in K are isomorphic.

When do \aleph_1 -categorical theories (AEC) have a bounded size of models?

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size?

John T. Baldwin

Historical Background

The $L_{\omega_1,\omega}$ case

Syntax and Semantics Getting Models in the continuum

 $K_{(2}\aleph_0)^+$ implies ω -stability

In the mid-70's Shelah answered my question as to whether a sentence of $L_{\omega_1,\omega}(Q)$ could be *categorical in the philosophers* sense, have only one model. In different papers he proved in different ways that \aleph_1 -categorical such sentence has a model in \aleph_2 .

Two questions: Under what conditions does a sentence of $L_{\omega_1,\omega}$ (with LN \aleph_0) that is \aleph_1 -categorical have models in \aleph_2 , 2^{\aleph_0} , or even larger?

More generally, *Grossberg's question* Must an aec categorical in λ with $I(\mathbf{K}, \lambda^+) < 2^{\lambda^+}$ have a model in λ^{++} ?

We already know the second is independent of ZFC.

One Completely General Result

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size?

John T. Baldwin

Historical Background

Syntax and Semantics
Getting Models in the continuum

WGCH(λ): $2^{\lambda} < 2^{\lambda^+}$

Let K be an abstract elementary class (AEC).

Theorem

[WGCH (λ)] Suppose $\lambda \geq \mathrm{LS}(\mathbf{K})$ and \mathbf{K} is λ -categorical. If amalgamation fails in λ there are 2^{λ^+} models in \mathbf{K} of cardinality $\kappa = \lambda^+$.

Uses $[\hat{\Theta}_{\lambda^+}(S)]$ (weak diamond) for many S.

 λ -categoricity plays a fundamental role.

No really specific model theoretic hypothesis but a set-theoretic one!

Definitely not provable in ZFC for AEC (even for $L_{\omega_1,\omega}(Q_1)$ maybe for $L_{\omega_1,\omega}$).

THE counterexample: Φ

categorical classes in $L_{\omega_1,\omega}$ be bounded in size? Shelah's 80th!

Can

John T. Baldwin

Historical Background

The $L_{\omega_1,\omega}$ case

Semantics
Getting Models in the continuum $\frac{K_{(2}\aleph_0)^+}{(2!)^{(2!)}} \text{ implitive}$

 \boldsymbol{K} is the models in a vocabulary with two unary relations P, Q and two binary relations E, R which satisfy:

For any model $M \in \mathbf{K}$,

- \blacksquare P and Q partition M.
- \mathbf{Z} E is an equivalence relation on Q.
- \blacksquare P and each equivalence class of E is denumerably infinite.
- 4 R is a relation on $P \times Q$ so that each element of Q codes a subset of P.
- **5** *R* induces the independence property on $P \cup Q$.

This class is axiomatized by a sentence Φ in $L_{\omega_1,\omega}(Q_1)$.

Properties of models of Φ

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size?

John T. Baldwin

Historical Background

The $L_{\omega_1,\omega}$ case

Syntax and Semantics Getting Models in the continuum

 $K_{(2}\aleph_0)^+ \not \emptyset$ implies ω -stability

amalgamation, ω -stablilty, and arbitrarily large models FAIL

Under MA Φ is \aleph_1 -categorical but is not ω -stable, fails amalgamation in \aleph_0 , and has no models beyond the continuum.

Shelah suggested a variant, axiomatized in $L_{\omega_1,\omega}$ with the same properties in \aleph_0 . Laskowski showed that sentence had at least 2^{\aleph_0} models in \aleph_1 .

[She87, She83, She],[Bal09, §17]

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size? Shelah's 80th!

John T. Baldwin

Historical Backgroun

The $L_{\omega_1,\omega}$ case

Syntax and Semantics

Getting Models in

 $K_{(2}N_{0})^{+}$ implies ω -stability

The $L_{\omega_1,\omega}$ case Syntax and Semantics

The class of models

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size?

John T. Baldwir

Historical Background

The $L_{\omega_1,\omega}$ case

Syntax and Semantics Getting Models the continuum

 $\kappa_{(2} \aleph_{0})^{+} N$ implies ω -stability

 K_T is the class of atomic models of the countable first order theory $\mathcal{T}.$

Definition

The atomic class K_T is extendible if there is a pair $M \leq N$ of countable, atomic models, with $N \neq M$.

