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1971 – Superstablity

Definition

A (complete, countable) stable theory T is superstable if there do
not exist c and A0 ⊆ A1 ⊆ A2 ⊂ . . . with tp(c/An+1) forking over
An for each n.

Theorem

If T is not superstable, then the class of uncountable models of T
is chaotic. (In particular, I (T , κ) = 2κ for all κ > ℵ0.)

Henceforth, we will assume all theories are (complete) and
superstable in a countable language.
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T countable, superstable

Notation:

M a-model ↔ Fa
ℵ0-saturated model ↔ ℵε-saturated model

means: M realizes every type in S(acleq(A)) for every finite
A ⊆ M.

An independent triple of models (M0,M1,M2) satisfies M0 � M1,
M0 � M1, with M1^

M0

M2 An independent triple of models

(M0,M1,M2) satisfies M0 � M1, M0 � M1, with M1^
M0

M2

(forking independence!)
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1981 – NDOP

Definition

A (countable) superstable T has NDOP if, for any independent
triple (M0,M1,M2) of a-models, any a-prime model M∗ over M1M2

is minimal over M1M2. [If M1M2 ⊆ N � M∗, then N = M∗.]

Theorem (Main Gap for a-saturated models)

If T is superstable with NDOP, then every a-model is a-prime and
a-minimal over an independent tree {Mη : η ∈ I} of a-models of
size 2ℵ0 .

Theorem

If T is either unsuperstable or if T has DOP, then I (T , κ) = 2κ for
all κ > ℵ0.
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1984 – The ‘Magic Bullet’

Definition

A (countable) superstable T has NOTOP if there does not exist a
type p(x , y , z) such that for every λ and R ⊆ λ2, there is a model
MR and {ai : i ∈ λ} ⊆ MR such that for all (i , j) ∈ λ2,

MR realizes p(x , ai , aj) if and only if R(i , j)

Definition

T is classifiable if T is countable, superstable, NDOP, NOTOP.
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1989 – 2 years after Volume 2 of Classification Theory

Theorem

Let T be any complete theory in a countable language.

1 If T is not classifiable, the I (T , κ) = 2κ for all κ > ℵ0.

2 if T is classifiable, then every model N is constructible and
minimal over an independent tree (Mη : η ∈ I ) of countable,
elementary substructures.

Computing the 13 species of uncountable spectra starts with this.
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The take-away

Historically –

NOTOP was only developed/explored in the presence of NDOP!

Will see: Countable, superstable, NOTOP theories admit structure
theorems, even without NDOP.
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Notions of isolation

Recall: tp(c/B) is isolated if there is some ψ(x , b) ∈ tp(c/B) such
that ψ(x , b) ` tp(c/B).

A weakening:

Lachlan: tp(c/B) is `-isolated if, for every φ(x , y), there is
ψ(x , b) ∈ tp(c/B) such that ψ(x , b) ` tpφ(c/B).

If T is ω-stable, then for every set B, the isolated types are
dense in S(B).

If T is countable, superstable, then for every set B, the
`-isolated types are dense in S(B).
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Theorem (L-Ulrich)

For T countable, superstable, TFAE:

1 NOTOP;

2 For all independent triples (M0,M1,M2) and all finite c,
tp(c/M1M2) `-isolated implies tp(c/M1M2) isolated.
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Recall: T is classifiable iff every N |= T is constructible and
minimal over an independent tree (Mη : η ∈ I ) of countable,
elementary substructures.

Theorem (L-Ulrich)

Suppose T is countable, superstable, with NOTOP.

1 Every N |= T is atomic over an independent tree (Mη : η ∈ I )
of countable, elementary substructures;

2 There is a constructible model N0 � N over
⋃
{Mη : η ∈ I};

3 If N0 � N1 � N, then N0 �∞,ω N1 �∞,ω N, i.e., all three
models are back-and-forth equivalent.
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Contrast:

If T is classifiable, then every model N has a tree (Mη : η ∈ I )
of countable, elementary substructures that determines N up
to isomorphism over the tree.

