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What does categoricity in power mean?

1 [Mor65] A theory, T , (formalized in the first order
predicate calculus) is categorical in power κ if it has
exactly one isomorphism type of models of powerκ.

2 [Kei71] A class of models K for a language L is categorical
in κ if any two models A,B in K are isomorphic.
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When do ℵ1-categorical theories (AEC) have a
bounded size of models?

In the mid-70’s Shelah answered my question as to whether a
sentence of Lω1,ω(Q) could be categorical in the philosophers
sense, have only one model. In different papers he proved in
different ways that ℵ1-categorical such sentence has a model in
ℵ2.

Two questions: Under what conditions does a sentence of Lω1,ω

(with LN ℵ0) that is ℵ1-categorical have models in ℵ2, 2
ℵ0 , or

even larger?
More generally, Grossberg’s question Must an aec categorical in
λ with I (K , λ+) < 2λ

+
have a model in λ++?

We already know the second is independent of ZFC.
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One Completely General Result

WGCH(λ): 2λ < 2λ
+

Let K be an abstract elementary class (AEC).

Theorem

[WGCH (λ) ] Suppose λ ≥ LS(K ) and K is λ-categorical. If
amalgamation fails in λ there are 2λ

+
models in K of

cardinality κ = λ+.

Uses [Θ̂λ+(S)] (weak diamond) for many S .

λ-categoricity plays a fundamental role.

No really specific model theoretic hypothesis but a set-theoretic
one!
Definitely not provable in ZFC for AEC (even for Lω1,ω(Q1)
maybe for Lω1,ω).
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THE counterexample: Φ

K is the models in a vocabulary with two unary relations P, Q
and two binary relations E , R which satisfy:
For any model M ∈ K ,

1 P and Q partition M.

2 E is an equivalence relation on Q.

3 P and each equivalence class of E is denumerably infinite.

4 R is a relation on P × Q so that each element of Q codes
a subset of P.

5 R induces the independence property on P ∪ Q.

This class is axiomatized by a sentence Φ in Lω1,ω(Q1).
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Properties of models of Φ

amalgamation, ω-stablilty, and arbitrarily large models FAIL

Under MA Φ is ℵ1-categorical but is not ω-stable, fails
amalgamation in ℵ0, and has no models beyond the continuum.

Shelah suggested a variant, axiomatized in Lω1,ω with the same
properties in ℵ0. Laskowski showed that sentence had at least
2ℵ0 models in ℵ1.

[She87, She83, She],[Bal09, §17]
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The class of models

KT is the class of atomic models of the countable first order
theory T .

Definition

The atomic class KT is extendible if there is a pair M ⪯ N of
countable, atomic models, with N ̸= M.

Equivalently, KT is extendible if and only if there is an
uncountable, atomic model of T .

We assume throughout that KT is extendible. We work in the
monster model of T , which is usually not atomic.
A complete sentence of Lω1,ω has a representation as an atomic
class by Chang’s trick: Expanding the language by introducing
predicates for countable conjunctions (theory T ∗) and making
them correct by omitting types.
The Lω1,ω-class is the reducts of atomic models of T ∗.
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ω-stability in Atomic Classes

Definitions

p ∈ Sat(A) if a |= p implies Aa is atomic.
K is ω-stable if for every countable model M, Sat(M) is
countable.

But, there may be A ⊆ M, p ∈ Sat(A) that has no extension to
Sat(M).
Note also ϕ may be κ-stable in this sense while the associated
AEC is not κ-stable (for Galois types) [BK09].
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First order absoluteness

Theorem (Morley-Baldwin-Lachlan)

A first order theory T in a countable language is ℵ1 categorical
iff

1 T has no 2-cardinal models and

2 T is ω-stable.

1) is arithmetic and 2) is Π1
1.

Fact

A first order theory T in a countable language whose class of
atomic models satisfies 1) and 2) is ℵ1-categorical.

I emphasize Morley because it is his direction:
‘ℵ1-categorical implies ω-stable’; that is problematic for Lω1,ω.
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Getting ω-stability: I

Theorem: Keisler/Shelah

K = mod(ψ), ψ ∈ Lω1,ω

1 (Keisler) ZFC If some uncountable model in K realizes
uncountably many types (in a countable fragment) over ∅
then K has 2ℵ1 models in ℵ1.

2 (Shelah) (2ℵ0 < 2ℵ1) If K has < 2ℵ1 models of cardinality
ℵ1, then K is ω-stable.