Equivalently, K_T is extendible if and only if there is an uncountable, atomic model of T.

We assume throughout that K_T is extendible. We work in the monster model of T, which is usually not atomic.

A complete sentence of $L_{\omega_1,\omega}$ has a representation as an atomic class by Chang's trick: Expanding the language by introducing predicates for countable conjunctions (theory T^*) and making them correct by omitting types.

The $L_{\omega_1,\omega}$ -class is the reducts of atomic models of T^* .

ω -stability in Atomic Classes

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size?

Shelah's 80th!

Baldwin

Historical Background

The $L_{\omega_1,\omega}$ case

Syntax and Semantics Getting Models in the continuum

 $\kappa_{(2^{N_0})^+}$ implies ω -stability

Definitions

 $p \in S_{at}(A)$ if $a \models p$ implies Aa is atomic.

K is ω -stable if for every countable model M, $S_{at}(M)$ is countable.

But, there may be $A \subseteq M$, $p \in S_{at}(A)$ that has no extension to $S_{at}(M)$.

Note also ϕ may be κ -stable in this sense while the associated AEC is not κ -stable (for Galois types) [BK09].

First order absoluteness

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size?

John T. Baldwin

Historical Backgroun

The $L_{\omega_1,\omega}$ case

Syntax and Semantics Getting Models

 $\kappa_{_{(2}\aleph_0)^+}$ implies $\omega_{- ext{stability}}$

Theorem (Morley-Baldwin-Lachlan)

A first order theory $\mathcal T$ in a countable language is \aleph_1 categorical iff

- 1 T has no 2-cardinal models and
- **2** T is ω -stable.
- 1) is arithmetic and 2) is Π_1^1 .

Fact

A first order theory T in a countable language whose class of atomic models satisfies 1) and 2) is \aleph_1 -categorical.

I emphasize Morley because it is his direction:

' \aleph_1 -categorical implies ω -stable'; that is problematic for $L_{\omega_1,\omega}$.

Getting ω -stability: I

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size?

John T. Baldwin

Historical Background

The $L_{\omega_1,\omega}$ case

Syntax and Semantics Getting Models i the continuum

 $\kappa_{(2^{\stackrel{\circ}{N}_0})^+}$ implies ω -stability

Theorem: Keisler/Shelah

$$K = \operatorname{mod}(\psi), \ \psi \in L_{\omega_1,\omega}$$

- **1** (Keisler) ZFC If some uncountable model in K realizes uncountably many types (in a countable fragment) over \emptyset then K has 2^{\aleph_1} models in \aleph_1 .
- 2 (Shelah) $(2^{\aleph_0} < 2^{\aleph_1})$ If K has $< 2^{\aleph_1}$ models of cardinality \aleph_1 , then K is ω -stable.

Two uses of WCH to prove 2) from 1)

- MCH implies AP in \aleph_0 . Thus, if K is not ω -stable there is a countable model M and an uncountable $N \in K$ which realizes uncountably many types over M.
- By Keisler, $\operatorname{Th}_M(M)$ has 2^{\aleph_1} models. From WCH we conclude $\operatorname{Th}(M)$ has 2^{\aleph_1} models in \aleph_1 .

Getting ω -stability: II

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size? Shelah's 80th!

John T. Baldwin

Historical Background

The $L_{\omega_1,\omega}$ case

Syntax and Semantics Getting Models in the continuum

 $\kappa_{(2}\aleph_0)^+$ implies ω -stability

Morley's original *first order* proof using Hanf number for omitting types, EM-models, and the Skolem hull gives:

Theorem

If a complete first order theory has arbitrarily large models and is \aleph_1 -categorical then it is ω -stable.

More generally,

Theorem

An \aleph_1 -categorical atomic class K that has arbitrarily large models and amalgamation in \aleph_0 is ω -stable.

Tradeoff: \beth_{ω_1} (Morley) for weak CH (Shelah/Keisler).

A new notion of closure

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size?

John T.

Historical Background

The $L_{\omega_1,\omega}$ case

Syntax and Semantics Getting Models

Definition

An atomic tuple \mathbf{c} is in the pseudo-algebraic closure of the finite, atomic set B ($\mathbf{c} \in \operatorname{pcl}(B)$) if for every atomic model M such that $B \subseteq M$, and $M\mathbf{c}$ is atomic, $\mathbf{c} \subseteq M$.