If T is countable, superstable, NOTOP, then every model N
has a tree (Mη : η ∈ I ) of countable, elementary substructures
that determines N up to back and forth equivalence over the
tree.
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‘Under the hood’ – Study independent triples of models

Say M = (M0,M1,M2), N = (N0,N1,N2) are independent triples
of models (of any size). Define M v N iff Mi � Ni for each i ,
N0^

M0

M1M2, N1 ^
N0M1

M2 and N2 ^
N0M2

M1.

Credo: (Indep triples, v) acts very much like (Mod(T),�).

If M v N then M1M2 ⊆TV N1N2;

(ULS) For any M, there is N w M consisting of a-models

(DLS) For any N and any X ⊆ N1N2 with |X | ≤ κ, there is
M v N with X ⊆ M1M2 and |M1M2| ≤ κ.
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Definition (Harrington)

Suppose M = (M0,M1,M2) is any independent triple. We say c is
V -dominated by M if, c ^

M1M2

N1N2 for every N w M.

New: We say T has V-DI if for all c and for all M, if c is
V -dominated by M, then tp(c/M1M2) is isolated.

Fact: For any c and M,

If tp(c/M1M2) is `-isolated, then c is V -dominated by M.

If, in addition, each Mi is Fa
ℵ0-saturated, then the converse

holds.

Will see: V-DI is another equivalent of NOTOP.
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Two consequences of V-DI

One consequence:

Theorem (L-Ulrich)

V-DI implies PMOP (existence of a constructible model over
independent triples of models of any size).

Remark: The above was proved by Shelah, and reproved by Hart,
both under the assumption of NDOP.

On page 619 of Classification Theory (1987), Shelah writes:

“Remark. Really ”without the dop” is not necessary, this will be
shown in a subsequent paper.”
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Local versions of NDOP

Fact: T has NDOP iff for all independent triples (M0,M1,M2) of
a-models and for all a-prime M∗ over M1M2, every regular type
r 6⊥ M∗ is 6⊥ M1 or 6⊥ M2.

Fact: 6⊥ induces an equivalence relation on the set of regular types.

Let P be any union of 6⊥-classes of regular types.

Definition: T has P-NDOP iff for all independent triples
(M0,M1,M2) of a-models and for all a-prime M∗ over M1M2,
every regular r 6⊥ M∗ with r ∈ P is 6⊥ M1 or 6⊥ M2.

[L-Shelah] For sufficiently nice P, a-models of superstable T with
P-NDOP admit decomposition trees.
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A new class of regular types

Definition(Baisalov, 1990) An e-type is a stationary, weight one
type p(x , d) with d finite that is non-isolated.

Definition Pe = {regular r : r 6⊥ some e-type p(x , d)}.

Note: Pe-NDOP is a slight strengthening of eni-NDOP (they are
equivalent if T is ω-stable).

Second consequence:

• For T countable, superstable, V-DI implies Pe-NDOP.
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Some equivalents

Theorem (L-Ulrich)

The following are equivalent for a countable, superstable T :

1 For every independent triple of countable models M,
tp(c/M1M2) `-isolated implies tp(c/M1M2) isolated;

2 T is V-DI;

3 T has Pe-NDOP and countable PMOP (there exists a
constructible model over every independent triple of countable
models);

4 T has Pe-NDOP and full PMOP (there exists a constructible
model over every independent triple of models);

5 T has NOTOP.
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On adding constants

Recall: T has OTOP iff if there is a type p(x , y , z) such that for
every λ and R ⊆ λ2, there is a model MR and {ai : i ∈ λ} ⊆ MR

such that for all (i , j) ∈ λ2,

MR realizes p(x , ai , aj) if and only if R(i , j)

Good news: If a countable, superstable theory has OTOP, then
any expansion by adding countably many constants will also have
OTOP. (hence, we may assume our type p(x , y , z) witnessing
OTOP has countably many parameters).

Danger: There is a countable, superstable theory T with OTOP,
but if we add 2ℵ0 constants naming a saturated model, then the
expanded theory is categorical in all κ > 2ℵ0 .
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On a personal note

Thank you Saharon,
for all the time and energy you spent mentoring me.

And thanks to all of you for listening!
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