Two uses of WCH to prove 2) from 1)

A WCH implies AP in ℵ0. Thus, if K is not ω-stable there is
a countable model M and an uncountable N ∈ K which
realizes uncountably many types over M.

B By Keisler, ThM(M) has 2ℵ1 models. From WCH we
conclude Th(M) has 2ℵ1 models in ℵ1. 13 / 37
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Getting ω-stability: II

Morley’s original first order proof using Hanf number for
omitting types, EM-models, and the Skolem hull gives:

Theorem

If a complete first order theory has arbitrarily large models and
is ℵ1-categorical then it is ω-stable.

More generally,

Theorem

An ℵ1-categorical atomic class K that has arbitrarily large
models and amalgamation in ℵ0 is ω-stable.

Tradeoff: ℶω1 (Morley) for weak CH (Shelah/Keisler).
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A new notion of closure

Definition

An atomic tuple c is in the pseudo-algebraic closure of the
finite, atomic set B (c ∈ pcl(B)) if
for every atomic model M such that B ⊆ M, and Mc is
atomic, c ⊆ M.

When this occurs, and b is any enumeration of B and p(x, y) is
the complete type of cb, we say that p(x,b) is
pseudo-algebraic.

15 / 37
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Example

Our notion, pcl of algebraic differs from the classical first-order
notion of algebraic as the following examples show:

Example

Suppose that an atomic model M consists of two sorts. The
U-part is countable, but non-extendible (e.g., U infinite, and
has a linear order of type (Z , <) on it. On the other sort, V is
an infinite set with no structure (hence arbitrarily large atomic
models). Then, an element x0 ∈ U is not algebraic over ∅ in
the normal sense but is in pcl(∅).

16 / 37
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Definability of pseudo-algebraic closure

Strong ω-homogeneity of the monster model of T yields:

Fact

The truth of c ∈ pcl(b) does not depend on an ambient atomic
model.

Further, since a model which is atomic over the empty set is
also atomic over any finite subset, moving M to N we have:

Fact

If c ̸∈ pcl(B), witnessed by M then for every countable, atomic
N ⊃ B, there is a realization c′ of p(x,B) such that c′ ̸⊆ N.

17 / 37
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Pseudo-minimal sets

Definition

1 A possibly incomplete type q over b is pseudominimal if for
any finite, b∗ ⊇ b, a |= q, and c such that b∗ca is atomic,
if c ⊂ pcl(b∗a), and c ̸∈ pcl(b∗), then a ∈ pcl(b∗c).

2 M is pseudominimal if x = x is pseudominimal in M.

I.e, pcl satisfies exchange (and more); we have a geometry.

18 / 37
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‘Density’

Definition

KT satisfies ‘density’ of pseudominimal types if for every
atomic e and atomic type p(e, x) there is a b with eb atomic
and q(e,b, x) extending p such that q is pseudominimal.

So density fails if there is a single type p(e, x) over which
exchange fails.

19 / 37
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Method: ‘Consistency implies Truth’:I

[BL16]
Let ϕ be a τ -sentence in Lω1,ω(Q) such that it is consistent
that ϕ has a model.
Let A be the countable ω-model of set theory, containing ϕ,
that thinks ϕ has an uncountable model.

Construct B, an uncountable model of set theory, which is an
elementary extension of A, such that B is correct about
uncountability. Then the model of ϕ in B is actually an
uncountable model of ϕ.

20 / 37
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Main Theorem

Goal Theorem [BLS16]

If KT fails ‘density of pseudominimal types’ then KT has 2ℵ1

models of cardinality ℵ1.

We prove this in two steps

1 Force to construct a model (M,E ) of set theory in which
a model of T codes model theoretic and combinatorial
information sufficient to guarantee the non-isomorphism of
its image in the different ultralimits.

2 Apply Skolem ultralimits of the models of set theory from
1) to construct 2ℵ1 atomic models of T with cardinality
ℵ1 in V .

21 / 37
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Getting models in 2ℵ0: Method

In the novel White Light [Ruc80], Rudy Rucker proposes a
metaphor for the continuum hypothesis. One can reach ℵ1 by a
laborious climb up the side of Mt. ON, pausing at ϵ0.

Or one can take
Cantor’s elevator An instantaneous trip up a shaft at the center
of the mountain.

For atomic models we take the slightly slower
Shelah’s elevator The elevator is a bit slower but has only
countably many floors. After building finitely many rooms at
each step we reach an object of cardinality 2ℵ0 .