When this occurs, and **b** is any enumeration of B and $p(\mathbf{x}, \mathbf{y})$ is the complete type of **cb**, we say that $p(\mathbf{x}, \mathbf{b})$ is pseudo-algebraic.

Example

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size? Shelah's 80th!

John T. Baldwin

Historical Background

The $L_{\omega_1,\omega}$ case

Semantics
Getting Models in the continuum

 $K_{(2}\aleph_{0})^{+}$ $\nearrow \emptyset$ implies ω -stability

Our notion, pcl of *algebraic* differs from the classical first-order notion of algebraic as the following examples show:

Example

Suppose that an atomic model M consists of two sorts. The U-part is countable, but non-extendible (e.g., U infinite, and has a linear order of type (Z,<) on it. On the other sort, V is an infinite set with no structure (hence arbitrarily large atomic models). Then, an element $x_0 \in U$ is not algebraic over \emptyset in the normal sense but is in $\operatorname{pcl}(\emptyset)$.

Definability of pseudo-algebraic closure

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size? Shelah's 80th!

John T. Baldwin

Historical Background

The $L_{\omega_1,\omega}$ case

Syntax and Semantics Getting Models in the continuum

Strong ω -homogeneity of the monster model of T yields:

Fact

The truth of $c \in pcl(\mathbf{b})$ does not depend on an ambient atomic model.

Further, since a model which is atomic over the empty set is also atomic over any finite subset, moving M to N we have:

Fact

If $\mathbf{c} \not\in \operatorname{pcl}(B)$, witnessed by M then for every countable, atomic $N \supset B$, there is a realization \mathbf{c}' of $p(\mathbf{x}, B)$ such that $\mathbf{c}' \not\subseteq N$.

Pseudo-minimal sets

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size?

Shelah's 80th!

John T. Baldwin

Historical Background

The $L_{\omega_1,\omega}$ case

Syntax and Semantics

Getting Models in

 $\kappa_{(2^{N_0})^+}$ implies ω -stability

Definition

- **1** A possibly incomplete type q over \mathbf{b} is pseudominimal if for any finite, $\mathbf{b}^* \supseteq \mathbf{b}$, $\mathbf{a} \models q$, and \mathbf{c} such that $\mathbf{b}^* \mathbf{c} \mathbf{a}$ is atomic, if $\mathbf{c} \subset \operatorname{pcl}(\mathbf{b}^* \mathbf{a})$, and $\mathbf{c} \not\in \operatorname{pcl}(\mathbf{b}^*)$, then $\mathbf{a} \in \operatorname{pcl}(\mathbf{b}^* \mathbf{c})$.
- 2 M is pseudominimal if x = x is pseudominimal in M.

l.e, pcl satisfies exchange (and more); we have a geometry.

'Density'

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size? Shelah's 80th!

John T. Baldwin

Historical Background

The $L_{\omega_1,\omega}$ case

Syntax and Semantics Getting Models

Getting Models in the continuum

 $\kappa_{({}^2\mathcal{N}_0)^+}$ implie ω -stability

Definition

 K_T satisfies 'density' of pseudominimal types if for every atomic **e** and atomic type $p(\mathbf{e}, \mathbf{x})$ there is a **b** with **eb** atomic and $q(\mathbf{e}, \mathbf{b}, \mathbf{x})$ extending p such that q is pseudominimal.

So density fails if there is a single type $p(\mathbf{e}, \mathbf{x})$ over which exchange fails.

Method: 'Consistency implies Truth':I

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size?

John T. Baldwin

Historical Background

The $L_{\omega_1,\omega}$ case

Syntax and Semantics Getting Models in the continuum

 $K_{(2}\aleph_0)^+ \not \emptyset$ implies ω -stability

[BL16]

Let ϕ be a τ -sentence in $L_{\omega_1,\omega}(Q)$ such that it is consistent that ϕ has a model.

Let A be the countable ω -model of set theory, containing ϕ , that thinks ϕ has an uncountable model.

Construct B, an uncountable model of set theory, which is an elementary extension of A, such that B is correct about uncountability. Then the model of ϕ in B is actually an uncountable model of ϕ .

Main Theorem

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size?

John T. Baldwin

Historical Background

The $L_{\omega_1,\omega}$ case

Syntax and Semantics Getting Models i the continuum

 $\kappa_{(2}\aleph_{0})^{+}$ implies ω -stability

Goal Theorem [BLS16]

If K_T fails 'density of pseudominimal types' then K_T has 2^{\aleph_1} models of cardinality \aleph_1 .

We prove this in two steps

- 1 Force to construct a model (M, E) of set theory in which a model of T codes model theoretic and combinatorial information sufficient to guarantee the non-isomorphism of its image in the different ultralimits.
- 2 Apply Skolem ultralimits of the models of set theory from 1) to construct 2^{\aleph_1} atomic models of T with cardinality \aleph_1 in V.

Getting Models in the continuum

Can categorical classes in $L\omega_1,\omega$ be bounded in size?

John T.

Historical Backgroun

The $L_{\omega_1,\omega}$

Syntax and

Getting Models i

 $K_{(2}N_{0})^{+} \not \emptyset$ implies ω -stability

Getting models in 2^{\aleph_0} : Method

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size?

John T. Baldwin

Historical Background

The $L_{\omega_1,\omega}$ case

Syntax and
Semantics

Getting Models in the continuum

the continuum $K_{(2}\aleph_0)^+ \not \emptyset \quad \text{implie}$ $\omega\text{-stability}$

In the novel *White Light* [Ruc80], Rudy Rucker proposes a metaphor for the continuum hypothesis. One can reach \aleph_1 by a laborious climb up the side of Mt. ON, pausing at ϵ_0 .

Or one can take Cantor's elevator An instantaneous trip up a shaft at the center of the mountain.

For atomic models we take the slightly slower Shelah's elevator The elevator is a bit slower but has only countably many floors. After building finitely many rooms at each step we reach an object of cardinality 2^{\aleph_0} .

Asymptotic similarity

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size?

John T. Baldwin

Historical Backgroun

Syntax and Semantics

Getting Models in the continuum $K_{(2}N_{0})^{+} \longrightarrow \text{impl}$ ω -stability

Definition

Fix an *L*-structure *M*. A subset of *M*, indexed by $\{a_{\eta}: \eta \in 2^{\omega}\}$, is asymptotically similar if, for every *k*-ary *L*-formula θ , there is an integer N_{θ} such that for every $\ell \geq N_{\theta}$,

$$M \models \theta(a_{\eta_0},\ldots,a_{\eta_{k-1}}) \leftrightarrow \theta(a_{\tau_0},\ldots,a_{\tau_{k-1}})$$

whenever $(\eta_0, \ldots, \eta_{k-1})$ and $(\tau_0, \ldots, \tau_{k-1})$ satisfy: $\eta_i \upharpoonright \ell = \tau_i \upharpoonright \ell$ and the $\eta_i \upharpoonright \ell$ are distinct.

Remark

Asymptotic similarity is a type of indiscernibility; the indiscernibility is only formula by formula. Let $M = (2^{\omega}, \{U_i : i < \omega\})$ where the U_i are independent unary predicates. The entire universe is asymptotically similar, although no two elements have the same 1-type.

24 / 37

Getting models in 2^{\aleph_0}

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size? Shelah's 80th!

John T. Baldwin

Historical Background

The $L_{\omega_1,\omega}$ case

Syntax and Semantics Getting Models in the continuum

 $K_{(2}\aleph_0)^+ \not \emptyset$ implies ω -stability

Theorem [BL19]

If a countable first order theory T has an atomic pseudominimal model M of cardinality \aleph_1 then there is an atomic pseudominimal model N of T which a contains a set of asymptotically similar elements with cardinality 2^{\aleph_0} .

A simple application of the method gives Borel models in the continuum of any theory with trivial definable closure.

 $m{\mathcal{K}}_{(2^{leph_0})^+}
eq \emptyset ext{ implies } \omega ext{-stability classes in}$

 $L_{\omega_1,\omega}$ be bounded in size?

Shelah's 80th!

Baldwin

Historical Backgroun

The $L_{\omega_1,\omega}$

Syntax and Semantics Getting Models in

 $\kappa_{(2^{N_0})^+}$ implies ω -stability

Goal Theorem [BLS24]

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size?