23 / 37
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Asymptotic similarity

Definition

Fix an L-structure M. A subset of M, indexed by {aη :η ∈ 2ω},
is asymptotically similar if, for every k-ary L-formula θ, there is
an integer Nθ such that for every ℓ ≥ Nθ,

M |= θ(aη0 , . . . , aηk−1
) ↔ θ(aτ0 , . . . , aτk−1

)

whenever (η0, . . . , ηk−1) and (τ0, . . . , τk−1) satisfy: ηi↾ℓ = τi↾ℓ
and the ηi↾ℓ are distinct.

Remark

Asymptotic similarity is a type of indiscernibility; the
indiscernibility is only formula by formula. Let
M = (2ω, {Ui : i < ω} where the Ui are independent unary
predicates. The entire universe is asymptotically similar,
although no two elements have the same 1-type.

24 / 37
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Getting models in 2ℵ0

Theorem [BL19]

If a countable first order theory T has an atomic
pseudominimal model M of cardinality ℵ1 then there is an
atomic pseudominimal model N of T which a contains a set of
asymptotically similar elements with cardinality 2ℵ0 .

A simple application of the method gives Borel models in the
continuum of any theory with trivial definable closure.

25 / 37
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Goal Theorem [BLS24]

Theorem

If an atomic class At is ℵ1-categorical and has a model of size
(2ℵ0)+ then At is ω-stable.

Old and new definitions:

Definition

1 A type p ∈ Sat(M) splits over F ⊆ M if there are tuples
b,b′ ⊆ M and a formula ϕ(x, y) such that
tp(b/F ) = tp(b′/F ), but ϕ(x,b) ∧ ¬ϕ(x,b′) ∈ p.

2 We call p ∈ Sat(M) constrained if p does not split over
some finite F ⊆ M and unconstrained if p splits over every
finite subset of M.

3 CM := {p ∈ Sat(M) : p is constrained}, for an atomic
model M. We say At has only constrained types if
Sat(N) = CN for every atomic model N. 27 / 37
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Limit types

Definition

For |N| = ℵ1, a type p ∈ Sat(N) is a limit type if the
restriction p↾M is realized in N for every countable M ⪯ N.

Trivially, for every N, every type in Sat(N) realized in N is a
limit type. Since we allow M = N in the definition of a limit
type, if M is countable, then the only limit types in Sat(M) are
those realized in M.

28 / 37
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Proof Sketch

Studying constrained and limit types (over models) and
investigate them under the assumption of ℵ1-categoricity. From
this, we prove the main theorem. These results depend on a
major hypothesis, the existence of an uncountable model in
which every limit type is constrained.
The construction of this model is another example of
‘consistency implies truth’.

29 / 37
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Basic Properties

Lemma

1 If M is a countable atomic model and p ∈ Sat(M) then p
is realized in an atomic extension of M.

2 For any atomic models M ⪯ N and finite A ⊆ M, then for
any q ∈ Sat(N) that does not split over A, the restriction
q↾M does not split over A; and any p ∈ Sat(M) that does
not split over A has a unique non-splitting extension
q ∈ Sat(N).

3 If some atomic N has an unconstrained p ∈ Sat(N), then
for every countable A ⊆ N, there is a countable M ⪯ N
with A ⊆ M for which the restriction p↾M is
unconstrained.

4 At has only constrained types if and only if Sat(M) = CM

for every/some countable atomic model M.

Straightforward proofs using atomicity.
30 / 37
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‘Consistency implies Truth’: II

Using the technique of [BLS16]:

KEY Theorem:

If At admits an uncountable, atomic model, then there is some
N ∈ At with |N| = ℵ1 for which every limit type in Sat(N) is
constrained.

So if ℵ1 -categorical: limit = constrained on the model in ℵ1.

31 / 37
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(2ℵ0)+ is enough

Theorem

If an atomic class At is ℵ1-categorical and has a model of size
(2ℵ0)+ then the model M in ℵ1 satisfies SAt(M) has only
constrained types and so is ω-stable.
Pf. Use the existence of a model in 2ℵ0)+ to construct an
ℵ1-saturated model in ℵ1. If there is c realizing an
unconstrained type,use relative ℵ1-saturation to build an
unconstrained limit type. This contra the KEY.

Similarly argue that if there is a unconstrained type over a
countable model then there is a model in ℵ1 with an
unconstrained limit type. Apply KEY again [BLS24, Theorem
2.4.4]

32 / 37
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