John T Baldwir

Historical Backgroun

The $L_{\omega_1,\omega}$ case

Syntax and Semantics Getting Models in the continuum

 $K_{(2} \aleph_0)^+ / \emptyset$ implies ω -stability

Theorem

If an atomic class At is \aleph_1 -categorical and has a model of size $(2^{\aleph_0})^+$ then At is ω -stable.

Old and new definitions:

Definition

- **1** A type $p \in S_{at}(M)$ splits over $F \subseteq M$ if there are tuples $\mathbf{b}, \mathbf{b}' \subseteq M$ and a formula $\phi(\mathbf{x}, \mathbf{y})$ such that $\operatorname{tp}(\mathbf{b}/F) = \operatorname{tp}(\mathbf{b}'/F)$ but $\phi(\mathbf{x}, \mathbf{b}) \land \neg \phi(\mathbf{x}, \mathbf{b}') \in \mathbf{p}$
- $\operatorname{tp}(\mathbf{b}/F) = \operatorname{tp}(\mathbf{b}'/F), \text{ but } \phi(\mathbf{x}, \mathbf{b}) \land \neg \phi(\mathbf{x}, \mathbf{b}') \in \rho.$
- 2 We call $p \in S_{at}(M)$ constrained if p does not split over some finite $F \subseteq M$ and unconstrained if p splits over every finite subset of M.

27 / 37

3 $C_M := \{ p \in S_{at}(M) : p \text{ is constrained} \}$, for an atomic model M. We say At has **only constrained types** if $S_{at}(N) = C_N$ for every atomic model N.

Limit types

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size?

Shelah's 80th! John T.

Historical Backgroun

The $L_{\omega_1,\omega}$ case

Syntax and Semantics Getting Models in the continuum

 $\kappa_{(2}\aleph_{0})^{+}$ implies ω -stability

Definition

For $|N| = \aleph_1$, a type $p \in S_{at}(N)$ is a limit type if the restriction $p \upharpoonright M$ is realized in N for every countable $M \leq N$.

Trivially, for every N, every type in $S_{at}(N)$ realized in N is a limit type. Since we allow M=N in the definition of a limit type, if M is countable, then the only limit types in $S_{at}(M)$ are those realized in M.

Proof Sketch

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size? Shelah's 80th!

John T Baldwir

Historical Backgroun

The $L_{\omega_1,\omega}$ case

Syntax and Semantics Getting Models in the continuum

 $\kappa_{(2\aleph_0)^+}$ implies ω -stability

Studying constrained and limit types (over models) and investigate them under the assumption of \aleph_1 -categoricity. From this, we prove the main theorem. These results depend on a major hypothesis, the existence of an uncountable model in which every limit type is constrained.

The construction of this model is another example of 'consistency implies truth'.

Basic Properties

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size?

John T. Baldwin

Historical Backgroun

The $L_{\omega_1,\omega}$ case

Syntax and Semantics Getting Models in the continuum

 $\kappa_{(2}\aleph_0)^+$ implies ω -stability

Lemma

- If M is a countable atomic model and $p \in S_{at}(M)$ then p is realized in an atomic extension of M.
- 2 For any atomic models $M \leq N$ and finite $A \subseteq M$, then for any $q \in S_{at}(N)$ that does not split over A, the restriction $q \upharpoonright M$ does not split over A; and any $p \in S_{at}(M)$ that does not split over A has a unique non-splitting extension $q \in S_{at}(N)$.
- If some atomic N has an unconstrained $p \in S_{at}(N)$, then for every countable $A \subseteq N$, there is a countable $M \preceq N$ with $A \subseteq M$ for which the restriction $p \upharpoonright M$ is unconstrained.
- 4 At has only constrained types if and only if $S_{at}(M) = C_M$ for every/some countable atomic model M.

'Consistency implies Truth': II

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size? Shelah's 80th!

John T. Baldwin

Historical Background

The $L_{\omega_1,\omega}$ case

Syntax and Semantics Getting Models in the continuum

 $\kappa_{(2}\aleph_{0})^{+}$ implies ω -stability

Using the technique of [BLS16]:

KEY Theorem:

If At admits an uncountable, atomic model, then there is some $N \in At$ with $|N| = \aleph_1$ for which every limit type in $S_{at}(N)$ is constrained.

So if \aleph_1 -categorical: limit = constrained on the model in \aleph_1 .

$(2^{\aleph_0})^+$ is enough

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size? Shelah's 80th!

John T. Baldwin

Historical Backgroun

The $L_{\omega_1,\omega}$ case

Syntax and Semantics Getting Models in the continuum

 $\kappa_{(2}\aleph_{0})^{+}$ implies ω -stability

Theorem

If an atomic class At is \aleph_1 -categorical and has a model of size $(2^{\aleph_0})^+$ then the model M in \aleph_1 satisfies $S_{At}(M)$ has only constrained types and so is ω -stable.

Pf. Use the existence of a model in 2^{\aleph_0})⁺ to construct an \aleph_1 -saturated model in \aleph_1 . If there is c realizing an unconstrained type, use relative \aleph_1 -saturation to build an unconstrained limit type. This contra the KEY.

Similarly argue that if there is a unconstrained type over a countable model then there is a model in \aleph_1 with an unconstrained limit type. Apply KEY again [BLS24, Theorem 2.4.4]

References I

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size?

John T. Baldwin

Historical Background

The $L_{\omega_1,\omega}$ case

Syntax and Semantics Getting Models in the continuum

 $\kappa_{(2}\aleph_{0})^{+}$ implies ω -stability

John T. Baldwin.

Categoricity.

Number 51 in University Lecture Notes. American Mathematical Society, Providence, USA, 2009.

- John T. Baldwin and Alexei Kolesnikov.
 Categoricity, amalgamation, and tameness.

 Israel Journal of Mathematics, 170:411–443, 2009.
- John T. Baldwin and Paul Larson.
 Iterated elementary embeddings and the model theory of infinitary logic.

Annals of Pure and Applied Logic, 167:309–334, 2016.

References II

henkcontbib.

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size?

John T. Baldwin

Historical Backgroun

The $L_{\omega_1,\omega}$ case

Semantics
Getting Models in the continuum

 $\kappa_{({}_{2}\aleph_{0})^{+}}$ implies ω -stability

- John T. Baldwin and C. Laskowski.

 Henkin constructions of models with size continuum.

 Bulletin of Symbolic Logic, 25:1-34, 2019.

 https://doi.org/10.1017/bsl.2018.2,

 http://homepages.math.uic.edu/~jbaldwin/pub/
- John T. Baldwin, C. Laskowski, and S. Shelah. Constructing many atomic models in ℵ₁.

 Journal of Symbolic Logic, 81:1142–1162, 2016.
- John T. Baldwin, C. Laskowski, and S. Shelah. When does \aleph_1 -categoricity imply ω -stability. *Model Theory*, 3:3:801–825, 2024.

References III

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size?

John T. Baldwin

Historical Background

The $L_{\omega_1,\omega}$ case

Syntax and Semantics Getting Models in the continuum

 $\kappa_{(2\aleph_0)^+}$ implies ω -stability

H.J Keisler. Model theory for Infinitary Logic. North-Holland, 1971.

M. Morley.

Categoricity in power.

Transactions of the American Mathematical Society, 114:514–538, 1965.

R. Rucker.

White Light.

Ace, 1980.

References IV

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size?

John T. Baldwin

Historical Backgroun

The $L_{\omega_1,\omega}$ case

Syntax and Semantics Getting Models in the continuum

 $\kappa_{(2} \aleph_0)^+ \not \emptyset$ implies ω -stability

Saharon Shelah.

Abstract elementary classes near \aleph_1 sh88r. revision of Classification of nonelementary classes II, Abstract elementary classes; on the Shelah archive.

S. Shelah.

Classification theory for nonelementary classes. II. the number of uncountable models of $\psi \in L_{\omega_1\omega}$ part B. Israel Journal of Mathematics, 46;3:241–271, 1983. Sh index 87b.

References V

Can categorical classes in $L_{\omega_1,\omega}$ be bounded in size?

John T. Baldwin

Historical Backgroun

The $L_{\omega_1,\omega}$ case

Syntax and Semantics Getting Models in the continuum

 $\kappa_{(2\aleph_0)^+}$ implies ω -stability

Saharon Shelah.

Classification of nonelementary classes II, abstract elementary classes.

In John T. Baldwin, editor, *Classification theory (Chicago, IL, 1985)*, pages 419–497. Springer, Berlin, 1987. paper 88: Proceedings of the USA–Israel Conference on Classification Theory, Chicago, December 1985; volume 1292 of Lecture Notes in Mathematics